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Background
Alternative splicing, a post-transcriptional process that 
allows multiple messenger RNA (mRNA) isoforms to be 
produced by a single gene, is a regulated process, and a 
major mechanism for generating protein diversity. During 
this process, specific exons of a gene can be either included 
or excluded from the mature mRNAs, leading to struc-
turally and functionally distinct proteins. In multicellular 
organisms, alternative splicing is a prevalent phenomenon, 
which has been estimated to occur in over 90% of the human 
genes.1
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ABstRAct
BAckgRouNd: One of the major mechanisms of generating mRNA diversity is alternative splicing, a regulated process that allows for the flexibility 
of producing functionally different proteins from the same genomic sequences. This process is often altered in cancer cells to produce aberrant proteins that 
drive the progression of cancer. A better understanding of the misregulation of alternative splicing will shed light on the development of novel targets for 
pharmacological interventions of cancer.
Methods: In this study, we evaluated three statistical methods, random effects meta-regression, beta regression, and generalized linear mixed effects 
model, for the analysis of splicing quantitative trait loci (sQTL) using RNA-Seq data. All the three methods use exon-inclusion levels estimated by the 
PennSeq algorithm, a statistical method that utilizes paired-end reads and accounts for non-uniform sequencing coverage.
Results: Using both simulated and real RNA-Seq datasets, we compared these three methods with GLiMMPS, a recently developed method for sQTL 
analysis. Our results indicate that the most reliable and powerful method was the random effects meta-regression approach, which identified sQTLs at low 
false discovery rates but higher power when compared to GLiMMPS.
coNclusioNs: We have evaluated three statistical methods for the analysis of sQTLs in RNA-Seq. Results from our study will be instructive for 
researchers in selecting the appropriate statistical methods for sQTL analysis.
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Alternative splicing is often altered in cancer cells 
to produce aberrant proteins that drive the progression of 
cancer.2–5 Genome-wide studies have identified more than 
15,000 splicing variants associated with a wide range of can-
cers.6–8 During oncogenesis, alternative splicing can affect 
genes involved in promoting cell migration, activating cell 
growth, maintaining hormone responsiveness, curbing apop-
tosis, and evading chemotherapy.9,10 A number of factors 
can contribute to the misregulation of alternative splicing, 
including the disruption of either cis-acting elements within 
the affected gene or trans-acting factors that are required for 
normal splicing. A better understanding of this misregulation 
can help identify novel targets for pharmacological interven-
tion of cancer.

Several studies have demonstrated the regulatory role of 
single nucleotide polymorphisms (SNPs) on the splicing patterns 
of mRNA precursors. These SNPs have been termed splicing 
quantitative trait loci (sQTL). One of the critical steps in study-
ing the mechanisms and regulation of alternative splicing is the 
identification of these loci, which previously has been achieved 
via high-throughput technologies such as microarrays. Using 
samples from lymphoblastoid B cell lines, brain, or peripheral 
blood mononuclear cell,11–14 several studies have demonstrated 
the functional importance of alternative splicing in a variety of 
normal and diseased tissues in human. Interestingly, this body 
of work has also collectively suggested that cis-acting sQTLs are 
prevalent while trans-acting sQTLs are less common. Recently, 
RNA sequencing (RNA-Seq), a high-throughput sequencing-
based approach, has also been employed to study sQTLs.15–17 
Because of the improved accuracy of RNA-Seq in gene expres-
sion quantification over microarrays and its ability to measure 
isoform-specific gene expression, it has become an increasingly 
popular approach for studying alternative splicing.

