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Introduction
In saying that we understand a biological process, we usually 
mean that we are able to predict future events and manipulate 
the process into a desired direction. Thus, biological inquiry 
could be viewed as an attempt to understand how a biologi-
cal system transits from one state to another. Such transi-
tions underlie a wide range of biological phenomena from 
cell differentiation to recovery from disease. In attempting 
to understand these transitions, a simple and frequently used 
approach is to compare two states of a system (eg, before and 
after stimulus, with and without mutation, or healthy and dis-
eased). Although more sophisticated approaches with time-
series data, dose-effect data, or three or more sample groups 
can be also used, here we discuss analysis of data from a two-
class study design. Furthermore, most of the methods that 
we describe can, with slight modifications, be used for other 
study designs. Today, omics technologies enable unbiased 
investigation of biological systems through massively paral-
lel sequence acquisition or molecular measurements, bringing 
the life sciences into the era of Big Data. A central challenge 
posed by such omics datasets is how to navigate through the 
haystack of measurements (eg, differential expression between 

two states) to identify the needles comprised of the critical 
causal factors.

Network analysis is a powerful and general approach to 
this problem, in which the biological system is modeled as a 
network whose nodes represent dynamical units (eg, genes, 
proteins, metabolites, etc) and edges stand for links between 
them. Network analysis consists of two fundamental stages: 
network reconstruction and network interrogation. For omics 
molecular measurements such as gene expression, a par-
ticular type of network analysis called covariation network 
analysis has become a dominant approach. In such networks,  
a node represents the expression of the gene being measured, 
and an edge indicates that the expressions of two genes are 
correlated. Multiple groups including ours have been suc-
cessfully using such methods to gain a systems-level under-
standing of biological processes and to reveal mechanisms of 
different diseases.1–3 Several recent discoveries ranging from 
genes that drive progression of different cancers4,5 to microbes 
and microbial genes that cause a human illness6 became pos-
sible because of the predictive power of network analysis. In 
particular, such insights would be very difficult to achieve if 
analysis is limited to finding differentially expressed genes 
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and follow-up data mining of those genes. Due to the rapid 
pace of evolution of techniques and omics technologies, the 
practical application of network analysis has usually required 
a dedicated computational biologist. This requirement has 
limi ted the extent to which the larger biological sciences com-
munity has benefited from network analysis. Here we provide 
an overview of covariation network reconstruction and inter-
rogation, including a step-by-step guide on how to perform 
and use network analysis to investigate a biological question 
(Fig. 1). In this guide, we include the software packages that 
we employ (and specific pointers to the methods or software 
used by other groups) for each of the steps of a model network 
analysis workflow. Although in this guide we mostly focus on 
covariation networks, the analysis steps related to network 
interrogation are applicable to other types of networks such as 
semantic networks or molecular interaction networks.

In general, the types of omics measurements that are 
amenable to network analysis include microarrays, next-
generation sequencing (for genotyping, transcriptome profil-
ing, or microbiome analysis), and mass spectrometry-based 
proteomics and metabolomics data. While network analysis 
is usually and most straightforwardly applied to one type of 

omics data at a time (ie, to a homogeneous dataset), integrative 
networks are becoming more popular under the premise that 
the resulting networks more comprehensively describe the 
underlying biology.7,8 Each type of omics measurement tech-
nology has a specific procedure for transforming the raw data 
(eg, DNA sequences, mass spectrum peaks, spot fluorescence 
intensity for microarrays) to a consensus abundance or fre-
quency measure for each feature. These methods are reviewed 
elsewhere9–12 and are beyond the scope of this article. In this 
guide, we use gene expression data to illustrate the process of 
network reconstruction and interrogation.

Network reconstruction. The first stage of network 
analysis is network reconstruction, which is the data-driven 
discovery or inference of the entities/nodes (transcripts, pro-
teins, genes, metabolites, or microbes) and relationships or 
edges between these entities that together constitute the 
biological network. Here, we describe the steps involved in 
network reconstruction starting from entity abundance or fre-
quency data.

