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Introduction
Recent advances in next-generation sequencing technologies 
facilitated genome-wide discoveries such as variant analysis, 
expression quantification, and copy number alteration (CNA) 
analysis. CNAs are variations in the genome that result in either 
gain or loss of one or more copies of the DNA segment. The 
CNAs range from 1 kilobase (kb) to several megabases and are 
one of the essential constituents of genomic diversity.1 In humans, 
CNAs have been reported to account for approximately 12% of 
genomic DNA.2 While some CNAs do not have any observable 
effects on phenotype, some have been linked to diseases such as 
autism,3 to susceptibility to HIV,4 and to cancers such as non–
small-cell lung cancer5 and acute myeloid leukemia.6

Wide ranges of computational approaches have been 
developed to identify CNA events in whole-genome sequenc-
ing data. As previously described by Liu et al, there are three 
common steps in these algorithms: data preprocessing, data 
segmentation, and data interpretation.7 Data preprocessing 
starts with normalization of read depths or counts that are 
considered the most common input. Then, log2 ratios of those 
counts are calculated and compared to a selected reference 
value, which typically is a matched control. Tools such as 
SegSeq,8 ReadDepth,9 HMMCopy,10 Bayesian Information 
Criterion sequencing (BIC-seq),11 Patchwork,12 VarScan2,13 
Control-FREEC14 use this approach. Some of the algorithms 
also include steps to handle systematic biases such as genomic 
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mappability (Control-FREEC, ReadDepth, and HMMCopy) 
and GC-content (Control-FREEC, Patchwork, and HMM-
Copy). Moreover, some of them also incorporate B allele fre-
quency information to improve CNA detection (Patchwork).

The second step of the CNA detection algorithm is seg-
mentation. In this step, continuous regions with similar copy 
numbers are combined and the CNA profile is smoothened. 
Circular binary segmentation (CBS) and hidden Markov 
model (HMM) are the most commonly adopted algorithms 
to implement this procedure. In addition, the HMM-based 
approaches simultaneously assign copy number status to each 
region during this segmentation step.

The final step in the CNA detection algorithms is inter-
pretation of data in order to determine the copy number state. 
Typically, an empirical cutoff is applied on each segment to 
identify copy number changes (Control-FREEC, BIc-seq, 
VarScan2). Some algorithms optimize these cutoff values to a 
desired sensitivity and specificity (Patchwork, SegSeq).

Once the next-generation high-throughput sequencing 
experiments generate millions of short (36 bp–100 bp) 
sequence reads, mapping tools such as BWA,15 Bowtie,16 
or SOAP217 align those reads to the reference genome. The 
uniqueness of the reference genome sequence plays a major 
role during this alignment stage and is one of the limitations 
of current CNA detections tools. Lack of sequence unique-
ness (mappability) might lead to low complexity regions on 
the genome and therefore even the best mapping tools can-
not align all reads, despite using the highest quality sequence 
reads. Therefore, with the technology in hand, it is not pos-
sible to thoroughly sequence the entire genome. For instance, 
only 86% of the human genome can be securely mapped by 
using 100-bp sequence reads (Table 1).

Another limitation of the current CNA detection tools 
is dependence on control samples. The current standard in a 
typical copy number analysis is to compare the tumor (case) 
sample with the matching normal sample from the same 
individual. However, in some cases, this might not be possible 
due to technical problems, availability of samples, or cost.

The third issue with the current CNA detection tools is 
the size of the detected CNAs. Typically, these tools detect 

alterations of around or larger than 100 kB with confidence. 
By tweaking parameters, one can detect shorter CNAs. How-
ever, several hundred to thousand candidate CNAs would be 
generated, suggesting very high false-positive rates.

We believe that it is important to understand these charac-
teristics and limitations of the genome as well as CNAs detec-
tion tools and address them when developing new methods. 
In this paper, we describe a simple yet effective method that 
addresses these issues. Our method detects medium-sized 
CNAs from whole-genome sequencing data in the absence of 
a matching control sample by using a pool of normal samples 
as a baseline. It also effectively handles mappability issues in 
the genome. In addition, our method employs median filter-
ing to evaluate shape of the coverage around the candidate 
CNAs and effectively eliminates false positives.