Analysis of sQTLs using RNA-Seq is challenging because 
the characterization of alternative splicing relies on isoform-
specific gene expression, which has to be estimated statistically. 
To date, only a few methods have been developed to identify 
sQTLs from RNA-Seq data. One simple approach is to per-
form linear regression in which the percentage of exon read 
counts over total gene read counts is treated as the quantita-
tive trait, and the SNP genotype is treated as the independent 
variable.15 However, this model fails to account for the vari-
ability in RNA-Seq read counts and hence can lead to false 
positive results. Recently, Zhao et al developed GLiMMPS, a 
generalized linear mixed effects model approach that takes into 
account the variation of exon-specific read coverage as well as 
the overdispersion of read counts.18 Although GLiMMPS has 
shown significant improvement over simple linear regression, 
this method has several shortcomings. First, by considering 
only splice junction reads, GLiMMPS ignores reads that align 
to the body of alternative exon and those that align to flank-
ing constitutive exons. Previous studies have shown that both 
types of reads are informative for alternative splicing infer-
ence.19 Second, GLiMMPS cannot be extended to integrate 

the paired-end nature of RNA-Seq data. Third, GLiMPPS 
treats the estimated exon-inclusion level as a random effect, 
while a more desirable and mathematically accurate approach 
is to explicitly model the variance associated with the exon-
inclusion level estimation. Fourth, GLiMPPS relies on the 
assumption that RNA-Seq reads are uniformly distributed 
along transcripts. Various studies have shown that RNA-Seq 
reads are rarely uniformly distributed, and the ignorance of this 
phenomenon can lead to biased estimates of isoform-specific 
gene expression.20

An ideal method for sQTL analysis should be able to 
directly model the variation of exon-inclusion level esti-
mates between samples, utilize extra information embedded 
in paired-end RNA-Seq data, and adjust for non-uniform 
read distribution. In this study, we evaluated three statistical 
methods, including random effects meta-regression, beta 
regression, and generalized linear mixed effects model, for 
the analysis of sQTLs. All the three methods used exon-
inclusion level estimated by the PennSeq algorithm as input.20 
PennSeq is a recently developed statistical method that uti-
lizes paired-end reads and allows for non-uniform read dis-
tribution. Using both simulated and real RNA-Seq datasets, 
we demonstrated that the best performing method is the ran-
dom effects meta-regression approach, which shows low false 
discovery rates (FDRs) but higher power when compared to 
GLiMMPS.

Materials and Methods
estimation of exon-inclusion level. One vital step in sQTL 

analysis is to estimate exon-inclusion level, which is defined as the 
proportion of mRNAs that originates from the exon-inclusion 
isoform, ie, the longer isoform including the exon that is other-
wise skipped, among all transcripts from the same gene. The esti-
mated exon-inclusion level is often treated as a quantitative trait 
and used in a regression framework to identify sQTLs. GLiM-
MPS only uses junction reads mapped to splice junctions and 
estimates the exon-inclusion level as the fraction of the number 
of inclusion splice junction reads to the total number of junction 
reads. However, as shown in Figure 1A, reads aligning to the 
alternative exon body and those that align to the flanking consti-
tutive exons are also informative for exon-inclusion level estima-
tion, because higher expression of the exon-inclusion isoform will 
increase the density of reads in the alternative exon relative to the 
flanking constitutive exons.19 To utilize all available information, 
we chose to use PennSeq,20 a recently developed non-parametric-
based approach, to estimate exon-inclusion level. The PennSeq 
algorithm considers all mapped reads in a given exon-trio, which 
is composed of the alternative exon and the flanking constitu-
tive exons. Additionally, PennSeq takes into account the paired-
end nature of the data and allows the exon-inclusion isoform and 
the exon-exclusion isoform to have their own non-uniform read 
distributions. The exon-inclusion level is then estimated as the 
relative expression of the exon-inclusion isoform over the total 
expression of the two isoforms.
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Random effects meta-regression for analysis of sQtls. 
The goal of random effects meta-regression is to synthesize 
results from multiple studies, accounting for variability in 
the effect estimates across studies by explicitly allowing for 
different sources of variability: within- and between-study 
variation.21 This parallels perfectly with sQTL analysis in 
that within-study variation represents the variance introduced 
in exon-inclusion level estimation and between-study varia-
tion represents the variation in exon-inclusion levels across 
samples. This analogy motivated us to explore random effects 
meta-regression as a means to identify sQTLs.