Normalization (data preprocessing). Customarily, abun-
dance data are normalized in order to correct for sample-
to-sample variation in the overall distribution of abundance 
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figure 1. Workflow of network analysis. (A) network analysis starts from data obtained from high-throughput experiments such as microarray 
experiments detecting expression of genes in samples. (B) differentially expressed genes are found between two states of a system (eg, normal 
vs disease). (C) correlations of dEgs based on their expression values are calculated to detect regulatory relationship among them. (D) Significant 
correlations suggest connections between differentially expressed genes (dEgs) and are used to generate a network of dEgs. (E) network interrogation 
is performed to detect modules, key regulators, and functional pathways that are important for state transitions. (f) Based on the findings from network 
interrogation, new hypotheses are generated, which can be tested in newly designed experiments. Data from new experiments could also be subject to 
further analysis.
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values (or more generally, to normalize specific quantities that 
depend on the distribution). Measurements of gene expression 
levels (as well as other types of omics data) can be affected by a 
variety of non-biological factors including unequal amount of 
starting RNA, different extents of labeling, or different effi-
ciencies of detection between samples. Before normalization, 
data are often log-transformed in order to stabilize variances 
when measurements span orders of magnitude. Frequently 
used normalization schemes include median normalization, 
quantile normalization, LOWESS normalization13 for RNA 
microarray data, reads per kilobase per million mapped reads 
(RPKM),14 and trimmed mean of M-values15 for RNA-seq 
data. In practice, we use normalization procedures available 
in the software package BRB ArrayTools16 for normalization 
of microarray data (Table 1). In addition, most normalization 
procedures are available as software packages in the Biocon-
ductor toolkit.17 Systematic evaluations of transcriptome nor-
malization methods have been reported for both microarrays18 
and RNA-seq19; however, evaluations using large numbers of 
sample groups are needed in order to determine which nor-
malization method is most appropriate for covariance network 
inference. Selection of an appropriate normalization method 
is clearly important, given that selection of a suboptimal nor-
malization scheme can lead to overestimation of gene–gene 
correlation coefficients.18 Beyond transcriptome profiling, 
different omics data types may benefit from different types 
of normalization. For example, new methods have been pro-
posed for normalization of metabolomics20 and microbiome21 
data. Although there is no consensus about the best methods 
for many types of data, in the experience of the authors,4,22–26 
simple methods such as quantile, LOWESS, or even median 
normalization perform reasonably well for class comparison 
and correlation if there are no major biases in the data such as 
batch effects.

Discovery of differentially expressed genes (selecting nodes). 
A crucial step in network reconstruction is the identification 
of the relevant subset of variables/genes that will constitute 
the nodes in the network; for a transcriptome profiling study, 
these would be genes for which there is significant differential 
expression between the sample groups. A variety of statistical 
tests are commonly used for the identification of differentially 
expressed genes (DEGs), including Welch’s t-test, moderated 
t-test, and permutation tests. For parametric tests, accurate 
estimation of intra-sample-group variance is a critical issue; 
two improved variance estimation techniques are the locally 
pooled error27 and empirical Bayes methods.28 To find DEGs, 
we usually use the t-test with the ordered set of P-values con-
verted to cumulative false discovery rate (FDR) estimates, for 
which a typical cutoff would be 10%. Both statistical functions 
are implemented in BRB ArrayTools.29 During the last two 
decades, multiple statistical approaches have been proposed 
for differential expression testing.30 Overall, they provide sim-
ilar results with small differences.30 Thus, careful study design 
(rather than trash in, trash out) and the use of meta-analysis 

techniques to integrate multiple datasets are likely to be more 
important for reliable DEG discovery than a choice of one or 
another statistical test. Because omics data analysis typically 
involves tens of thousands of statistical tests, the correction for 
multiple hypotheses is essential.31

Correlation analysis for network reconstruction (finding links 
between nodes). The central biological principles underlying 
correlation network analysis are 1) that DEGs reflect func-
tional changes, and 2) that DEGs do not work individually 
but interact (eg, at the protein or pathway level) to function-
ally alter the biological system. In gene expression networks, 
nodes represent genes and edges represent significant pairwise 
associations between gene expression profiles. The central 
mathematical/statistical principle that allows us to use corre-
lation networks for analysis of biological systems is that the 
correlation between two variables, if statistically significant, 
is always a result of causation. Specifically, correlation results 
from regulatory relations between the two variables, or from 
a common causal regulator to the two variables, or both, as in 
the case of a feed-forward loop.32 To reconstruct the network, 
the Pearson or Spearman correlation coefficient can be used 
to obtain an association (similarity) measure for each possible 
pair of DEGs, with a cutoff for statistical significance (an FDR 

cutoff of 10% for the ( 1)
2

n n −  possible pairwise associations 

tested) and for a minimum correlation level. Together with 
the nodes, the edges whose similarity measures exceed this 
cutoff constitute a network. In practice, normalized expres-
sion data for DEGs are retrieved and pairwise correlations 
are calculated for each class (biological state) separately using 
the R statistical analysis software, with the function cor.test; 
FDR is calculated using the function p.adjust. Several other 
software programs that can be used for calculating gene–gene 
associations (correlations, mutual information and others) are 
listed in Table 1. Note that correlations should be calculated 
within a group of samples that belong to one class/biological 
state (pooling samples from different states/classes to compute 
the correlation coefficient leads to significant bias).

Discriminating between direct and indirect links. Covariation 
gene networks in general consist of connections that result from 
a combination of direct and indirect effects between genes. For 
example, if a gene Y strongly depends on gene X and gene Z 
also depends on X, it is likely that a high association (eg, cor-
relation) will exist between Y and Z even if there is no direct 
dependence between them (Fig. 2). Moreover, even if a true 
dependence exists between a pair of genes/nodes, its strength 
estimation can be biased by additional indirect relationships.33 
For this reason, correlation networks in general have many 
edges that reflect indirect relationships between pairs of genes, 
where no direct relationship exists. Finding direct relation-
ships between genes is important when one attempts to iden-
tify causal gene regulators of a given biological process.

Mathematically, direct effects can be defined as the 
association between two genes, holding the remaining genes 
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table 1. tools for network reconstruction and interrogation.