Methods
Genome mappability. Mappability tracks can be generated 

computationally based on the level of sequence uniqueness of the 
reference genomes. As the sequence reads get longer, the mappa-
bility increases significantly.18 The University of California Santa 
Cruz (UCSC) Genome Browser provides mappability tracks 
from ENCODE project for different sequence read lengths (eg, 
100 mer, 75 mers, 50 mers). These tracks are generated by GEM 
(GEnome Multitool) mappability tool and regions are scored 
from 0 to 1 based on the sequence uniqueness, and therefore, the 
higher the mappability score, the more unique is the mapping 
position. We downloaded mappability tracks for mouse (mm9) 
reference genome for sequence reads of 100, 75, 50, 40, and 36 bp. 
Then, we combined the close by regions that had mappability 
scores of less than 1 and defined them as unmappable regions 
of the genome. We observed that about 28%, 26%, 23%, 18%, 
and 16% of the mouse genome cannot be mapped with 36,  
40, 50, 75, and 100-bp sequence reads, respectively. Size of 
unmappable regions could be as short as a few base pairs or as 
long as several million base pairs. For example, median width 
of unmappable regions with 75-bp sequence reads is 21 bp and 
81% of its unmappable regions are shorter than 100 bp. To better 
understand the size of unmappable regions across genome, we 
extended unmappable regions by 1 kb, if they span more than so 

Table 1. Percentage of unmappable regions of the mouse (mm9) and human (hg19) reference genomes.

SEqUENCE REAd LENGTh MoUSE REfERENCE GENoME hUMAN REfERENCE GENoME

GEM SCoRE 1 UNMAPPAbLE GEM SCoRE 1 UNMAPPAbLE

36 mer 28% 55% 29% 64%

40 mer 26% 52% 27% 60%

50 mer 23% 46% 23% 51%

75 mer 18% 33% 16% 29%

100 mer 16% 27% 14% 20%

Notes: Second and fourth columns show the percentages of the mouse and human genome with a GEM score less than 1 (this means the region is not unique). 
If an unmappable region covered more than 100 bp, we extended such region by 1 kb and consolidated regions. This aligns with our 90% cutoff on mappability 
percentage. Total size of these extended regions gives a more realistic idea about overall unmappability of the genome. We report percentages of unmappable 
regions in the third and fifth columns for mouse and human genomes, respectively.
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that bordering large unmappable regions will be consolidated. 
This approach suggests that practically about 55%, 52%, 46%, 
33%, 27% of the mouse genome is unmappable with 36, 40, 50, 
75, and 100-bp sequence reads, respectively (Table 1).

whole-genome sequencing data. All animal stud-
ies were performed under approved protocols following the 
Ohio State University Institutional Animal Care and Use 
Committee. We analyzed bone marrow mononuclear cells 
of 11 samples obtained from two healthy wild-type control 
mice and nine transgenic mice with MLL-partial tandem 
duplication (PTD) deficiencies that have been associated with 
acute myeloid leukemia.19 Three of the transgenic mice were 
Mll (PTD/wt): Flt3 (ITD/ITD) double knock-in mouse, three 
were nonleukemic Mll (PTD/wt) mouse, and the remaining 
three were Flt3 (ITD/wt) single-knock-in mouse (unpublished 
data). All transgenic mice were genotyped and six mice were 
validated to have PTD in Mll1 gene on chromosome 9.

The whole-genome sequencing of all mouse samples was 
performed by the Beijing Genomics Institute using Illumina 
HiSeq 2000 platform. None of the samples had cytogenetic 
abnormalities. The sequence reads were mapped to mouse 
(mm9) reference genome by BWA.15 The mapping quality filter 
was applied to remove potential optical and polymerase chain 
reaction duplicate reads, nonspecific reads, and improper read 
pairs. On average, 638 million, 90-bp paired-end sequence 
reads per sample were aligned to mm9 reference genome pro-
viding 43x average coverage (41x minimum, 44x maximum).

detection of cNAs. In this study, we were specifically 
interested in identifying medium-sized (∼1 kb–30 kb) CNA 
events. We started with computing the total number of sequence 
reads per kilobase of genome (read counts) for each sample using 
BEDTools.20 Next, these read counts were normalized to the 
total number of sequence reads per sample. Average genomic 
coverage was quite similar across all samples, thus, employed. 
Genomic coverage is not reliable around unmappable regions. 
Therefore, we eliminated 1-kb intervals with unmappable bases. 
Since our data consisted of 90-bp paired-end reads with slight 
quality drop toward the end of the reads, we chose to use map-
pability tracks with 75-bp reads. Then, we generated pairwise 
log2 ratios between case and control samples using normalized 
read counts for the remaining 1-kb intervals.

Following the calculation of log2 ratios of the coverage 
between case and control samples, we used R DNAcopy library 
from Bioconductor21 to combine intervals into segments. This 
library initially implemented for the analysis of array-based 
DNA copy number data using a CBS algorithm.21 This algo-
rithm consolidates neighboring intervals with similar ratios 
into segments and reports mean ratio for the segment and total 
number of intervals that support this outcome. First, we applied 
a cutoff on the mean ratio to account for 25% loss or gain.