Let Yi denote the estimated exon-inclusion level of an 
exon-trio for subject i (i = 1,…,n), and σ0i denotes the standard 
error of the estimated exon-inclusion level. Both Yi and σ0i 
can be obtained from programs that estimate isoform-specific 
gene expression (eg, PennSeq20 or Cufflinks22). The SNP 
genotype is denoted by Gi, which takes values of 0, 1, and 2, 
counting the number of minor alleles. To fit the data using 
random effects meta-regression, the exon-inclusion levels are 
transformed using the logit function so that their distribution 
is approximately normal. We approximate the standard error 
of logit(Yi) using the delta method:
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With the above notation, the random effects meta- 
regression model (Fig. 1B) can be expressed as:

 logit( )Y G u ei i i i= + + +β β0 1 ,

where ui represents the estimation uncertainty of logit(Yi), 
and ei is the random error due to the remaining differences 
between exon-inclusion levels across samples. For this random 
effects model, we assume: (1) 2

10~ ( , ),i iu N σ  (2) 20~ ( , ),i ee N σ  
(3) ui and ei are uncorrelated, ie, Cov(ui, ei) = 0, and (4) the 
n observations are independent. If the variance of ui is set to 
zero, ie, there is no estimation uncertainty of exon-inclusion 
level, then this random effects model reduces to the standard 
linear regression model. To test the null hypothesis of no asso-
ciation between the SNP genotype and the exon-inclusion 
level, ie, H0:β1 0, a Wald test is performed. We can carry out 
statistical inference using standard statistical software, such 
as R (http://www.r-project.org) or Stata (Stata Corp, College 
Station, TX). In our analysis, we used the metafor package 
in R.21

Beta regression for analysis of sQtls. Since exon- 
inclusion level takes values between 0 and 1, it is natural to 
assume that it follows a beta distribution. With this assump-
tion, we can identify sQTLs using beta regression.23 In con-
trast to the random effects meta-regression, which requires 
logit transformation on the exon-inclusion estimates, beta 

Figure 1. (A) An exon-trio is composed of two flanking constituitive exons and an alternatively spliced exon. RNA-Seq reads aligning to the body of the 
alternatively spliced exon or to splice junctions involving this exon support the inclusive isoform, whereas reads joining the two constitutive exons support 
the exclusive isoform.19 GLimmPs uses splice-junction reads only, but does not use reads mapping to the alternative exon body and those mapping to 
the flanking constitutive exon body. In contrast, PennSeq uses all available reads in the exon-trio. (B) Psmeta: random effects meta-regression. Yi is the 
estimated exon-inclusion level from Pennseq for subject i. Gi is the snP genotype for subject i. ui represents the estimation uncertainty of logit(Yi), and 
ei is the random error due to the remaining differences between exon-inclusion levels across samples. (C) PsBeta: beta regression, where µi is the mean 
parameter for subject i, and φ is the dispersion parameter. (D) PsGLmm: generalized linear mixed effects model. Ri is the total number of reads mapped 
to the exon-trio in subject i. Mi is the number of reads originating from the exon-inclusion isoform for subject i.
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regression can model the exon-inclusion level directly, pro-
ducing results that are readily interpretable. The beta regres-
sion model is based on an alternative parameterization of the 
beta distribution in terms of a mean parameter µ and a preci-
sion parameter ϕ. We assume Yi, the exon-inclusion level for 
subject i, follows a beta distribution, Β(mi, ϕ), where E(Yi) = mi 
and Var(Yi) = mi (1 – mi)/(1 + ϕ). The beta regression model 
(Fig. 1C) can be expressed as:

 logit( ) .µ β βi iG= +0 1

We can perform beta regression using the betareg package 
in R, and test H0:β1 = 0 using a Wald test. Since the variance 
of Yi is a function of mi, the beta regression model can natu-
rally account for heteroscedasticity of exon-inclusion levels.