StEp mEthoD -(StAtiStiCS / 
mAthEmAtiCS)

tool liNk REf

Network reconstruction

normalization Quantile, lowess
Quantile, lowess, etc.
relevant mixture model framework

BrB array tools
Package ‘affy* in  
Bioconductor
r package ‘phyloseq’

http://linus.nci.nih.gov/BrB-arraytools.html
http://www.bioconductor.org/packages/ 
release/bioc/html/affy.html
http://joey711.github.io/phyloseq/

16
106

107

finding dEgs t-test
different test statistics, choice with  
 Bonferroni correction

BrB array tools idEg6 http://linus.nci.nih.gov/BrB-arraytools.html
http://telethon.bio.unipd.it/bioinfo/idEg6_form/

16
108

regulation of genes sVm
semi-supervised learning;  
 logistic regression
likelihood of mutual information
mutual information
mutual information
itemset mining
Bayesian hierarchical clustering;  
 conditional 
Entropy context likelihood of  
 relatedness

sirEnE
sErEnd
 
clr
aracnE
midEr
distillEr
lemone
 
inferelator

http://cbio.ensmp.fr/sirene/
http://www.cs.cmu.edu/∼jemst/Ecoli/
 
http://omictools.com/clr-s2342.html
http://wiki.c2b2.columbia.edu/workbench/index.php/
aracne
http://www.iim.csic.es/∼gingproc/mider.html
request from authors
http://bioinformatics.psb.ugent.be/software/ 
details/lemone
http://bonneaulab.bio.nyu.edu/networks.html

109
109 
 
111
38
 
112
113
114
 
115

remove indirect links Partial correlation 
local partial correlation 
global silencing of indirect correlations 
network deconvolution

corpcor
local partial correlation
silencing
network deconvolution

http://cran.r-project.org/web/packages/corpcor/index.html
http://compbio.mit.edu/nd/

116
42
40
41

Weighted correlation  
network

Pearson correlation Wgcna http://labs.genetics.ucla.edu/horvath/coexpression 
network/rpackages/Wgcna/

117

differential  
co-expression

Pearson correlation 
Pearson correlation

coXpress
Dapfinder

http://coxpress.sourceforge.net/code.r
http://exon.niaid.nih.gov/dapfinder/

56
26

data integration Bicluster 
itemset mining

cmonkey
distillEr

http://bonneaulab.bio.nyu.edu/software.html#cmonkey 
request from authors

118
113

meta-analysis fisher’s combined probability test metap’ in software ‘stata’ 

openmeta

http://www.stata.com/support/faqs/statistics/ 
meta-analysis/
http://www.cebm.brown.edu/open_meta

Visualization cytoscape
gephi
circos

http://www.cytoscape.org/
http://gephi.github.io/
http://circos.ca/

119
119 
121

Network interrogation

Module finding Vertex weighting by local neighborhood  
density 
Union of k-cliques 
markov cluster algorithm

mcodE
 
cfinder
mcl

http://baderlab.org/software/mcodE
 
http://www.cfinder.org/
http://micans.org/mcl/

64
 
65
66

function analysis/ gene  
set enrichment

fisher’s Exact
Kolmogorov-smirnov statistic  
 modification 
fisher’s Exact 
hypergeometric 
 
fisher’s Exact

daVid
gsEa
 
gominer
genemerge
 
funcassociate

http://david.abcc.ncifcrf.gov/summary.jsp
http://www.broadinstitute.org/gsea/index.jsp
 
http://discover.nci.nih.gov/gominer/index.jsp
http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/ 
publications/genemerge.html
http://llama.mshri.on.ca/funcassociate/

69
122
 
123
124
 
125

dimension reduction (independent  
 component analysis or fixed effect  
 meta-estimate) followed by weighted  
 pearson correlation 
hypergeometric test 
Jaccard coefficient 
hypergeometric distribution

ProfileChaser
 
 
 
Bingo
Enrichmentmap
subpathwayminer

http://profilechaser.stanford.edu/
 
 
 
http://apps.cytoscape.org/apps/bingo
http://baderlab.org/software/Enrichmentmap/
http://www.inside-r.org/packages/cran/subpathwayminer

126
 
 
 
70
70
68

identify Key regulators network topology properties 
intramodular connectivity, causality  
 testing

cytoscape
Wgcna

tools::networkanalyzer::analyze network
http://labs.genetics.ucla.edu/horvath/coexpression 
network/rpackages/Wgcna/

119
117

Pathway crosstalk crosstalk enrichment 
Eigen vector

crosstalkZ
Eigengene

http://sonnhammer.sbc.su.se/download/software/
crosstalkZ/
http://labs.genetics.ucla.edu/horvath/htdocs/ 
coexpressionnetwork/Eigengenenetwork/

84

127

gene function prediction Bayesian network
fast heuristic algorithm from ridge  
 regression

mEfit
genemania

http://mefit.joydownload.com/
http://www.genemania.org/

128
129

new gene ontology hierarchical clustering neXo http://www.nexontology.org/ 130
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figure 2. removal of indirect links. as a demonstration, gene X can 
regulate the expression of both gene y and Z. But there is no direct 
regulatory relationship between gene y and Z. from the calculation of 
correlation of expression levels of three genes, correlations between 
gene X and y, Z are observed as expected. however, genes y and Z  
are also significantly correlated since they are both directly regulated by 
gene X. this correlation from common cause is called indirect link and 
can be removed by techniques, such as partial correlation, generating a 
network reflecting regulatory relationships.

constant.34 An effect that is not direct is called an indirect 
effect. The identification of direct links is an important goal of 
network reverse engineering.

