
Introduction
Intra-tumor heterogeneity. Intra-tumor heterogeneity 

is the phenomenon where the cancer cells in a single human 
tumor are not identical but highly diverse. Intra-tumor het-
erogeneity has received considerable attention over a half 
century, but the past decade has seen a dramatic shift in 
the focus. Originally, cancer biologists and cancer model-
ers were intrigued by the possibility that different cell sub-
populations within the cancer had different sensitivities to 
treatments, acquired by somatic mutations and selected for 
during treatment. This would mandate that combinations 
of multiple treatments were needed for each patient. Over 
the decades from the 1960s, clinical research has developed 
standards of care requiring combination chemotherapy in 
many types of cancer, ranging from modestly to wildly 
successful.

This focus on heterogeneity faded as new high-throughput  
assay systems, such as expression microarrays and deep sequ-
encing, developed. “Personalized medicine” would discover  
each patient’s magic bullet treatment. Tumor heterogene-
ity can interfere with this vision, since it results in sample-
to-sample variation. The higher that variation is, the more 
limited is the potential for predictive power. Diaz-Cano1  

provides a detailed analysis of these considerations. These 
assays require homogenized samples, where the individual 
identity of the cancer cells is lost as the sample is prepared. 
The gain in vast numbers of molecular features obtained from 
these assays tends to obscure the absence of knowledge about 
individual tumor cell subpopulations. Testing multiple speci-
mens in a patient’s primary tumor is not common in prac-
tice. While techniques have arrived to assess individual cells, 
tumor heterogeneity implies that their use will not mitigate 
the need for multiple sampling.

Cancer stem cells. What revived interest in tumor het-
erogeneity was the rapidly mounting evidence of a tiny but 
critically important subpopulation, namely the cancer stem 
cells (CSCs). Several seminal papers convinced many lead-
ing researchers that CSCs are real in human cancers, notably 
breast,2 ovarian,3 brain metastases of lung cancer,4 pancre-
atic cancer,5 and glioblastoma.6 Now there is vigorous activ-
ity in identifying or developing agents specifically capable 
of killing or suppressing CSCs and in moving these agents 
through the clinical trial system rapidly. Excitement is ris-
ing that this new focus will lead to rapid advances in cancer 
treatment, including the most common, deadly, and refrac-
tory cancers.
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The possibility that only a tiny proportion of tumor cells 
are capable of indefinite self-renewal has major implications 
for developing better anticancer agents and treatment strate-
gies. The main challenges are

•	 to identify or develop effective agents against CSCs;
•	 to choose the most promising treatment regimens in stra-

tegic combination with existing agents; and
•	 to test those regimens in clinical trials designed with 

clinical endpoints useful for assessing treatments against 
CSCs.

This article focuses on the latter two challenges, using 
modeling as a tool to develop and critique ideas for clinical 
testing. It examines some ideas on cancer treatment strategy 
that arose decades ago from the tumor heterogeneity para-
digm, when the heterogeneity of concern was about subpopu-
lations with drug resistance mechanisms rather than cancer 
stem cells. These ideas have potentially serious implications for 
designing treatment regimens that combine multiple agents 
and for choosing clinical endpoints by which to assess the suc-
cess of these regimens. In a different era of cancer research, 
Von Hoff7 decried the potential loss of valuable anticancer 
agents to a clinical trial system inflexibly following the stan-
dard cytotoxic drug model. The same issues are germane in 
this new CSC setting, and deserve wider recognition.

developments in Cancer stem Cell science
The breadth of research into cancer stem cells is extensive. 
In place of a complete review, this section provides an over-
view sufficient to discuss the clinical trials design issues 
further on.

definitions. The starting point must be terminology. 
There is still considerable controversy about the definition of 
CSCs, and whether their presumed key properties are coexis-
tent in a well-delineated subset of cells.8–10 Sakariassen et al.11 
provide an excellent review of the controversies and evidence. 
Some researchers prefer alternative terms like tumor-initiating 
cells, tumorigenic cells, or tumor-propagating cells12,13 as less 
prejudicial or more operational. Likewise, terminology also 
differs somewhat among investigators with regard to the can-
cer cells that are not stem cells. Progenitor cells refer to non-
CSCs with the ability to divide but not for self-renewal, while 
terminal cells cannot divide. Together, they constitute what 
some investigators call “derived cells”. However, these terms 
are not universal; one also sees the term “differentiates cells”. 
Herein, the term “non-CSCs” will represent cancer cells that 
are not CSCs.

In the common view, the tumor originally initiated from 
a normal stem cell and inherited a repertoire of important 
behaviors, especially self-renewal and strong self-defense 
mechanisms; furthermore, all CSCs descend from a cell that 
transformed to a cancerous phenotype. Alternative views are 
widely discussed: A pre-cancerous cell originally without stem 

cell characteristics might have stumbled upon the “on” switch14 
through genomic or other instability, and derived cells might 
acquire CSC characteristics. For purposes of the arguments in 
this article, we will assume tentatively that a cancer stem cell 
subpopulation exists in many or most human cancers, with the 
following properties.

1. CSCs alone are self-renewing, and in that sense, consti-
tute an “immortal” population;

2. CSCs give rise to “derived cells” (non-CSCs), which may 
divide a limited number of times and give rise to the bulk 
of the tumor. Non-CSCs may further divide into those 
that are still capable of proliferation and the terminal 
cells, those that intrinsically cannot proliferate;

3. Non-CSCs do not acquire stem cell self-renewal properties;
4. CSCs are resistant to most standard chemotherapy; in 

fact, some standard agents might stimulate division of 
CSCs.
Isolating and testing CsCs. Operationally, CSCs are 

concentrated from tumors by selecting certain cell surface 
markers, and the success of the selection is assessed by some 
assay. The assay could simply be examining cell morphology 
(spheroid formation) or through observing the number of cells 
needed to form a cancer cell colony in a xenograft. Neverthe-
less, they provide a means to test agents against selected cells, 
thereby offering the exciting possibility of an entirely new and 
biologically compelling avenue for anticancer drug develop-
ment. The development of molecular markers and signatures 
for CSCs promises to yield improved ways of monitoring the 
effects of treatment earlier and more precisely.