generalized linear mixed effects model for analysis 
of sQtls. GLiMMPS is based on generalized linear mixed 
effects model in which the dependent variable is the exon-
inclusion level, estimated exclusively from reads spanning 
splice junctions, which only represent part of the information 
on alternative splicing embedded in RNA-Seq data. There-
fore, it is expected that using estimates from PennSeq, which 
incorporates other alternative splicing informative reads omit-
ted by GLiMMPS, would yield higher power. To fit the gen-
eralized linear mixed effects model, we first calculate the total 
number of reads mapped to a given exon-trio, denoted by Ri, 
and then estimate the number of reads originating from the 
exon-inclusion isoform by Mi = Ri× Yi, where Yi is the exon-
inclusion level obtained from PennSeq. With Mi, Ri, and Gi, 
we can directly fit the data using the generalized linear mixed 
effects model (Fig. 1D), which can be written as:

 logit ( )E Y G ei i i[ ] = + +β β0 1 ,

where ei ∼ N(0,τ2). Same as GLiMMPS, we carry out the 
analysis using the lme4 package in R.

RNA-seq data simulation. To evaluate the perfor-
mance of the aforementioned methods in sQTL identifica-
tion, we conducted simulation studies and compared their 
empirical power to that of GLiMMPS. Flux Simulator was 
used to simulate a series of paired-end RNA-Seq experi-
ments in silico.24 The human genome sequence (hg19, NCBI 
build 37) was downloaded from UCSC Genome Browser 
together with the coordinates of all isoforms in the RefGene 
table. We selected genes with at least three exons and two 
isoforms, and further required that the selected genes do 
not overlap with each other. For each selected gene, we kept 
the longest isoform and generated a shorter isoform by ran-
domly removing an interior exon from the longest isoform, 
resulting in 4,710 exon-trios in the final list. We simulated 
SNP genotype data following Hardy–Weinberg equilibrium 
and assumed a SNP minor allele frequency (MAF) of 0.4. 
The exon-inclusion level was determined by the formula, Yi 
= logit−1(−0.35 + β1Gi + ei) where ei ∼ N(0, 0.052). For each 

exon-trio, Yi was used to calculate the number of molecules 
for the exon-inclusion isoform and the exon-exclusion iso-
form. We then simulated data with 50% of the exon-trios 
having sQTLs in which β1 was set to log(1.2), and the 
remaining 50% having no sQTLs in which β1 was set to 
zero. Based on the total number of RNA molecules, the Flux 
Simulator assigns an abundance value for each isoform fol-
lowing a mixed power/exponential law. Additionally, the 
Flux Simulator simulates common sources of systematic bias 
in the abundance and distribution of reads by in silico library 
preparation and sequencing. We simulated 120 individuals 
with 10 million 76 bp paired-end reads per individual. For 
each simulated dataset, the RNA-Seq reads were mapped 
to the human reference genome using Tophat,25 and exon-
inclusion levels were estimated using PennSeq.

RNA-seq datasets and genotype data. We downloaded 
the RNA-Seq data produced by Lappalainen et al.17 This dataset 
includes 91 lymphoblastoid B cell lines from the CEPH (CEU) 
population in the HapMap project. Each sample has approxi-
mately 10 million 75 bp paired-end reads, which were already 
mapped to the reference human genome (hg19, NCBI build 37) 
using the JIP pipeline. We downloaded the Phase 1 genotype data 
for 79 CEU samples generated by the 1000 Genomes Project.26 
The number of subjects who had both RNA-Seq and DNA geno-
type data is 78. To search for sQTLs, we identified all exon-trios 
in autosomal chromosomes and restricted analysis to cis-sQTLs, 
because various studies have shown that trans-sQTLs are less 
common.15,17 Specifically, for each exon-trio, we restricted our 
analysis to SNPs within 200 kb on each side of the trio. For qual-
ity control purpose, we removed SNPs with Hardy–Weinberg  
P value , 0.0001 and genotype missingness .5%. Because of 
the small sample size of the available data, we also removed 
SNPs with MAF ,0.2. Multiple testing adjustment was per-
formed with the Benjamini–Hochberg algorithm and an SNP 
was declared to be an sQTL if the FDR-adjusted P value was 
less than 0.05.