To infer direct links between DEGs, we have been using 
the partial correlation coefficient.35,36 To calculate partial 
correlations, we use a method called the inverse method.37 Its 
implementation is straightforward in R using the function 
cor2pcor from the package “corpcor”. The detailed algo-
rithm is described in Supplementary File. After calculation of 
partial correlation, the network can be built using links with 
absolute value of the partial correlation larger than a user-
defined threshold.

Several other methods have been proposed to discrimi-
nate between direct and indirect links in covariation net-
works.38–41 For example, a variant of the partial correlation, 
which we call the local partial correlation, can be used in order 
to overcome the limitations of other methods.42

Proportion of unexpected correlations (improvement of recon-
struction and error evaluation). A fundamental problem of the 
standard correlation network approach is that practical limita-
tions in the numbers of sample measurements can lead to an 
unacceptably high error rate. Recently, our group has proposed 
a method called proportion of unexpected correlations (PUC), 
which allows identifying and removing approximately half of 
false positive edges from a covariation network with no reduc-
tion in statistical power.43 The method takes into account a 
relation between the direction of regulation of two DEGs and 
the sign of correlation between the two genes. Thus, two up- 
and two downregulated genes must correlate positively; and a 
pair of oppositely regulated genes (one up-regulated and one 
down-regulated) should have negative correlation. Any devia-
tion from this rule represents unexpected/erroneous edges and 
is removed from the network (Fig. 3). The proportion of these 
unexpected edges provides an error estimate for the whole 
network. For network reconstruction, each edge in a network 
can be evaluated and removed if it is unexpected.

Meta-analysis (improvement of reconstruction and 
error evaluation). In omics-based network reconstruction, 
because of the large number of genes or variables mea-
sured (up to tens of thousands) and the limited number of 
samples (typically tens or hundreds), it is critical to assess 
the reproducibility of results. Although widely used meth-
ods (eg, FDR44) enable accounting for multiple hypothesis 
tests, the discrepancy between the number of samples and 
variables inherent to omics datasets limits the sensitiv-
ity and specificity for detecting edges through network 
reconstruction.

In order to overcome this problem and to augment the 
statistical significance for the nodes and links in a network, 
meta-analysis can be employed. This statistical approach 
combines results from different studies in order to achieve 
reproducibility.

The studies can be obtained from standardized omics 
data repositories. Good examples of such repositories are the 
Gene Expression Omnibus (GEO)45 and Array Express46 (for 
transcriptomics and epigenomics datasets); PRIDE47 (for pro-
teomics datasets), the Human Metabolome Database48 (for 
metabolomics datasets), and lipid MAPS49 (for lipidomics 
datasets). Additionally, molecular interaction data from the 
BioGRID50 or BioCyc databases51 can be used as a prior for 
edge reconstruction.

In meta-analysis of multiple datasets – whether from 
publicly available datasets or experiments produced in the 
same lab – the strategy is usually the same. The datasets to 
be co-analyzed in a meta-analysis should be selected on the 
basis of their congruence with the central biological ques-
tion of interest, and they should pass some predefined sam-
ple size and quality requirements (eg, number of measured/
detected genes). After choosing the datasets, as a first step for 
meta-analysis we apply two filters: 1) the same sign of statistic 
(mean, covariance, or correlation) throughout all datasets  
(ie, if gene A is upregulated in case over control in data-
set 1, it should have the same direction of regulation in all 
other datasets to pass the filter); 2) P-value thresholds across 
all datasets. These filters provide consistency and control 
for heterogeneity across datasets for a given gene (or gene 
pair in case of correlation). The next step is an actual sta-
tistical evaluation. In this step, meta-analysis combines 
common statistical measures, such as P-values, and cal-
culate a weighted average for such measures. As a weighted 
average, we frequently use the Fisher’s P-value calculation. 
Let 1, , kp p  be the P-values of one measure into k data-
sets (studies). For example, pi can be the t-Student test 
p value for gene A to be differentially expressed in study i.  
Then the Fisher’s P-value pFisher summarizes all these  
P-values 1, , kp p  into one average P-value by the formula

   
( )2

2
1

2 ln
k

Fisher k i
i

p P pχ
=

 
= ≥ −  ∑
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where 2
2kχ  is a random variable with chi-square distribution 

with 2k degrees of freedom. After calculating Fisher’s 
P-values for all genes, the standard FDR procedure can be 
used to adjust for multiple hypothesis testing. Several other 
approaches have been proposed for meta-analysis of gene 
expression data (Table 1).52,53 In Supplementary File we 
describe in more detail the algorithm that we have employed 
for integrating differential expression, correlations, and dif-
ferential associations/correlations.4

Differentially coexpressed gene pairs (evaluating network 
changes). The networks discussed above model static correlations 
between genes that change their expression when the biological 
system transits from one state to another. However, the sets of 
edges within a gene covariation network can themselves vary 
from state to state, for example, when two genes are highly 
correlated in a subset of conditions but not across all condi-
tions.54 Such a gene pair is called a differentially coexpressed 
gene pair (Fig. 4). It has been shown that differentially coex-
pressed gene pairs frequently play critical roles in pathogen-
esis. Several studies have explored gene coexpression changes 
in cancer, revealing known cancer genes that were top-ranked 
among coexpression changes but not necessary (separately) 
among differentially expressed genes.26,55