It is controversial whether such observations adequately 
validate a conclusion that the molecular expression pattern 
selected does reveal a CSC subpopulation.9 Studies of molecu-
lar markers claimed for CSCs reveal details that argue against 
an overly simplified view. Different marker patterns arise in 
studies of different types of cancer. Even the directionality can 
differ; for example, in breast cancer, a pattern frequently associ-
ated with tumorigenicity is low expression of CD24, with high 
expression of CD44 (CD44high/CD24low), but in ovarian can-
cer the signature CD44high/CD24high is reported, so that high 
rather than low CD24 expression marks the CDCs. Jaggupilli 
and Elkord15 review the unsettled nature of our understand-
ing in the roles of these markers in indicating CSCs. Marker 
patterns may change with ongoing research. For example, 
after Wei et al16 defined a CD44+CD24+Epcam+ signature 
for ovarian cancer most consistently enriched for a popula-
tion capable of colony growth, the same team17 augmented 
this signature for CSCs to require also a deficit in E-cadherin 
expression. The proportion of CSCs in tumors seems to vary 
widely. The tightness with which various CSC signatures cor-
relate with tumor initiation potential is somewhat murky.8,18 
One would also expect that markers truly indicative of CSCs 
would collocate reasonably well in the same cells in a tumor, 
in niches associated with CSCs, but some studies provide 
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contrary evidence.19 These dilemmas and more are reviewed 
by Clevers.20

Despite these persistent quandaries, for present purposes 
we tentatively accept the idea that the screening methods do 
identify treatments with specific efficacy against CSCs.

developing CsC-specific agents and molecular tar-
gets. There is considerable excitement about methods to iden-
tify candidate agents that can kill CSCs.21,22 These agents, 
whether new or old, could potentially end the depressing log-
jam in the treatment of metastatic solid tumors. If the cells 
responsible for the indefinite self-renewal of tumors could be 
eliminated, the tumor would over time melt away as the non-
CSCs reach the limits of their finite proliferation potential.

Candidate agents targeting CSCs have been discovered 
by empirical sensitivity testing utilizing the molecular signa-
tures discussed above to select and expand cells for testing, or 
by activity on actors in important stem-cell-related pathways. 
Some of the targets and pathways expected to be useful for 
killing or suppressing CSCs relate to Notch, Frizzled-Wnt, 
Hedgehog, PI3K, AKT, mTOR, Twist, focal adhesions, 
CXCR, and interleukin 6 (IL-6).22–29 Some of the agents in 
clinical testing30 include investigational products of companies 
such as OncoMed, Verastem and LCLabs: demcizumab, van-
tictumab (OMP-18R5), tarextumab, ipafricept, anti-notch1, 
VS-4718, VS-5584, defactinib, vismodegib (GDC-0449), and 
vorinostat, as well as established drugs for other diseases like 
metformin that could be repurposed. Another strategy under 
development is to target the immune system against CSCs. 
For example, recent reports show31,32 that non-killer (NK) 
cells preferentially target CSCs, though there are apparently 
contradictory results.33 The complexities for cell population 
dynamics are enormous when interactions with the immune 
system are important; there is even evidence in favor of a role 
for immune cells in generating CSCs from non-CSC tumor 
cells.34–36 For this reason, this article omits immunological 
treatments and modeling details from the scope.

The increasing resistance to chemotherapy in metastatic 
disease relative to primary lesions suggests that CSCs may 
themselves have high levels of resistance to the standard che-
motherapy drugs. Considerable evidence points to specific 
mechanisms of resistance, most prominently the high activity 
of efflux pumps in CSCs.37,38 A prominent speculation is that 
stem cells must be highly self-protective to defend their cru-
cial role in responding to tissue needs, and CSCs inherit these 
defenses. Treatments that do well in Phase II trials manifest 
cytotoxic or cytostatic effects on the bulk of the tumor cells, or 
else their effects would not be detectable. If these treatments 
nevertheless have no effect on CSCs, then one would expect 
eventual tumor recurrence with resistant disease, and limited 
potential for curing patients.

It is even possible that agents that perform well in Phase 
II trials are counterproductive due to contrary effects on CSCs. 
For example, the commonly used chemotherapy, doxorubicin, 
stimulated the growth of CSCs in the ovarian cancer model, 

OVCAR5, xenografted in mice, while suppressing other cells.17 
Anticancer agents directly affecting non-CSCs may also have 
indirect effects on CSCs. For example, induction of IL-6 may 
stimulate CSCs to divide more.29 This could lead to counter-
productive effects that would not manifest immediately but 
only later in the clinical course. Phenomena like this will affect 
which treatment strategies are most likely to succeed.

Some surprisingly positive effects of established targeted 
therapies may also owe their existence to CSC biology. HER2 
drives luminal breast CSCs in the absence of HER2 ampli-
fication. Ithimakin et al39 note an interesting implication for 
the efficacy of the adjuvant trastuzumab: Herceptin and other 
antagonists of HER2 could have positive therapeutic benefits 
outside of its traditional realm of HER2 amplification, simply 
because of effects on CSCs.

Whether CSCs are more sensitive or less sensitive to 
radiotherapy compared to non-CSCs seems unclear. Most 
published papers assume or conclude that CSCs are less sensi-
tive, for example Bao et al,40 but work pointing in the oppo-
site direction comes from Kim et al,41 who conclude that low 
DNA repair capacity may characterize some CSC populations 
and confer sensitivity to ionizing radiation. The settings dif-
fer in regard to types of cancer; that may be the cause of the 
discrepancy.