Second, since we eliminated intervals with unmappable 
bases at the beginning, identified regions might span through 
unmappable regions. Therefore, we re-evaluated mappability 
of the identified regions and their surroundings (including 

w upstream and w downstream, where w is the width of the 
candidate CNA) as a whole and kept the regions with 90% or 
more mappable bases.

Finally, we applied one-dimensional median filter on 
pairwise ratios and calculated adjusted ratio as a mean of dif-
ferences before and after the median filtering. Median filter-
ing is a nonlinear filtering technique generally used to reduce 
noise in a signal. For the log2 ratio data over a region, r = r1r2…
rn, median filtering replaces each ri with the median of [ri − 
d/2, …, ri,…, ri + d/2], where 1  i  n and d + 1 is the sliding 
window size. At this step, we zoomed in the data and cal-
culated log2 ratios at 100-bp resolution for CNA candidates. 
Then, median filtering was applied around each candidate 
CNA staring from 4w upstream to 4w downstream, with a 
sliding window size of 3w, where w is the width of the can-
didate CNA. Average difference between original log2 ratios 
and median filtered log2 ratios over each candidate region is 
reported as median filter adjusted ratio. Finally, CNAs with 
25% loss or gain after median filter adjustment and common 
to both WT comparisons were reported as final CNAs.

Figure 1 depicts the complete CNA identification 
workflow.

results
Since it is not possible to thoroughly and accurately sequence the 
entire genome with short sequence reads generated by current 
high-throughput sequencing technology, the genome mappa-
bility was the first issue we aimed to address in this paper. We 
analyzed coverage tracks of 11 mouse samples. Figure 2 shows 
approximately 5 million base segment of their chromosome 12. 
A large portion of this region (about 3 million bases) is mostly 
unmappable (GEM score 1) with 75-bp sequence reads. The 
coverage is not uniform, but rather fluctuates with the mappa-
bility. This region also contains segmental duplications (dupli-
cations of .1000 bases that are not masked by RepeatMasker). 
It is not possible to identify medium-sized CNAs within this 
kind of regions. As shown in Table 1, approximately 33% of 
mouse genome is unmappable with 75-bp reads. Our approach 
handles this issue by eliminating intervals with low mappabil-
ity at the beginning of the analysis.

Figure 3 shows a 3000-bp candidate CNA on chro-
mosome 1. Intervals with unmappable bases (marked with 
green) were eliminated prior to running the CBS algorithm 
on pairwise log2 ratios between PTD/ITD samples versus 
WT samples. Mean log2 ratio between the first PTD/ITD 
sample and the first WT sample over this 3000-bp region was 
−0.79, suggesting 75% loss and 94% mappable bases includ-
ing the surrounding region (3000 bp upstream and 3000 bp 
downstream). After applying median filtering on log2 ratios 
in 100-bp resolution, average difference between original 
ratios and median filtered ratios within this region was −0.89, 
reporting 85% loss in this region. This 3000-bp CNA made 
the final list since it was reported in comparisons to both WT 
samples with more than 25% loss.
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The transgenic mice samples evaluated in this study were 
genotyped and six mice were experimentally validated to have 
PTD in Mll1 gene. Sequencing showed the presence of multiple 
copies in the Mll1 gene and therefore the alignment of sequence 
reads to the reference genome resulted in a larger number of 
reads being mapped to this region. This led to larger coverage 
in this duplicated region compared to the rest of the gene. This 
phenomenon was used as a positive control when testing our 
method. Figure 4 shows a slight enrichment (∼30% gain) around 
PTD region in PTD/ITD and PTD samples coverage tracks 
around Mll1 gene. Our method was able to successfully detect 
this enrichment, because our approach allows application of low 
cutoffs with confidence, while median filter adjustment allows 
easy distinction between true positives and false positives.

Figure 5 shows a 3000-bp candidate CNA on chromo-
some 1, with a mean log2 ratio of −0.57, suggesting 49% loss 
in that region. Median filter-adjusted ratio would be −0.20, 
suggesting only 15% loss. PTD/ITD 2 seems to have a 
slightly lower coverage across this region compared to WT 
2 sample. However, this is only a slight fluctuation in coverage 
and median filter adjustment easily picks up this kind of fluc-
tuations and eliminates such false positives. Although, 25% 
loss or gain cutoff is a very loose cutoff and results in a lot of 
false positives, median filter adjustment helps us to eliminate 
these false positives effectively and allows us to report loss or 
gain events confidently.