In order to search for differentially coexpressed gene pairs, 
our group adapted a simple approach called differentially asso-
ciated pairs (DAPs).26 The DAPs algorithm is described in 
Supplementary File. In addition to DAPs, multiple methods/
software have been developed to find the changing edges in 
gene expression networks (Table 1).26,56

Integrating heterogeneous omics data types: inter-omics net-
works. The integration of different omics data types holds great 
promise for enabling more robust network reconstruction 

and detection of causal interactions in a particular bio logical 
context. For example, genome-wide measurements of epi-
genetic marks and transcriptome data can be combined to 
elucidate mechanisms of gene regulation.57–59 In cancer bioin-
formatics, integration of gene copy number data (chromosomal 
aberrations) and gene expression measurements has enabled 
the discovery of key drivers.4,60 And integration of metage-
nomics data from gut microbiota with intestinal gene expres-
sion can reveal new mechanisms of crosstalk between microbes  
and their hosts.6

Approaches for omics data integration generally fall into 
one of two modalities: first (and most prevalent) is integrating 
different types of data generated for a given gene/gene prod-
uct.61 In other words, a given node pertains to more than one 
network (eg, measurements of the copy numbers of gene A 
and transcript levels of gene A pertain to genomic and tran-
scriptomic networks, respectively) (Fig. 5A).

The other type of integration makes an edge/link 
between two nodes from different omics networks. We call 
the result of such integration an inter-omics network. An 
inter-omics network is a bipartite network in which each 
edge connects two nodes of different omics types (Fig. 5B). 
There are two different approaches to infer such inter-omics 
links/edges. The first one is based on bringing into recon-
struction an experimental result supporting a link between 
nodes of different omics. For example, nodes from proteo mics 
and metabolomics networks can be connected on the basis of 
the experiment showing that a specific protein is an enzyme 
necessary for the production of a given metabolite. The sec-
ond approach, which infers edges between different omics, 
establishes connection between two different (knowledge- 
wise unrelated) quantitative variables based on their statistical  
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association (eg, correlation between gene expression and 
abundance of metabolites measured in the same samples). 
Thus, the entire reconstruction procedure consists of infer-
ence on networks of each omics type separately, and then 
integration of these two networks into the inter-omics net-
work. This is a straightforward and easily implementable 
algorithm. Furthermore, there is a popular tool, integr-
Omics, that is used for heterogeneous data integration using 
partial least squares regression.62

Network interrogation. To gain maximal insights from 
a biological network that has been reconstructed as described 
above, systematic analysis of the network (network interroga-
tion) is essential. In this section we describe several network 
interrogation techniques for investigating specific types of 
biological questions.

Revealing potential mechanisms of a biological process or 
disease. This goal is achieved by identification of pathways 
involved in the process, key regulatory nodes of those path-
ways, and interactions between identified pathways (includ-
ing identification of nodes in network responsible for the 
interaction).

Which functional pathways are involved?. Finding dense 
subnetworks (ie, modules or clusters) Figure 6A. From a 
functional standpoint, subsets of genes that are highly inter-
connected in the correlation network (modules63) are often 
involved in similar biological processes. Tools for identification 
of modules include MCODE,64 cfinder,65 and graph cluster-
ing (MCL).66 A key advantage of network module analysis (vs 
direct clustering of genes from the data) is that, while modules 
would include genes up- and downregulated that correspond 
to potential stimulatory and inhibitory relations within a given 

functional pathway, traditional clustering approaches would 
group genes with similar behavior, thus separating up- and 
downregulated genes from the same pathway into different 
clusters. In addition, network reconstruction has an advan-
tage over traditional gene-level clustering analysis in that the 
network provides insight into which subnetworks interact 
with each other and which nodes/genes might mediate such 
interactions.67

Enrichment analysis with external data. (eg, Gene  
Onto logy) Figure 6A. Once genes that work together (mod-
ules) are identified, the next step is to infer their biological 
functions. This is usually performed by using literature-curated, 
gene-centric biological knowledge bases that connect genes to 
functional categories (terms) such as the functional terms in 
the Gene Ontology. If a module is enriched for genes that are 
associated with a particular biochemical pathway, a location in 
a genome, or a location in cellular compartment, that finding 
can provide a basis for a hypothesis about the function of the 
module. A plethora of tools are available for gene functional 
enrichment analysis (Table 1). For example, gene sets can be 
annotated by pathways using tools like SubpathwayMiner68 or 
by gene ontology terms using tools such as DAVID.69 Other 
tools such as Bingo70 and EnrichmentMap71 can further con-
struct a functional network, ie, a network in which nodes are 
genes and an edge between two genes is present if those genes 
share functional annotations.

Key regulators of pathways/modules. Identifying the key 
molecular regulators of the biological response or system 
under study is often a primary goal in omics studies, espe-
cially those with a tractable cellular model where molecular 
or genetic perturbations can be introduced. There are two 
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major complementary strategies for finding key regulators in 
covariation networks: 1) using network topological properties, 
and 2) incorporating additional data into networks that pro-
vides information about causes of regulation for some nodes in 
a network Figure 6D.