Clinical Challenges in testing Agents which  
target CsCs
Strategies for exploiting anti-stem-cell agents need to address 
two goals at once: reduction in CSCs, and minimization of 
morbidity from the non-stem-cell bulk of tumor in primary 
and metastases. In anticancer medicine development, new 
agents pass through the Phase II clinical trial with “clinical 
response” as the primary endpoint. Clinical response is a fairly 
easily detected signal, usually finalized in a time frame of a 
very few months. Since it primarily reflects changes in bulk 
tumor, effects on a tiny subpopulation of CSCs would be invis-
ible. A partial or complete clinical response could occur with 
no decrease in CSCs, or even an increase. The evidence cited 
above concerning doxorubicin suggests that agents successful 
by traditional Phase II criteria can even stimulate CSCs. Thus 
standard RECIST-criterion42 clinical response is not likely to 
be an adequate clinical endpoint for measuring the efficacy of 
a CSC-targeted agent.

“Effectiveness”, the long-term success of tumor treatment 
in preventing or delaying recurrence and death, is often poorly 
correlated with tumor response; for example, Han et al43 found 
an R2 of 0.22 between objective response rates and overall sur-
vival across 91studies. Since Phase II trials perform a triage 
function, no agent that fails on the short-term response out-
come is likely to make it into the definitive Phase III trials.

Cancer clinical trialists occasionally find the choice of 
clinical endpoints to be inadequate and revisit approaches to 
detecting efficacy. A similar crisis arose earlier concerning 
how to evaluate agents intended to achieve long-term stable 
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disease without necessarily inducing response. Long-term 
observation is required. A notable example was in the devel-
opment of gemcitabine for pancreatic cancer. Von Hoff7 noted 
that poorly chosen clinical trial designs can cause a use-
ful agent to be abandoned. One conclusion was that tumor 
response as a Phase II clinical endpoint would sometimes be 
an inferior measure compared to time to progression. Agents 
with primarily cytostatic effects, such as kanamycin,44 would 
be impossible to develop using tumor response as the primary 
endpoint.

There is always the risk of toxicity from these agents. Just 
as chemotherapy interfering with proliferation causes harm to 
normal proliferative cell tissues, agents targeting CSCs may 
harm normal stem cells. An extra challenge is that damage of 
normal stem cells might manifest only after substantial delay.

For all these reasons, time-to-event endpoints like  
progression-free survival (PFS) would be more likely to  
fulfill the role of efficacy endpoint in Phase II trials for anti-
CSC agents.

tumor dynamics and Cancer Heterogeneity
I now review some work from decades ago attempting to 
apply mathematical modeling of human tumor heterogeneity 
to guide treatment regimen design. For many years, interest 
in tumor heterogeneity focused on the development of resis-
tance mechanisms, with an eye to developing strategies using 
multiple agents. Each agent would have its own spectrum 
of activity on a different subset of cancer cells. This think-
ing was instrumental in developing some successful treatment 
regimens, including childhood acute lymphocytic leukemia, 
breast cancer, and Hodgkin Disease.

The Goldie–Coldman model. The rise of combination 
chemotherapy in the 1960s received its biggest boost from 
the extraordinary conversion of childhood acute leukemia 
from nearly uniformly fatal to routinely curable. Initially, the 
success was thought to be due to hitting cancer cells in dif-
ferent phases of the cell cycle. Later, techniques for growing 
cell lines led to numerous investigations into acquired drug 
resistance mechanisms, and gave prominence to the idea that 
somatic mutations during tumor development lead to these 
mechanisms in distinct subpopulations. Suppose there are two 
agents and two mutation-induced cellular mechanisms con-
ferring drug resistance to each drug, respectively. Each drug 
has a critical task: eliminate the cells sensitive to it but not the 
other drug. To cure the patient, at minimum, both tasks must 
complete successfully. A subpopulation resistant to one che-
motherapy agent would be killed by a different agent if that 
different agent is introduced soon enough, before the subpopu-
lation would grow too large. Thus Goldie and Coldman45–47 
proposed a treatment strategy of two alternating non-cross-
resistant drugs in successive treatment courses to optimize the 
chance of eliminating each cancer cell subpopulation.

The worst drug rule. The modeling strategy used an 
assumption of symmetry between the drugs: equivalent 

potency, identical mutation rates to resistance, and so on. 
Day48,49 relaxed the assumption of symmetry, allowing one of 
the drugs to be substantially more potent than the other. Here, 
potency means the log reduction in the size of the subpopula-
tion of sensitive cells when delivered at the feasible dose as 
determined by the toxicity constraint. One might suppose that 
a weaker drug should be used less. Instead, the resulting opti-
mal strategy was a surprise. This strategy is called the “worst 
drug rule” (WDR), since it calls for treating with the worse of 
the two drugs initially and/or for more extended time than the 
better drug. A typical demonstration is in Figure 1, which dis-
plays the probability of “cure”, a final cancer cell count of zero, 
as a function of the treatment schedule. The 16 white boxes 
represent 16 treatment sequences of two agents a (“Worse-
Agent”) and b (“Better-Agent”) with a total of 12 courses. The 
boxes are placed along the vertical dimension according to the 
number of courses of a versus b in the schedule, and along 
the horizontal axis according to the temporal placement of the 
courses. The numbers in the white boxes are the probabilities 
of zero cancer cells at the end of treatment. These calculations 
are performed by evaluating probability generating functions, 
iterating solutions to partial differential equations.49 Details of 
the modeling system are in Appendix A.