When evaluating coverage tracks of PTD/ITD mouse 
samples following the elimination of intervals with low 

figure 2. An example of highly unmappable region from chromosome 12. The selected region contains about 3 million bases. It is highly unmappable 
and also contains segmental duplications. The dark gray track shows mappability of mouse genome (mm9) with 75-bp reads. The red tracks show 
coverage of 3 PtD/ItD (Mll [PtD/wt]: Flt3 [ITD/ITD] double knock-in) mouse samples. The green tracks show coverage of 3 PTD (nonleukemic Mll 
[PtD/wt]) mouse samples, while the blue tracks show the coverage of ItD (Flt3 [ITD/wt] single knock-in) mouse samples.
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figure 3. At the top: Integrated Genomic Viewer screenshot of a region in chromosome 1 with 3-kb candidate CNA. The dark gray track shows 
mappability of mouse genome (mm9) with 75-bp reads. The red and blue tracks show coverage of 3 PTD/ITD (Mll [PtD/wt]: Flt3 [ItD/ItD] double 
knock-in) and 2 WT mouse samples in 100-bp resolution, respectively. Green intervals show 1-kb regions with unmappable bases. At the bottom: 
Log2 ratio for the first PTD/ITD sample versus the first WT sample (black solid line) and its median filtering (red dotted line) in 100-bp resolution across 
the region. size of the detected Cna is denoted with w.

figure 4. the region of the chromosome 9 that has Mll1 gene. a slight enrichment is observed around PtD region in the coverage tracks of PtD/ItD and 
PtD samples.

figure 5. A false-positive example. Genomic coverage, original log2 ratios, and median filtered log2 ratios are depicted for a 3-kb candidate CNA 
on chromosome 1. Slight genomic coverage change originally reported as a candidate CNA suggesting 49% loss. Genomic coverage upstream and 
downstream of the candidate was taken into account by median filter adjustment, and adjusted ratios suggest only 15% loss.
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mappability, CBS algorithm detected about 292 CNA can-
didates per PTD/ITD sample compared to WT. Then, 90% 
mappability filter eliminated 22% of these candidates. Median 
filter adjustment eliminated another 34%. Finally, selection 
of CNAs common to both control comparisons resulted in 
16% of the initially reported candidates, which is 47 CNAs 
per PTD/ITD sample with a median size of 3000 bases (aver-
age size of 10,300 bases). Being common to both comparisons 
seems to be the most stringent filter. However, if we had 
applied that filter without median filter adjustment, we would 
end up with 30% of the initially reported candidates, which 
is 88 CNAs per PTD/ITD sample. Therefore, median filter 
adjustment is clearly a crucial step in this approach, as we 
would have reported twice as much CNA candidates without 
this adjustment.

discussion
The next-generation high-throughput sequencing is the future 
of personalized medicine. The Next Generation Sequencing 
(NGS) data allow us to investigate genome-wide discoveries 
such as single-nucleotide polymorphisms, expression data, 
DNA’s structural variations, and CNAs. Designing tools that 
facilitate efficient detection of those discoveries is the next 
step that brings us closer to personalized medicine. Currently, 
tools designed to detect CNA face challenges such as a lack of 
sequence uniqueness in the genome, dependence on matching 
control samples for comparison and inability to detect smaller 
size CNAs. In this paper, we propose a simple yet effective 
approach that takes into account these limitations of current 
technology and specifically targets to identify medium-sized 
(1–30 kb) CNAs.

First, our method addresses the issue of mappability by 
eliminating regions of the genome with low mappability at the 
beginning of the analysis. This resulted in elimination of about 
33% of the mouse genome, leaving us with the remaining 67% 
for analyses. Although mappability-associated fluctuations in the 
coverage smoothen out and thus do not pose difficulties when 
identifying large aberrations (.500 kb) in the genome, such fluc-
tuations become the signal when detecting the medium-sized 
CNAs. Therefore, unmappable regions of the genome should be 
masked, for the sake of avoiding high false-positive rates.

When testing for CNAs, the usual approach is to compare 
the tumor sample with the control sample from the same 
individual. In some cases, the matched control sample is not 

available. Similarly, in our study, we tested 11 samples, 9 of 
which were from transgenic mice, and therefore these samples 
did not have their matched controls. So, in accordance with 
previous studies,22 we used the samples from the control mice 
that represented a pool of control samples.