Topological properties that have been described to date 
as pointing to key regulators mostly define different mea-
sures of the connectivity of a node. Those properties are the 
degree and centrality measures, such as betweenness central-
ity, closeness centrality, and eigenvector centrality. Nodes 
with high betweenness centrality (the so-called bottlenecks) 
have been shown to be predictive of gene essentiality.72 For 
example, such topological characteristics have been found to 
be associated with genes that are critical for pathogen viru-
lence73 and with genes that are targets for hepatitis C virus.74 
The estimation of these parameters is a straightforward and 
be easily accomplished using the Cytoscape plug-in called 
NetworkAnalyzer.75 Importantly, these properties need not be 
analyzed in isolation but can complement another approach 
we discuss below.2

Integrating additional information in order to find causes of 
regulation. It is axiomatic that a gene–gene network that has 
been reconstructed based on correlation analysis does not dis-
criminate between direct regulation and common cause.32 There-
fore, it is common to incorporate into a covariation network 
several types of complementary biological data that can directly 
or indirectly indicate that one gene regulates another.5,76 By 
overlaying such information on a coexpression network, one 
can establish the directionality of some edges, which improves 
the precision of identification of key regulators. The types of 
biological information include genetic variants (aberrations, 
mutations, gene polymorphisms, etc), epigenetic modifica-
tions, transcription factors, and other types of gene expres-
sion regulation such as microRNA (miRNA). For example, 

integrating genomic aberrations with global gene expression 
led to the discovery of key drivers of melanoma60 and breast7 
and cervical cancers.4 Similarly, eQTLs (expression quantita-
tive trait loci) were integrated with networks associated with 
diabetes and obesity, revealing causal genes of specific molec-
ular pathways operating in these diseases.8

Integration of information about binding sites (or compu-
tationally predicted binding sites) of transcription factors into 
covariation networks is a particularly powerful approach,77 
because the direction of causality for a connection between a 
transcription factor and a target gene is presumed to be known. 
While computational analysis of transcription factor binding 
site (TFBS) databases (such as TRANSFAC) can suggest the 
possibility of regulation by a given transcription factor, omics 
approaches for identification transcription factor binding sites 
such as ChIP-Seq provide more definitive genome-wide loca-
tion information for the transcription factor in an investigated 
sample. The directionality information provided by those 
methods can be incorporated into network interrogation to 
generate more accurate prediction of key regulators.78 miRNAs  
are another important class of gene expression regulators 
that modulate (primarily downregulate) expression of target 
genes either by inhibiting translation or promoting mRNA 
degradation. In the past few years, ∼1,881 miRNA genes have 
been identified in humans (according to miRBase, http://
www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa), and 
knowledge of miRNA–target interactions is accumulating 
both by experimental validation and computational predic-
tion.79,80 More accurate genome-wide miRNA target sequence 
location information allows the possibility of generating an 
miRNA–mRNA regulatory network, which could provide 
a more complete view of regulatory relationship in biologi-
cal process. In a recent work, Sumazin et al integrated gene 
and miRNA expression data from sample-matched datasets 
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and constructed a comprehensive miRNA–gene interaction 
network, inferring that phosphatase and tensin homolog 
(PTEN) is a key regulator of gliomagenesis.2

Integrating multiple types of data simultaneously can 
increase the precision of computational predictions. For 
example, one of us has reported that “using motif scanning 
and Histone acetylation local minima, improves the sensitiv-
ity for TF binding site prediction by approximately 50% over 
a model based on motif scanning alone”.57 In another work, 
Yang et al integrated gene expression with gene copy number 
alternation, DNA methylation, associated miRNA expres-
sion, and miRNA target prediction to identify key regulatory 
miRNA genes that regulate ovarian cancer development and 
then experimentally validated the function of one predicted 
miRNA gene.3 In practice, multiple tools have been developed 
for the integration of different resources of information to infer 
network and/or identification of key regulators (Table 1).

How the pathways interact. As networks represent models 
of global changes in biological system, they usually contain 
several groups of genes exerting specific biological functions. 
Cooperation of these functions/pathways plays an important 

role in regulating biological processes. Thus, a transcriptional 
network can be viewed as a group of interacting pathways/
modules (meta-modules) rather than interacting individual 
genes.81 Studying the interaction between modules, thus, will 
provide us with a higher order view of biological system (see 
forest, not just trees) and understanding of causal relationship 
between functions.

In order to investigate the behavior of the pathways,  
a dimension reduction procedure can be used that transforms 
expression values of all genes in a given module into one rep-
resentative value for each sample. One such procedure is to 
reduce the expression profiles of all of the genes within a mod-
ule into a single eigengene profile that summarizes dominant 
mode of covariation of the genes in the module.82 Evaluation 
of statistical association between eigengenes tests a hypoth-
esis of interaction between two pathways represented by cor-
responding eigengenes Figure 6E.