The middle row shows that for fixed and equal numbers 
of courses (6 each for a and b), the best outcome is achieved 
by starting with Worse-Agent, whose potency is only half the 
log-kill parameter as Better-Agent. The left side shows sched-
ules that start with Better-Agent; it compares the timing of 
switching to Worse-Agent. Indeed, the earlier the switch 
occurs, the better, as illustrated by the highest cure prob-
ability, 82% (yellow box: 3a9b). Thus, both the “worst first” 
and “worst more” strategies do much better than the Goldie–
Coldman alternating strategies in the middle, (ab)x6 and (ba)
x6. The magnitude of the effect is larger than the one found 
by Goldie and Coldman, and it robustly survived considerable 
sensitivity analysis.48,50

The reason for this somewhat paradoxical result is clear 
upon reflection. The worse of the drugs, being of lower potency, 
has more difficulty achieving its unique responsibility, namely 
the removal of cells resistant to the more potent drug. The 
regimen must make allowance for this in scheduling, or else 
there will be a high risk that the worse drug will fail at its task. 
This phenomenon is named the “worst drug rule”.

Further mathematical study and development of the 
WDR by Katouli and Komarova51 led to an independent rec-
ommendation: the “best-drug-first, worst-drug-longer” strat-
egy, consistent with 3a9b Figure 1, with a finding that the 
optimality is robust to levels of cross-resistance.

Though many years have passed from the discovery 
of the WDR principle to the resurgence of CSC biology, 
the fit between the cancer stem cell story and the WDR is 
quite close. To translate these ideas into the context of CSC  
biology and regimen development, we consider an agent 
StandardChemo (log-kill = 2) that does not affect CSCs, 
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and agent StemCellActive (log-kill = 1) that only affects 
CSCs. The “log-kill” parameter represents the number of 
logs (base 10) in reduction of the sensitive subpopulation 
from a single course. Thus, StemCellActive is the “worst 
drug”. Figure 2 shows simulation runs demonstrating several 
phenomena related to treatment strategies in a CSC biology 
context. All runs are begun with the same random number 
seed. (Unlike the classic WDR scenarios, chance plays little 
part, since rare mutations to drug resistance is not the issue.) 
Details of the population kinetics parameter settings are in 
the figure legend.

These demonstrations are not predictions; they are 
intended to illustrate and provide some intuition for some of 
the potential consequences of treatment strategies that are not 
so obvious. The true consequences of different strategies will 
present themselves only in clinical trials.

In panel A, the treatment plan is six courses of Stem-
CellActive, an agent that affects only the CSCs. The tumor 
continues to grow initially, possibly recorded as a progression, 
and possibly causing morbidity. Then the tumor melts away 
gradually. The reduction of bulk tumor is delayed as the con-
sequences pass through the non-CSC generations. Time to 

response is very long. Because the CSCs were not eliminated 
(logkill = 1 per course; six courses given, total logkill = 6), the 
tumor will eventually recur.

In panel B, the treatment is extended with three more 
courses of StemCellActive. The tumor is eliminated eventu-
ally (total logkill = 9). However, the initial course as clini-
cally observed has not changed. Thus, again the patient might 
be assessed initially as progressive disease, even though the 
patient has been cured.

In panel C, in place of the three extra courses of StemCell-
Active, three courses of StandardChemo (logkill = 3 × 2 = 6) 
are given, doubling the total additional logkill. The time to 
response is greatly hastened, but the eventual recurrence is not 
affected. (The terminal cells, in gold, are assumed partially 
resistant to StandardChemo; this assumption has no effect on 
the outcome.) A Phase II trial with response as the endpoint 
would judge strategy C to be a success, and strategy B, which 
is curative, a failure.

In panel D, the “best drug” StandardChemo is the initial 
treatment, and not until relapse does the strategy switch drugs 
to StemCellActive. This strategy aligns with what may appear 
as common sense. The outcome is poor. Though there is a 

figure 1. the Worst drug rule. Probabilities of zero cells, by treatment schedule.
Notes: the 15 white boxes and one yellow box represent 16 treatment sequences of two agents a (“Worse-agent”) and b (“Better-agent”) with a 
total of 12 courses. for example, the schedule in the yellow box is aaabbbbbbbbb, three courses of a followed by nine of b, while (a3b)x3 represents 
abbbabbbabbb. The number in each box is the probability of “cure”, defined as a final cancer cell count of zero using that schedule. The boxes are 
placed along the vertical dimension according to the number of courses of a versus b in the schedule, and along the horizontal axis according to the 
temporal placement of the courses. the vertical rectangles are visual representations of the cure probabilities, transferred to a logit scale centered at the 
mean of the twelve logits: logit(0.07). Green rectangles flag the schedules better than this average; red indicates worse than average.
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figure 2. simulations of treatment scheduling strategies.
Notes: stochastic simulations initialized with 104 cancer stem cells, and the same random number seed throughout. tumor cell counts are along the vertical 
axis logarithmically spaced. the treatment schedules are along the bottom, indicated by vertical ticks where treatments are given. the agents are labeled 
standardChemo and stemCellactive. Parameters (all times are means): for CsCs, mitosis time = 2.7, cell death time = 30, time to progenitor = 0.5. for 
proliferative cells, mitosis time = 0.9, cell death time = 10, mean time between progenitor generations = 0.5, mean time from final generation to terminal 
cells = 0.5. for terminal cells, mitosis time = 90, cell death time = 1. Up to the initiation of treatment at 90 months, the curves are identical; thus panels B 
through e begin shortly before 90. (A) treatment with stemCellactive, 6 courses. the tumor continues to grow initially, possibly recorded as a progression. 
then the tumor melts away gradually. time to response is very long. Because the CsCs were not eliminated (logkill = 1 per course; 6 courses given, 
total logkill = 6), the tumor will eventually recur. (B) With three more courses of stemCellactive, the tumor is eliminated eventually (total logkill = 9). the 
initial course as clinically observed is not changed. (C) With three courses of standardChemo (logkill = 3 × 2 = 6) in place of the three extra courses of 
stemCellactive, the time to response is greatly hastened, but the eventual recurrence is not affected. stemCellactive is the “worse drug” (comparing the 
slopes of the CSC line, in black, and the non-CSC lines). (The terminal cells, in red, are assumed partially resistant to StandardChemo; this assumption has 
no effect on the outcome.) (D) Introducing StandardChemo first and waiting until relapse to switch drugs to StemCellActive has a bad outcome. Though there 
is a rapid response, it is short-lived. the stemCellactive courses are too little, too late. (E) to eliminate the tumor while controlling morbidity from non-CsCs, 
the standardChemo treatment should be introduced only when symptom control is needed.
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rapid response, it is short-lived. The StemCellActive courses 
are too little, too late.

