Species	Codon	Non-intron One-intron gene					Two-intron gene			
		gene	Exon1	Exon2	Total	Exon1	Exon2	Exon3	Total	
S. uncinata	TAA	0	0	0	0	0	0	0	0	0
	TGA	5	0	0	0	0	0	0	0	5
	TAG	1	0	0	0	0	0	0	0	1
	NNG/NNAs	0.20	-	-	-	-	-	-	-	0.20
C. lindheimeri	TAA	25	1	1	2	0	0	0	0	27
	TGA	8	1	1	2	0	0	0	0	10
	TAG	1	0	0	0	0	0	0	0	1
	NNG/NNAs	0.03	0.00	0.00	0.00	-	-	-	-	0.03
A. spinulosa	TAA	42	1	0	1	0	1	0	1	44
	TGA	19	2	2	4	0	0	0	0	23
	TAG	6	0	0	0	0	0	0	0	6
	NNG/NNAs	0.10	0.00	0.00	0.00	-	0.00	-	0.00	0.09

Supplemental Table S1. The distribution of internal stop codons

Taxomony	Species	SCUB b	based on a	mino acids	SCUB based on NNA/T and NNC/G			
		Mean	CV	P value	NNA/T	NNC/G	P value	
Archaeplastida	P. haitanensis	0.250	0.329	5.23E-18	39837	8885	0	
	G. taiwanensis	0.220	0.236	1.15E-21	39775	8405	0	
	C. caldarium	0.295	0.269	8.03E-18	35306	9914	0	
Chlorophyta	O. viridis	0.420	1.021	2.39E-05	18855	5322	0	
	O. cardiacum	0.183	0.350	1.72E-20	32024	5482	0	
	P. minor	0.329	0.977	8.71E-08	15661	3517	0	
Charophyta	M. viride	0.117	0.435	9.30E-23	21811	2519	0	
	Z. circumcarinatum	0.244	0.341	5.14E-18	20989	5002	0	
	C. globosum	0.157	0.319	1.65E-22	21706	3140	0	
Bryophyte	M. polymorpha	0.106	0.417	7.08E-24	20341	1911	0	
	S. ruralis	0.116	0.411	3.04E-23	17254	1776	0	
	P. patens	0.119	0.397	2.83E-23	19973	2124	0	
Pteridophyte	S. moellendorffii	0.748	0.330	0.0004	12290	9134	4.1E-103	
	S. uncinata	0.918	0.327	0.2628	11894	10675	4.889E-16	
	C. lindheimeri	0.577	0.264	1.31E-09	16228	9008	0	
	A. spinulosa	0.472	0.268	2.05E-12	17373	8111	0	
Gymnosperms	C. oliveri	0.318	0.286	1.39E-16	18176	5866	0	
	G. parvifolium	0.391	0.296	5.00E-14	14018	5394	0	
	G. biloba	0.374	0.387	1.21E-12	15267	5684	0	
Monocotyledon	S. bicolor	0.381	0.290	1.69E-14	13712	5224	0	
	Z. mays	0.405	0.297	1.37E-13	15193	6187	0	
	O. sativa	0.406	0.242	5.18E-15	14889	6113	0	
Dicotyledon	A. thaliana	0.349	0.267	4.51E-16	18543	6530	0	
	G. max	0.325	0.287	2.62E-16	18477	6049	0	
	P. trichocarpa	0.370	0.265	1.78E-15	19156	7156	0	

Supplemental Table S2. The statistic analysis of SCUB frequencies

Taxomony	Species	CDS	Gene		Intron			Genome			
		NNC/G to	CG to AT	P value (a)	P value (b)	CG to AT	P value (a)	P value (b)	CG to AT	P value (a)	P value (b)
		NNA/T	COWAI	1 value (a)	1 value (0)	COUAI	1 value (a)	1 value (0)	CG to AI	1 value (a)	1 value (0)
Archaeplastida	P. haitanensis	0.223	0.511	0.000	0.000	-	-	-	0.492	0.000	0.000
	G. taiwanensis	0.211	0.467	0.000	0.000	-	-	-	0.440	0.000	0.000
	C. caldarium	0.281	0.497	0.000	0.000	-	-	-	0.487	0.000	0.000
Chlorophyta	O. viridis	0.282	0.606	0.000	0.000	0.661	2.02E-46	1.94E-151	0.680	0.000	0.000
	O. cardiacum	0.171	0.422	0.000	0.000	0.542	0.000	0.000	0.419	0.000	0.000
	P. minor	0.225	0.550	0.000	0.000	-	-	-	0.535	0.000	0.000
Charophyta	M. viride	0.115	0.453	0.000	0.000	-	-	-	0.432	0.000	0.000
	Z. circumcarinatum	0.238	0.527	0.000	0.000	0.389	0.000	1.62E-65	0.451	0.000	0.000
	C. globosum	0.145	0.430	0.000	0.000	0.248	0.000	1.25E-47	0.421	0.000	0.000
Bryophyte	M. polymorpha	0.094	0.386	0.000	0.000	0.253	0.000	3.26E-149	0.405	0.000	0.000
	S. ruralis	0.103	0.390	0.000	0.000	0.220	0.000	1.09E-83	0.396	0.000	0.000
	P. patens	0.106	0.394	0.000	0.000	0.231	0.000	3.93E-104	0.399	0.000	0.000
Pteridophyte	S. moellendorffii	0.743	1.019	1.02E-02	6.27E-91	1.010	6.47E-01	1.07E-31	1.041	2.56E-14	1.19E-115
	S. uncinata	0.898	1.187	1.06E-112	2.38E-74	1.259	6.55E-85	1.26E-80	1.215	8.34E-297	2.53E-99
	C. lindheimeri	0.555	0.729	0.000	2.42E-76	0.709	2.29E-57	4.23E-22	0.746	0.000	5.67E-98
	A. spinulosa	0.467	0.681	0.000	4.19E-140	0.664	5.53E-81	2.05E-43	0.679	0.000	3.98E-150