Results
comparison of exon-inclusion level estimation. First, 

we compared the exon-inclusion levels estimated by GLiM-
MPS and PennSeq based on simulated data. Because of the 
narrow range of the exon-inclusion levels under the null model, 
we focused on those exon-trios from the alternative model in 
which the exon-inclusion level was influenced by an sQTL. 
For each of the 120 simulated individuals, we calculated the 
Pearson correlation coefficient between the estimated and the 
true values of the exon-inclusion levels. As expected, PennSeq 
yielded more accurate estimate than GLiMMPS. Among the 
120 individuals, 102 (85%) had higher correlation coefficients 
in PennSeq than in GLiMMPS. The improvement in accuracy 
was also reflected in the root mean squared error, calculated  

as ( )2ˆ ,Y Y m−∑  where m is the total number of exon-trios  

and the summation was taken over all exon-trios. The mean  

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Analysis of splicing QTLs

49CanCer InformatICs 2015:14(s1)

for root mean squared error of GLiMMPS was 0.16, 
whereas the mean for PennSeq was 0.13, which is sig-
nificantly smaller than GLiMMPS (two-sample t-test  
P value , 2.2 × 10–16).

comparison of FdR and power. Next, we compared 
the FDR of random effects meta-regression (denoted by 
PSMeta), beta regression (denoted by PSBeta), generalized 
linear mixed effects model with PennSeq estimates (denoted 
by PSGLMM), and GLiMPPS. We analyzed all 120 simu-
lated individuals for sQTLs. To evaluate the impact of sample 
size, we generated samples of reduced sample size by randomly 
picking 60 and 90 individuals out of the 120. All evaluated 
methods had FDRs well below the 5% nominal level for all 
sample sizes we considered (Fig. 2A). However, GLiMMPS 
appeared to be overly conservative compared to the other 
methods. Its estimated FDR was generally below 1%, which 
was several times smaller than the expected 5%.

Our main interest was to compare the power of various 
types of regressions with GLiMMPS. Unsurprisingly, due 
to its conservativeness, GLiMMPS had the lowest power 
among all models we evaluated (Fig. 2B). For example, when 
the sample size was 60, the power of GLiMMPS was 54%, 
whereas the powers of PSMeta, PSBeta, and PSGLM were 
all above 60%, which represent 12–15% improvement over 
GLiMMPS. The loss of power for GLiMMPS became less 

pronounced when sample size gets larger. When the sample 
size was 90, the power improvement of the other methods over 
GLiMMPS was around 7–8%, and when the sample size was 
120, the power improvement was approximately 5–6%.

impact of non-uniform read distribution. The assump-
tion of uniform read distribution is one of the significant 
limitations of GLiMMPS. In order to appraise the real-life 
applicability of a method, understanding the impact of sequenc-
ing coverage non-uniformity on its performance is a critical 
step. In the GLiMMPS publication, Zhao et al informally 
evaluated the impact by introducing a random scaling factor in 
junction read counts.18 However, read count is a simple sum-
mary of the original RNA-Seq data and is unlikely to capture 
all of the variations in non-uniformity present in raw reads. 
Using raw RNA-Seq data generated by the Flux Simulator, 
we can directly evaluate the impact of non-uniformity on the 
power of the various approaches. To quantify the degree of 
non-uniformity, we extracted the fraction of coverage, defined 
as the fraction of the transcript that is covered by reads, from 
the output of the Flux Simulator.

Based on this measure, we calculated the mean frac-
tion of coverage across all samples and focused on those 
transcripts with mean coverage less than 1/3. A large frac-
tion of the transcript body of these genes was not covered, 
which would lead to severe non-uniform read distribution. 
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Figure 3A shows that the FDRs of PSMeta and GLiMMPS 
were under control, but PSBeta and PSGLMM had slightly 
inflated FDRs when sample size was 90 or 120. The power 
of all methods dropped substantially (Fig. 3B), especially for 
GLiMMPS. Compared to the power obtained from all sim-
ulated exon-trios, the loss of power for PSMeta, PSBeta, and 
PSGLMM was between 34 and 38%, whereas the power loss 
was 44% for GLiMMPS. Moreover, the power improvement 
of the other three methods over GLiMMPS was also more 
pronounced, especially when sample size was small. With 
60 subjects, the power improvement of PSMeta over GLiM-
MPS was 23%, which is twice of the power improvement 
when all exon-trios were considered. These results suggest 
that when non-uniformity is a concern, using exon-inclusion 
levels obtained from junction reads alone can lead to sub-
stantial loss of power.