In panel E, the strategy is to avoid morbidity from the 
cancer without compromising long-range curative potential. 
StandardChemo treatment should be introduced only when 
symptom control is needed. As a proxy for morbidity, here a 
cell count in excess of 109 is used as a signal to introduce a 
course of StandardChemo. In this run, one more course of 
StemCellActive would have eliminated the tumor perma-
nently. This treatment regimen used two courses of Standard-
Chemo and eight of StemCellActive.

Challenges in Clinical trial design for CsCs
These simulations highlight some unique challenges in evalu-
ating anti-CSC strategies in clinical trials: choice of regimens 
to test and choice of clinical endpoints for assessment.

The primary risk for a patient from non-CSCs is morbid-
ity and mortality from the disruption of normal tissue func-
tion. The primary risk from CSCs is the ongoing and indefinite 
production of new tumor cells. Control of CSCs without  
control of non-CSCs will fail as the patient gets sicker and 
dies. Control of non-CSCs without control of CSCs has been 
a common result of the familiar sequence: primary treatment, 
tumor reduction, improvement in symptoms, recurrence locally  
or in metastases, refractoriness to treatment, mortality.

Treating patients successfully requires control of morbid-
ity by control of the visible non-immortal bulk of tumor, and 
also control of the cancer stem cell population. Neither of these 
two tasks is sufficient, and they present different challenges 
and opportunities. This observation stimulates thinking about 
applying the WDR. One strategy that leverages the power of 
the WDR in the context of CSCs would be to administer the 
CSC-active agent until the short-term risk of unacceptable 
morbidity is high, and then provide standard chemotherapy 
to control morbidity. As an immediate consequence, in the 
adjuvant setting the CSC-active agent would be strongly pre-
ferred. Upon tumor recurrence, the choice becomes difficult. 
Morbidity risk increases, rapidly in some cases and slowly in 
others. It is plausible that even then the CSC-active agent 
could be a good choice. An alternative CSC-active agent, if 
available, could be a better choice; but standard chemotherapy 
effective on the primary, which has at best diminished efficacy 
on metastases, would be least favored. Conversely, in the neo-
adjuvant setting, since the main clinical purpose is to de-bulk 
the tumor prior to primary surgery, CSC-targeted therapy 
would be a low priority at best.

The set of regimen choices originally studied by Goldie 
and Coldman expressed a constraint that the two hypotheti-
cal agents A and B could not be given in the same cycle due 
to toxicity limitations. Thus, for each cycle there was a choice, 
A or B. This artificial setting nevertheless receives some 
echo from the study of Schott et al, where the CSC-active 
agent and non-CSC-active agent were not concurrent, in 
order to minimize risk of toxicity. Going forward in future 

trials, it will be desirable to begin by deciding what toxicity 
constraints should apply when combining a stem-cell-active 
treatment with a standard treatment, listing a few feasible 
combination schedules acceptable by these constraints, and 
designing a trial to compare these schedules. Then the clini-
cal trial can help to answer a biological question as well as a 
clinical question.

Having found via the WDR that the “obvious” way to 
combine multiple anticancer agents and modalities is often 
exactly the worst way (Fig. 1), a failure to design trials informed 
by tumor dynamics is risky; early clinical failures may kill an 
entire promising stream of treatment development.

biological Complications
Modeling tumor dynamics with CSCs involves complications 
tied with aspects of the biology for which we have at best hints 
up to now. We do not understand if, or how, the CSCs and 
non-CSCs communicate. How do CSCs “know” when to 
divide asymmetrically and when symmetrically? Does a CSC 
respond to its immediate microenvironment, or systemic sig-
nals affecting all CSCs in concert?

A simplifying assumption made in discussions of CSCs is 
that their differentiated descendants are indeed permanently 
not self-renewing. However, there is some evidence that a pro-
liferative non-CSC cancer cell, supposedly with potential for 
only small numbers of cell divisions, might occasionally obtain 
the CSC phenotype. If so, then this can radically change the 
balance in comparing treatment strategies. There is evidence 
that hypoxic conditions, typically found in the interior of tumor 
primaries and advanced metastases, can induce cells to regain 
self-renewing capability.14 Some evidence in favor of this pos-
sibility appears, for example, in neuroblastomas52 and breast 
cancer.53 This biological possibility complicates the adjuvant 
setting. If proliferative non-CSC cells can gain CSC-like self-
renewing capability, if the rate is not too low, this could argue 
against continued use of CSC-active agents. Recruitment into 
the CSC subpopulation could exceed the ability of the CSC-
active agent to reduce the subpopulation.