As an alternative to the eigengene approach, multiple 
methods have been proposed to calculate enrichment of 
links between members of separate pathways to identify 
cross-talking pathways based on diverse types of interactions 

figure 6. network interrogation. (A) densely connected subnetworks (modules) are detected, and enriched functions of those modules are detected. 
(B) genes with unknown function (gray) can be annotated based on the function of its neighbors in the network or the functions of the genes in the same 
module. (C) new gene ontologies can be generated by analyzing the hierarchical organization of gene clusters. (D) multiple data types can be integrated 
to help infer the direction of regulation and identify key regulators based on their network topological features. (E) crosstalks between pathways can be 
studied by extracting eigengenes or analyzing enriched interactions between networks. Key regulators for pathway crosstalk can also be identified based 
on their between-module topology properties.
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such as protein interactions, coexpression, etc.83–85 Once a 
relationship between modules has been established, the next 
question is which nodes or genes are responsible for the inter-
action. Although multiple genes could act as mediators of 
interaction between two pathways, their relative importance 
can be different. Few approaches have been developed to 
find which nodes are critical for crosstalk between different 
modules in a network. Multiple sources of data are integrated 
to identify interactions between cancer-related pathways, 
and key regulators are identified (genes that are significantly 
altered for at least one molecular level) mediating those inter-
actions. We have developed an approach that identifies nodes 
in a network responsible for interactions between modules that 
potentially correspond to genes regulating crosstalk between 
pathways represented by these modules. The approach is 
based on the idea that the genes that are in the shortest paths 
between modules should be more important in controlling 
perturbation from one pathway to another, mediating inter-
module signaling or regulation. Several centrality measures 
have been proposed to evaluate the importance of nodes in 
a network.86 Among those, betweenness centrality measures 
the importance of a node in acting as a bridge between any 
nodes within a network.74 We modified standard betweenness 
centrality87 to adapt to the case of interaction between two 
defined subnetworks and to specifically address the question 
of which nodes belonging to subnetwork 1 have a higher proba-
bility to be bottlenecks in the transfer of signal to the nodes 
in subnetwork 2, and vice versa. For this metric, the shortest 
paths are calculated only between nodes of two subnetworks 
and not between any nodes within a network. This bipartite 
betweenness centrality can be calculated as follows:
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where s belongs to subnetwork 1 and t belongs to subnetwork 2, 
σst is the total number of shortest paths from node s to node 
t, and σst(v) is the number of those paths that pass through 
vertex v (node for which the metric is calculated). Thus, this 
measurement represents the importance of a node in medi-
ating information flow between two connected modules in 
a network. In our recent work, we found that this approach 
allows finding not only bottlenecks of interaction between dif-
ferent pathways within the same organism but even microbial 
genes critical for mediating interaction between gut micro-
biota and their host.6

Revealing function of individual node in the network. 
While most of our knowledge about gene functions is based 
on detailed and thorough gene-centered laboratory research, 
there are still genes whose functions have been less studied; 
network biology offers a novel way to infer functions for such 
genes. It uses an idea that genes that are located closely in 
a network may share a function. This principle is frequently 

called guilt by association Figure 6B.88 There are two major 
approaches that implement guilt by association for prediction 
of node function. The first is the so-called direct approach. 
Although there are a few slightly different methods using this 
approach (neighbor counting, graphic algorithm, probabilistic 
methods), they all assign a function to a node based on the 
functions of its direct neighbors.89–91 The second approach, 
the modular approach, is to guide the assignment of a func-
tion to a gene by the collective function of other genes that 
belong to a given module in which the investigated gene is 
located.61,92

Besides identifying functions of individual nodes, gen-
erations of new ontology systems based on networks or pair-
wise similarities were proposed Figure 6C.93 Interestingly, 
besides demonstrating a high level of consistency with existing 
ontologies, they provide solutions for situations when standard 
approaches (ie, knowledge-based approaches) fail to reflect 
comprehensive biology.94 Indeed, some terms/categories that 
were missing in the standard GO and inferred by a network 
approach were submitted to the GO Consortium and incor-
porated into the ontology.93,95

Network cross-species conservation. An important facet 
of network interrogation is the assessment of evidence for 
network function. Just as cross-species comparison is a core 
strategy for elucidating novel protein function (eg, BLAST), 
cross-species comparison of network structure can reveal 
functions for network subgraphs that might not have been 
evident from sequence-level conservation of individual net-
work components. In practice, subgraphs of the novel network 
(and in some approaches, constituent protein sequences) are 
used as keys to search for structural and component-sequence 
similarity to subgraphs in another species by searching for 
parsimonious subgraph-to-subgraph mappings (called a local 
network alignment). Alternatively, gene coexpression networks 
from two species can be compared in their entirety, to obtain 
a global alignment. A successful alignment enables all avail-
able functional annotations in the orthologous subgraph to 
bring to bear on the functional interpretation of the novel net-
work’s subgraph. Various local and global network alignment 
algorithms have been proposed, including NetworkBLAST,96 
PINALOG,97 IsoRankN,98 and the Narayanan–Karp99 and 
Hodgkinson–Karp100 algorithms.

different biological problems and some perspectives. 
Some biological questions that can be addressed within the 
framework of network analysis remained beyond of the scope 
of this review. For example, one can try to evaluate the number 
of nodes needed to be perturbed in order to achieve a transition 
from one state of biological system to another. This measure of 
network controllability101 (number of needed nodes), although 
seemingly theoretical, can have very practical implications. On 
one hand, if a few nodes can govern a regulatory network mod-
eling a disease, a gene perturbation/gene silencing approach 
can be a good strategy for treatment. On the other hand, if 
a large proportion of nodes in a network have to be modified 
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in order to achieve recovery, then a different pharmaceutical 
strategy using compounds that can simultaneously affect 
multiple molecular targets should be followed.