Median filter adjustment of the ratios is the novel part of 
our method. Median filtering is applied around each candidate 
CNA and window size is directly determined by CNA size. 
Thus, smoothing around candidate CNA is performed at an 
appropriate scale. The difference between the median filtered 
ratios and original ratios suggests that candidate CNA indeed 
has a different coverage profile compared to its surrounding and 
it can be reported confidently. If median filtered ratios are not 
much different than the original ratios, adjusted ratios would 
suggest much smaller gain or loss, thus a false positive. Median 
filtering was used by Lee et al.23 with a constant window size to 
smooth the coverage signal as part of the preprocessing before 
CNA detection. We employ median filtering with variable win-
dow size to adjust copy number change rate and CNA ratio.

We also tested the BIC-seq algorithm, which is one of 
the well-established tools for the detection of CNAs from 
whole-genome sequencing data,11 with our data. The BIC-seq 
is a nonparametric model that segments the genome into small 
bins and iteratively combines adjacent bins with the same copy 
number. Due to its nonparametric nature, BIC-seq is robust 
in the identification of outliers. However, one of its limitations 
is that it relies on comparison of case samples with matched 
control samples. This limitation confines the utilization of this 
algorithm to analyses that only have matched control samples. 
Despite not having the matched control in our samples, we 
still tested this algorithm using our WT samples as the con-
trol. We ran the BIC-seq algorithm using PTD/ITD samples 
as case and each WT as a control. The BIC-seq has two main 
adjustable parameters: starting bin and lambda, which is used 
for tuning the smoothness of the CNV profile. The average 
number of detected CNAs decreases with increasing bin size 
and lambda; however, the average size of CNAs increases. 
We tested three combinations of bin sizes and lambda values 
and observed that in all the cases only about 5.5% of CNAs 
were coming from securely mappable regions, while the rest 
was from unmappable regions of the genome (Table 2). In 
comparison to our method, which detected 159 CNAs from 
40% of securely mappable regions of the genome in all PTD/
ITD samples, BIC-seq falls short in identifying CNAs from 

Table 2. Combinations of various bin size and lambda parameters used in the detection of CNAs with BIC-seq toolBIC-seq parameters.

AvERAGE # of CNAs % oN CoMPLETELY 
MAPPAbLE REGIoNS

AvERAGE SIzE 
of CNAs

Bin size = 1000 Lambda = 10 283 4.6% 19,363

Bin size = 100 Lambda = 10 330 5.3% 7,789

Bin size = 100 Lambda = 4 928 6.6% 3,714

Notes: On average only about 5.5% of CNAs were coming from securely mappable regions, while the rest was from unmappable regions of the genome.
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mappable regions, while reporting high rate of CNAs, most of 
which might be false positives.

Another method we tested was Control-FREEC, which 
automatically calculates the copy number profiles from the 
NGS data.14 One advantage of Control-FREEC is that the 
use of matched normal samples is optional. This approach 
also allows exclusion of regions with low mappability from 
the analysis by using provided mappability tracks. However, 
unmappable regions are not eliminated entirely but are rather 
skipped during the evaluation. In other words, Control-
FREEC algorithm considers an unmappable region as a 
gap. When we tested our samples with the Control-FREEC 
method, it detected approximately 160 CNAs per sample with 
an average CNA size of 500 kb. Only about 4% of those CNAs 
were in completely mappable areas. Given the large sizes of the 
detected CNAs, it was not a surprise that Control-FREEC 
identifies CNAs in unmappable regions. This algorithm iden-
tified fewer CNAs from mappable regions compared to both 
the BIC-seq and our method.

Most of the CNA detection tools allow adjustments in 
the size of the detected CNA by modifying some parameters. 
However, one of the most common problems is that as the 
CNA size gets smaller, the number of detected CNAs gets 
larger. Unfortunately, most of these detected CNAs are false 
positives, because these approaches cannot manage fluctua-
tion in coverage when the bin size gets smaller. In the larger 
bin sizes, these fluctuations are smoothened out, and large 
CNAs can be securely reported. Alas, there is no reliable and 
effective algorithm for detection of “medium-sized CNA” 
that takes these problems into consideration.

In this paper, we discussed potential issues in medium-
sized CNA detection using whole-genome sequencing data 
and why existing approaches are not suitable for the detection 
of medium-sized CNAs. We tested an approach to demon-
strate that by addressing underlying issues, we can effectively 
identify medium-sized CNAs.

We understand that our approach requires further modi-
fications; nevertheless, the fact that our method successfully 
detects CNAs from mappable regions of the genome is a proof 
of concept. This approach can be improved by implementing 
a sliding window approach to better identify CNA start and 
end sites (rather than bin start and end). We will also work on 
a methodology to eliminate false positives due to nonuniform 
coverage in control samples.
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