Another complication involves the recently discovered 
biology: there appear to be two major populations of CSCs. 
An intriguing set of observations have recently appeared 
connecting CSCs with transitions of cancer cell phenotype 
between epithelial and mesenchymal forms.54,55 The epithelial– 
mesenchymal transition (EMT) is a phenomenon identified 
from embryology, giving rise to the loss of cell-to-cell contact 
and polarity.56 Epithelial cells tend to be polar, nonmotile, 
and relatively sensitive to chemotherapy agents. They gener-
ally express E-cadherin. Mesenchymal cells are motile, and 
generally do not divide; they generally express N-cadherin. 
An association between CSCs and EMT is widely acknowl-
edged. Experimental induction of EMT in mammary-derived 
immortalized cells by the embryogenesis-associated transcrip-
tion factors Snail and Twist generates characteristics of stem 
cells, such as the CD44high/CD24low expression pattern.
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A study by Tsuji et al from 200825 examined requirements 
for establishing lung metastases (albeit from hamster cheek 
pouch carcinoma cells), and found a requirement for two dis-
tinct CSC populations, one EMT-like and the other, termed 
non-EMT or MET, representing the switch from mesenchy-
mal to epithelial characteristics phenotype. A mixture infused 
subcutaneously work in tandem to establish metastases; the 
EMT cells appear to be responsible for local invasion, with 
non-EMT cells involved in proliferation at a metastatic site. 
Some took this study as evidence that the EMT state and 
CSC are mutually exclusive rather than strongly correlated. 
An intriguing recent report57 reinforces and expands upon the 
Tsuji et al results. Liu et al state that in human breast cancer 
there are two classes of CSCs working in tandem; those in 
EMT and those transitioning in the reverse direction: MET. 
The MET takes place in embryogenesis to develop organs 
(kidney, ovaries) distant from the epithelial tissue surfaces 
created earlier in an embryogenesis. Liu et al.57 review evi-
dence that the CD24lowCD44high markers identify CSCs with 
mesenchymal-like properties that are motile and invasive, 
while aldehyde dehydrogenase (ALDH) expression identi-
fies epithelial-like CSCs that are proliferative. The tentative 
picture is that the interior of a primary tumor is the home of 
the MET epithelial-like cells, where cell division takes place, 
while the periphery is the home of the EMT mesenchyme-
like CSCs, characterized by motility, invasiveness, and meta-
static potential. A new metastasis would require a transition 
back to the epithelial CSC form.

Thus, the spatial dimensions of invasion and metastasis, 
in conjunction with stem cell plasticity between the EMT and 
MET states, appear to be indispensible components of the full 
picture. Mathematical modeling aiming at understanding how 
anti-CSC agents might be best used should ideally take into 
account this very complex level. That would require far more 
detailed information than is available at this early stage.

discussion
The study of CSCs is in flux, and replete with controversies. 
The identification of CSCs patterns relies heavily on func-
tional assays displaying physical characteristics such as nonpo-
larity, or tumor-forming potential in xenografts. Cells passing 
these tests may not be entirely identical with cells playing the 
CSC role in human tumors in patients. We have seen that the 
identity of the putatively best CSC molecular signatures varies 
across tumor types. Just a few of the controversies are: whether 
CD24 is expressed or not, whether CSCs are insensitive or 
sensitive to radiotherapy, whether CSCs originate from nor-
mal stem cells or not, and whether non-self-renewing cancer 
cells have the ability to regain self-renewing capacity. Clevers 
also notes findings of plasticity of CSCs, and warns: “Only if 
the CSC phenotype is a stable trait will it be advantageous to 
selectively target CSCs”.20

One must ask which of the apparent differences in 
these answers across tumor types are truly biological, or 

artifacts of experimental systems. Another caution is that 
the subpopulations selected for markers correlating with 
tumor initiation potential might still be quite heterogeneous, 
running a risk that chemosensitivity testing on those cells 
could be partially or largely due to effects on a subset of cells 
not responsible for tumor initiation. Lehman et al.10 provides 
a good review of some basic gaps in current understand-
ing, together with some provocative negative experimental 
results that strongly suggest caution as the theory develops. 
Modelers would like good answers for key parameters, none 
so key as the proportion of CSCs in a primary tumor,58 yet 
the methods for estimating these parameters from experi-
ments do not warrant great confidence in the accuracy of the 
estimates, which range widely.

If CSCs really are the key to long-term behavior of tumors 
in response to treatment, then the cautionary implications of 
tumor heterogeneity for the value of high-throughput assays 
are probably magnified by considerations of CSC biology.  
The assays presumably measure primarily the properties of the 
derived cells, forming the bulk of tumors and hence of the 
samples, while missing crucial properties of the more impor-
tant CSCs.9 This phenomenon might explain why the cancer 
biomarker enterprise has not been as successful as hoped in 
clinical application.59,60 However, this need not be the case; 
the CSCs and derived-cell populations may share important 
properties, allowing the assay results for bulk tumor to detect 
characteristics of the CSCs.

Prior mathematical models focusing on CSCs have 
included the work of Ganguly and Puri61 and Molina-Peña 
and Álvarez.62 Both approaches utilize ordinary differential 
equations describing compartmental models. Ganguly and 
Puri conclude with six inferences from the model observations 
relating to treatment strategies. They are difficult to trans-
late into guidance for treatment regimens and trial designs. 
Molina-Peña and Álvarez provide constraints to match 
known behaviors of human tumors. In regard to treatment 
prescription, they conclude that “encouraging CSC differen-
tiation could be an effective therapeutic strategy”. These mod-
els are ambitious efforts, but inevitably have many parameters 
poorly known (apparently 23 and 8, respectively, somewhat 
larger if counting initial conditions and simplifying assump-
tions). Observations backing those parameters and assump-
tions will be indirect at best, for example, taking a given CSC 
signature assay seriously as providing an accurate estimate of 
the proportion of CSCs in the tumor. Thus, sensitivity analy-
sis to critique results is essential, and both studies do provide 
sensitivity analyses. A number of other modeling studies for 
tumors with CSCs develop the cellular automata approach, 
incorporating spatial aspects of tumor growth.63–66

One notable observation from the modeling efforts of 
Enderling et al is that increasing apoptosis among the non-CSC 
cells can paradoxically increase tumor growth by reducing com-
petition with CSC cells.66 Mathematical modeling of tumor 
biology can make discoveries like this despite overwhelming 
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complexity, facets too poorly known or unknown, and vast 
numbers of parameters whose values would have to be known 
for quantitative predictions. Despite all the limitations, obser-
vations from mathematical modeling can generate new and 
relevant hypotheses. When these observations are of a sur-
prising nature, they can build better intuitive understanding.  
Biological and clinical researchers can entertain possibilities 
that otherwise would not be on the table.