Supplemental Table S3. The comparison on the ratios of NNC/NNG to NNA/NNT with the ratios of C and G to A and T in the gene body, intron, and whole genome sequences

Gymnosperms	C. oliveri	0.323	0.562	0.000	9.29E-248	0.515	1.12E-179	4.46E-63	0.544	0.000	4.78E-236
	G. parvifolium	0.385	0.587	0.000	4.15E-124	0.516	5.06E-118	7.28E-19	0.618	0.000	4.46E-170
	G. biloba	0.372	0.643	0.000	4.29E-222	0.610	2.95E-85	2.73E-62	0.655	0.000	2.14E-265
Monocotyledon	S. bicolor	0.381	0.630	0.000	1.22E-173	0.548	1.04E-177	1.09E-41	0.626	0.000	9.58E-187
	Z. mays	0.407	0.639	0.000	1.13E-160	0.552	3.29E-172	2.95E-31	0.625	0.000	1.08E-158
	O. sativa	0.411	0.643	0.000	3.42E-157	0.563	1.43E-164	1.29E-33	0.639	0.000	2.81E-166
Dicotyledon	A. thaliana	0.352	0.577	0.000	1.02E-212	0.500	3.63E-284	4.23E-47	0.570	0.000	4.87E-219
	G. max	0.327	0.551	0.000	6.83E-226	0.457	0.000	2.67E-42	0.547	0.000	3.72E-237
	P. trichocarpa	0.374	0.590	0.000	1.06E-195	0.506	6.86E-261	1.12E-35	0.579	0.000	9.67E-195

Taxomony	Species	Intron number	Exon position				
			2-exons	3-exons	11-exons		
Archaeplastida	P. haitanensis	-	-	-			
	G. taiwanensis	-	-	-			
	C. caldarium	-	-	-			
Chlorophyta	O. viridis	3.8189E-10	0.0177	-			
	O. cardiacum	1.9696E-36	0.0474	0.7807	0.3611		
	P. minor	-	-	-			
Charophyta	M. viride	-	-	-			
	Z. circumcarinatum	0.8791	0.1936	0.9864			
	C. globosum	0.0001	0.0625				
Bryophyte	M. polymorpha	0.9112	0.0045	0.3619			
	S. ruralis	0.0580	0.9101	0.7858			
	P. patens	0.1051	0.3949	0.1131			
Pteridophyte	S. moellendorffii	0.9888	0.3252	0.3700			
	S. uncinata	0 3542	0 9604	0 7640			
	C. lindheimeri	0.0736	0.6375	0 7797			
	A. spinulosa	0.2487	0.2444	0.7502			
Gymnosperms	C. oliveri	0.4815	0.6688	0.9153			
	G. parvifolium	0.4544	0.0234	0.8574			
	G. biloba	0.4365	0.9917	0.1137			
Monocotyledon	S hicolor	0 3969	0 1570	0 3659			
monocotyledon	Z mays	0.0861	0.2145	0.9869			
	Ω sativa	0.4340	0.2145	0.9557			
	O. sullvu	013-10	0.2150	0.7557			
Dicotyledon	A. thaliana	0.0630	0.2570	0.2791			
-	G. max	0.3050	0.4592	0.1130			
	P. trichocarpa	0.1173	0.2421	0.2063			

Supplemental Table S4. The statistical analysis of SCUB frequency based on intron number and exon position