Furthermore, some mathematical properties observed in 
biological networks such as small world, scale-free, assortative 
mixing,102 and several others103 warrant further investigation 
to comprehend what types of environmental pressures led to 
selection of these properties during evolution and how they 
contribute to fitness and resilience of biological systems.

biological example: transkingdom network for inter-
rogation of host–microbe interactions. In our recent work,6 
by applying network analysis we studied the effects of antibi-
otics on the gut microbial community (microbiota) and on the 
host (mouse). The major outcome of this study – which was 
based on network analysis – was the identification of specific 
mammalian processes that are affected by antibiotics (ABx) 
and the identification of the microbes (including some micro-
bial genes) that contributed to these effects. Importantly,  
a big part of the critical findings of mechanisms of effects of 
ABx was revealed using network analysis and could not be 
predicted based on existent knowledge in the field.

Below we have outlined step by step the analysis employed 
in this study, which consisted in the reconstruction of mam-
malian transcriptomic and microbial genomics networks, 
integration of these two networks into one transkingdom net-
work, and its interrogation that led to biological insights that 
have been validated experimentally.

1. Finding differentially expressed mammalian genes
The gene expression raw data were normalized using 

BRB Array Tools using the LOWESS smother. Next we 
compared gene expression between control and ABx-treated 
mice on two genetic backgrounds and found 1,583 differen-
tially expressed genes with an FDR cutoff of 10% (see section 
Discovery of differentially expressed genes).
2. Reconstruction of gene expression network

To reconstruct the transcriptomic network, we calculated 
correlations in four groups of control mice. We performed 
meta-analysis (see section Meta-analysis) of gene–gene corre-
lations and removed unexpected correlations (see section Pro-
portion of unexpected correlations) and obtained a network 
of 1,275 nodes and 13,714 links with an FDR cutoff of 5%.
3. Identification of subnetworks

MCODE network clustering identified two major 
subnetworks: one (631 genes) that was dependent on ABx-
resistant microbes, and the other (77 genes) dependent on 
microbiota.6

4. Data mining of gene expression subnetworks
Functional annotation enrichment analysis using the 

web tool DAVID revealed that the first subnetwork was 
enriched for mitochondrial functions including genes cod-
ing for electron transport chain, oxidation–reduction, ATP 
biosynthesis, and cellular and mitochondrial ribosomes, 
while second one was enriched for annotations related to 
immune function.

figure 7. transkingdom network resulting from network analysis. transkingdom network includes microbial genes (red) and host (mouse) genes (green). 
A key regulator is identified as a gene within top 1% of bipartite betweenness centrality is LasR (yellow). Two microbial gene subnetworks, indicated by 
blue circles, are enriched with genes from Pseudomonas aeruginosa and Escherichia coli.
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5. Finding microbial genes enriched by antibiotics
We have compared copy numbers of microbial genes 

(annotated in SEED104) between control ABx-treated mice 
and found 4,523 bacterial genes with differential abundance 
between ABx and controls.
6. Reconstruction of microbial gene network

In order to identify the ABx-resistant microbes or micro-
bial genes that influence the host, a covariance network was 
constructed for the 1,689 microbial genes that were enriched by 
antibiotics in two mouse strains (Swiss Webster, C57BL6/J). 
This analysis resulted in a network with 1,143 nodes connected 
by 23,429 edges (combined FDR ,0.0001).
7. Reconstruction of transkingdom network

In order to reveal ABx-resistant microbes and their genes 
that affect the host, we reconstructed transkingdom network. 
For this, we calculated the correlations between microbial 
genes that were part of the microbial network with mouse 
gene expression from the second subnetwork (steps 3, 4).  
The correlation was calculated using measurements in the 
two ABx-treated groups of mice separately (C57BL6/J and 
Swiss Webster) and the resulting P-values were combined 
as described above (see section Meta-analysis). The result-
ing transkingdom network consisted of 513 microbial and 
334 mouse genes linked by 708 edges (FDR 0.01, Fig. 7).
8. Finding microbial subnetworks

Using MCODE, we found two major microbial sub-
networks (101 and 60 nodes) linked to the host part of the 
transkingdom network. The genomes enrichment analysis (see 
Materials and Methods of REF for details)6 indicated that 
two microbes (Pseudomonas aeruginosa and Escherichia coli) as 
potential sources of the genes of these subnetworks.
9. Finding bottleneck microbial genes (betweenness centrality)

By applying bipartite betweenness centrality analysis,105 
we have revealed five top microbial genes as potentially critical 
for ability of microbes to affect the host.

Note: One of the microbes (P. aeruginosa) and one gene 
(LasR) have been experimentally tested, confirming the pre-
dicted effect on mammalian cells and validating the efficiency 
of transkingdom network analysis.

conclusion
In this review, we have described how network analysis can 
help us to answer different questions commonly asked in bio-
logical research. We have also provided a detailed algorithm 
for this analysis, including approaches employed by our group 
as well as frequently used by the network-biology community 
(Table 1).
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