The OncoTCap platform used here for demonstrating the 
WDR has capabilities to account for local and systemic spatial 
inhibition through Gompertzian growth rules and nested spa-
tial properties (Appendix A). The WDR has fared well in pre-
vious sensitivity analyses.48,51 Exploring the WDR’s range of 
validity and limitations in the CSC context would have util-
ity through a comprehensive sensitivity analysis incorporating 
maximal details and complexities. Highly elaborate models 
do run risks: implying unwarranted precision and interfering 
with discovering useful new general ideas obscured in an ava-
lanche of details.

Concepts on the nature of tumor heterogeneity develop-
ment tend to three types of explanations: stochastic evolu-
tion under mutation and competition; hierarchical evolution 
resembling the structures of normal tissues; and heterogeneity 
from variations across the microenvironments within tumors, 
at their boundaries, and at potential metastatic sites.67,68 The 
original WDR emerged from studies of drug resistance, with a 
stochastic viewpoint for the evolution of tumors through ran-
dom mutations. The CSC picture is more hierarchical, with 
CSCs giving rise to a series of descendants terminating in 
cells with no proliferative capacity. The simulations presented 
in Figure 2 follow a hierarchical model, yet also demonstrate 
a WDR phenomenon.

The approach presented here is much less ambitious from 
the modeling perspective, but may in its modesty contrib-
ute to imaginative strategic thinking as treatment regimens 
and clinical trials are designed with CSCs in mind. In the 
demonstrations we have shown above, every assumption and 
parameter setting can be justly criticized. However, in this 
setting of very imperfect biological knowledge, mathemati-
cal modeling can perform a constructive role as an assistant 
for creative thought as clinical experiments are planned.69 
It is then part of the responsibility of clinical trial designs 
with CSC-targeted agents to follow a principle promoted by 
Bernard Fisher through decades of breast cancer research70,71: 
every clinical trial should test a biological hypothesis as well 
as a treatment.

The simulations illustrate several kinds of patient fates 
depending on treatment strategy. These are not all immedi-
ately obvious; modeling helps understand how these possibili-
ties may arise. They also highlight the extreme risks of missing 
an invaluable treatment if the clinical trials of CSC-targeting 
agents proceed with business as usual. I do not have a simple 
solution, but no solution can emerge unless we are aware of 
the problem.

Appendix A: oncology Thinking Cap
overview of the oncology Thinking Cap (oncotCAP). 

The Oncology Thinking Cap (OncoTCAP) computer program 
(Version 2) is an extensive cancer modeling laboratory for con-
ducting thought experiments in cancer biology and treatment. 
This facility is in active use by several cancer researchers to 
answer practical questions about treatment optimization. The 
conceptual basis is that tumor heterogeneity underlies most 
of the central themes of cancer biology and cancer treatment.8 
These include: apoptotic mechanisms, cell cycle control, repair 
mechanisms, and mutational processes that may disrupt normal 
mechanisms, as well as tumor growth kinetics, sensitivity to 
treatments, treatment resistance mechanisms, local spread, and 
metastasis. All of these phenomena can be specified in terms of 
variations in properties of cancer cells, properties that are heri-
table in a genetic, positional, or other sense.

OncoTCAP lets users describe biological and chemical 
relationships as experienced by each individual tumor cell. It 
then maps accurately to the macroscopic behavior of the tumor 
in regard to growth kinetics and response to treatment. Com-
putational engines and graphic displays incorporate all these 
aspects to produce individual patient simulations or calculate 
cure probabilities. Thus OncoTCAP provides the means to 
synthesize these details into a model for calculating predic-
tions about cancer patients and the success of treatment plans. 
The modeling framework strives toward a hypothesis-neutral 
ideal, to encourage the challenging of assumptions, and to be 
fully responsive to new developments in cancer biology.3–5,13 
OncoTCAP is publicly available for download to Windows 95 
platforms from http://www.pci.upmc.edu/tcap.

branching process concepts. Suppose there are K cell 
types, and let the numbers at time t be represented by the 
cell count vector written as N t N t N tK( ) ( ( ),..., ( ))= 1 . Part 
of a cell’s behavior is its “kinetics”, its propensity to undergo 
a change without any episodic external intervention. These 
changes include change of location (metastasis and local migra-
tion), mitosis, cell death, intra-mitotic mutation, and mutation 
during mitosis. They may also represent the passage of a cell 
through cell cycle phases or through other status groups. An 
event is characterized and implemented by the change in the 
vector of cell counts: 

e N t dt N t= + −( ) ( ). Here are some examples with three 
cell types A, B, and C, and N t N t N t N tA B C( ) ( ( ), ( ), ( ))= :

e = −( , , )1 0 0  death of an A: A→ {nothing}
e = −( , , )1 1 0  “Conversion”: A→ b
(eg, migration or cell cycle traverse)
e = ( , , )1 0 0  Mitosis:  A→ A A
  Mutation: b→ b A
e = −( , , )2 1 0  Mutation: b→ A A
e = −( , , )1 1 1  Mutation: A→ b C

Let f t dtk e, ( )  be the probability that the event corre-
sponding to change vector e occurs to a cell of type k during 
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the infinitesimal interval dt. The key assumptions are the 
“Markov” property and the independence of contemporane-
ous cell fates, leading to