Taxomony	Species	The second-third nucleotid	es	The third and next first nucle	otides
		Combination	P value	Combination	P value
Pteridophyte	S. moellendorffii	NCG/NCC vs NAG/NAC	0.0193	NC G/NG G vs NC A/NG A	1.3418E-04
	S. uncinata	NCG/NCC vs NAG/NAC	0.0299	NC G/NG G vs NC A/NG A	4.6580E-03
	C. lindheimeri	NCG/NCC vs NAG/NAC	9.8025E-04	NC G/NG G vs NC A/NG A	1.0950E-03
	A. spinulosa	NCG/NCC vs NAG/NAC	3.6793E-17	NC G/NG G vs NC A/NG A	6.9371E-03
Gymnosperms	C. oliveri	NCG/NCC vs NAG/NAC	1.7837E-18	NC G/NG G vs NC A/NG A	6.3845E-03
	G. parvifolium	NCG/NCC vs NAG/NAC	0.0430	NC G/NG G vs NC A/NG A	0.3198
	G. biloba	NCG/NCC vs NTG/NTC	1.9690E-23	NC G/NG G vs NC A/NG A	1.2030E-03
Monocotyledon	S. bicolor	NCG/NCC vs NAG/NAC	9.4962E-17	NC G/NG G vs NC A/NG A	7.3635E-09
	Z. mays	NCG/NCC vs NTG/NTC	1.6051E-20	NC G/NG G vs NC A/NG A	2.7782E-10
	O. sativa	NCG/NCC vs NTG/NTC	3.5284E-19	NC G/NG G vs NC A/NG A	2.2764E-08
Dicotyledon	A. thaliana	NCG/NCC vs NAG/NAC	9.2478E-13	NC G/NG G vs NC A/NG A	1.9299E-10
	G. max	NCG/NCC vs NAG/NAC	4.1584E-13	NC G/NG G vs NC A/NG A	3.4352E-11
	P. trichocarpa	NCG/NCC vs NAG/NAC	1.4345E-19	NC G/NG G vs NC A/NG A	5.6690E-09

Supplemental Table S5. The statistical analysis of the association between the DNA methylation induced conversion of C to T and SCUB frequency

Taxomony	Species	Means of NCG/NCC	Means of NXG/NXC <i>P</i> value ratios			
		ratios				
Archaeplastida	P. haitanensis	0.895	0.793	0.657		
	G. taiwanensis	0.839	0.923	0.799		
	C. caldarium	0.816	0.836	0.910		
Chlorophyta	O. viridis	1.170	1.162	0.984		
	O. cardiacum	1.259	1.060	0.455		
	P. minor	1.715	1.265	0.576		
Charophyta	M. viride	1.017	0.725	0.570		
	Z. circumcarinatum	0.678	1.553	0.286		
	C. globosum	1.010	0.784	0.378		
Bryophyte	M. polymorpha	0.844	0.893	0.809		
	S. ruralis	0.710	1.179	0.299		
	P. patens	1.027	1.033	0.991		
Pteridophyte	S. moellendorffii	0.771	1.077	0.003		
	S. uncinata	0.827	1.190	0.033		
	C. lindheimeri	0.724	1.122	0.041		
	A. spinulosa	0.689	1.225	0.013		
Gymnosperms	C. oliveri	0.590	1.159	0.006		
	G. parvifolium	0.834	1.104	0.136		
	G. biloba	0.585	1.217	0.002		
Monocotyledon	S. bicolor	0.584	1.141	0.043		
	Z. mays	0.587	1.149	0.056		
	O. sativa	0.591	1.138	0.091		
Dicotyledon	A. thaliana	0.648	1.184	0.030		
-	G. max	0.625	1.249	0.019		
	P. trichocarpa	0.620	1.190	0.018		

Supplemental Table S6. The statistical analysis of the association between the DNA methylation induced conversion of C to T and SCUB frequency based on special amino acids

Taxomony	Species	Stop codons			Internal stop codons			
		TAA+TGA	TAG	P value	TAA+TGA	TAG	P value	
Archaeplastida	P. haitanensis	173	38	1.489E-20				
	G. taiwanensis	181	52	2.886E-17				
	C. caldarium	153	44	8.105E-15				
Chlorophyta	O. viridis	77	16	2.526E-10				
	O. cardiacum	89	10	2.025E-15				
	P. minor	76	6	1.074E-14				
Charophyta	M. viride	89	16	1.048E-12				
1 5	Z. circumcarinatum	87	16	2.637E-12				
	C. globosum	90	8	1.199E-16				
Bryophyte	M. polymorpha	84	5	5.570E-17				
	S. ruralis	74	5	8.287E-15				
	P. patens	80	5	4.123E-16				
Pteridophyte	S. moellendorffii	41	11	3.179E-05				
	S. uncinata	42	10	9.097E-06	5	1	0.102	
	C. lindheimeri	58	24	1.736E-04	33	1	4.066E-08	
	A. spinulosa	67	20	4.681E-07	61	6	1.826E-11	
Gymnosperms	C. oliveri	66	16	3.360E-08				
5 1	G. parvifolium	56	10	1.494E-08				
	G. biloba	64	20	1.580E-06				
Monocotyledon	S hicolor	64	20	1 580E-06				
Wionocotyledon	7 mays	83	20	1.380E-00				
	Δ . muys	05 78	20	3 860E 06				
	0. sullvu	78	50	5.800E-00				
Dicotyledon	A. thaliana	64	21	3.101E-06				
	G. max	63	20	2.360E-06				
	P. trichocarpa	71	27	8.803E-06				

Supplemental Table S7. The statistic analysis of usage bias of stop codons and internal stop codons

Supplemental Figure S1

Supplemental Figure S2

1.

Supplemental Figure S3

Supplemental Figure S4