 

1

dt
E N t dt N t e f N t

e
k e k

k
( ) ( ) ( ).,+ −{ } = ∑ ∑

Cell types, properties, levels, and rules. The central 
concept in OncoTCAP is that each cancer cell has a set of 
attributes described by selecting, for each “heritable property”, 
a particular “level”. These levels represent information such 
as physical location in a particular organ, portion of an organ 
or type of microenvironment, and presence of specific muta-
tions or variations in gene dosage or gene expression affecting 
key mechanisms. The roster of distinct types of cells that may 
appear in a tumor is obtained by considering all possible com-
binations of these properties.

example of a cell type
ORGAN            = Lung_Primary
MACRO-ENVIRONMENT = (27,55,92)
MICRO-ENVIRONMENT   = perivascular
RAD-SENSITIVITY     =  somewhat-radiation-

sensitive

“Property”
          

“Level”

Each “level” has one or more “rules” associated with it. 
The parameters governing the behavior of an individual cell 
are automatically generated by applying all the rules asso-
ciated with the cell’s properties. In this way, considerable 
economy of description is achieved. Users specify isolated 
aspects of cancer biology by creating, for each property, level 
the rules describing the modification of cancer cell para-
meters. These rules modify the kinetics parameters (eg, rates  
for mitotic, mutational, apoptotic or necrotic events, or Gomp-
ertz-like density dependence), and also modify the treatment 
sensitivities. (The rules are restricted to be commutative, so 
that the order in which the rules are applied will not matter.)

Kinetics rules. Kinetics rules affect kinetics parameters 
thus:

f f ruleval level property kk e e e
property

, ( ( , )),= ∏0

where f e
0  is the kinetics parameter for a “reference” cell type.

Gompertz growth control. Growth of solid tumors 
is generally subject to growth slowing, or plateauing, often 
referred to as Gompertz growth. For a single cell type, this 
model is

 
dN dt

N t
K N

N t
/
( )

log ( )
( )

=
∞

Primary tumors may slow down due to interstitial 
pressure, systemic antiangiogenic factors, or competition for 
growth factors. Metastases may slow down due to insuffi-
cient blood supply or systemic antiangiogenic factors. Onco-
TCAP has pioneered the application of Gompertz kinetics in 
a multiple-cell-type setting. Gompertz rules can be defined 
at any location scale. Thus N(t) in the equation above refers to 
the cell count of a particular Gompertz Region (GR). (Whole 
Body, Organ, Macroenvironment, or Microenvironment).

These rules can even be combined across nested levels of 
location:
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Here X is the cell type, ξ is the birth rate, γ is the death 
rate, j indexes Gompertz rules, GR = Gompertz Region, GP = 
Gompertz Plateau = N(∞), GS = Gompertz Split allocates the 
slowdown to ξ and γ, and the “+” superscript takes negative 
numbers to zero. For example, a Gompertz rule based on total 
tumor cells, representing a tumor-produced serum angiostatic 
factor, can be combined with a Gompertz rule based on tumor 
cells in local microenvironments, representing spatial competi-
tion or restricted access to serum growth factors and oxygen.

Cancer treatments. “Episodic” (“cytotoxic”) treatments. 
Part of a cell’s behavior is its propensity to respond to a kill-
ing episode, generated by primary surgery or by a cytotoxic 
agent. These effects are modeled with binomial distributions 
for each cell type; the probability of survival is modified by the 
properties through application of the rules. Dosage modifica-
tion is managed by applying the Skipper log-kill hypothesis 
separately for each cell type.21 Thus the cell killing of a drug d 
administered at time t is implemented separately on each cell 
type k as

 ,( ) ~ ( ( ), ( ))k k k dN t dt binom N t q t+

where q tk d, ( ) = pr(a cell of type k survives the episodic treat-
ment d administered at time t)

 
= ∏q rule level property kd d

property

0 ( ( , )).

Thus, in addition to kinetics rules, levels can also have 
rules that modify treatment sensitivity.
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For ease of use, treatments can be packaged into 
combinations (for simultaneous application of several agents), 
or into treatment courses (for repeated administration of an 
entire treatment sequence).

“Continuous” (“cytostatic”) treatments. Extended treat-
ments such as hormone therapies, angiogenesis modulators,  
and cytostatic agents are modeled as cell-type-specific modu-
lations in the kinetic parameters over the period of the treat-
ment. Therefore, their effects on cell types are described 
similar to the effects of property-level rules. A drug d admini-
stered over an interval [a,b] may act on a particular cell type k 
by further modifying the kinetics event rate f tk e, ( ) for t a b∈[ , ],  

multiplying it by rule level property ke d
property

, ( ( , ))∏ . This treatment 

effect model would be appropriate for hormonal therapies and 
anti angiogenesis agents.

toxicity Model
The adverse effects of specific treatments are modeled proba-
bilistically in a Markovian fashion, with either cumulative or 
absolute jumps. The state space corresponds to the standard 
Common Toxicity Criteria, a set of five-grade toxicity scales 
for different toxicity types. Resolution of the toxicity can be 
rapid, gradual, or disallowed.

solutions. OncoTCap 2 provides two types of solutions. 
The joint probability generating function (jpgf) for the joint 
distribution of cell counts is obtained from iterated solutions 
to partial differential equations.49,50 Evaluating the jpgf at the 
vector of all zeros yields the probability of no cancer cells at 
the end of the time horizon. Figure 1 was generated by these 
jpgf solutions.

These solutions are available only when parameters are 
fixed through time, or changed in a deterministic way. This 
limitation rules out Gompertzian growth and changes in 
treatment plan responsive to events in a patient’s course, 
such as toxicity and recurrence. To complement this com-
putation, a stochastic simulation engine operates on the 
vector of cell counts. Figure 2 was generated by these 
simulations.
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