Application to the real RNA-seq dataset on ceu 
samples. To further assess the performance of different 
methods, we analyzed a real human RNA-Seq dataset on CEU 
lymphoblastoid cell line samples. We carried out sQTL analysis 
for common SNPs (MAF .0.2) within 200 kb from alterna-
tively spliced exons because previous studies have suggested that 
sQTLs are often near the target exons.12,15 To get reliable results, 
we only focused on those exon-trios in which the number of 

mapped reads is greater than 10 in all 78 subjects. Eventually, we 
were left with 3,694 exon-trios (in 2,070 genes), 640,105 SNPs, 
and 1,590,722 exon-trio-SNP pairs in the final comparison.

We found that the two generalized linear mixed effects 
model based approaches, PSGLMM and GLiMMPS, failed 
to converge for a large number of exon-trio-SNP pairs. 
Among the 1,590,722 exon-trio-SNP pairs we considered, 
GLiMMPS failed to converge for 35.75% of the pairs and 
PSGLMM failed for 50.07%. In contrast, PSBeta failed to 
converge for 0.92% of the pairs, and PSMeta failed to con-
verge for only 1.75%. For the 549,095 pairs that failed in 
GLiMMPS, we observed an excess of P values less than 0.05 
for PSMeta (binomial test P value , 2.2 × 10−16) and PSBeta 
(binomial test P value , 2.2 × 10−16).

To characterize and compare the performance of these 
methods in greater detail, we generated quantile–quantile 
plots with the P values generated by each model (Fig. 4). We 
also examined the numbers of sQTL SNPs identified by each 
method. We did not consider PSBeta and PSGLM due to their 
tendency of generating false-positive results. By performing 
FDR adjustment of the nominal P values on exon-trio-SNP 
pairs that converged for both PSMeta and GLiMMPS at the 
5% level, PSMeta identified 7,845 significant pairs, involv-
ing 6,513 unique sQTL SNPs for 361 exon-trios located in 
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Table 1. Comparison of the numbers of sQTL SNPs identified by PSMeta and GLiMMPS based on the CEU RNA-Seq dataset. Displayed are the 
numbers of exon-trio-SNP pairs, exon-trios, and genes that contain a significant sQTL SNP.

CoMPARISoN METHoD ExoN-TRIo-SNP PAIRS UNIQUE sQTL SNPs ExoN-TRIoS gENES

Converged for both methods Psmeta 7,845 6,513 361 286

GLimmPs 7,392 6,233 271 215

Converged for each individual method Psmeta 22,150 16,757 624 447

GLimmPs 7,409 6,251 272 216
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Figure 4. Comparison of quantile–quantile plots based on the CEU RNA-Seq data. Displayed are valid results from each method, ie, those exon-trio-SNP 
pairs that failed to converge were eliminated.

286 genes, whereas GLiMMPS identified 7,392 significant 
pairs, involving 6,233 unique sQTL SNPs for 271 exon-trios in 
215 genes (Table 1). The number of sQTL SNPs that overlapped 
between PSMeta and GLiMMPS was 4,244. The number of 
sQTL SNPs that were identified by PSMeta but were missed 
by GLiMMPS was 2,269, whereas the number of sQTL SNPs 
that were identified by GLiMMPS but were missed by PSMeta 
was only 1,989. Figure 5 shows four randomly selected pairs 
that were identified by PSMeta but were missed by GLiM-
MPS. Consistent with our observations in simulated data, the 
estimated exon-inclusion levels from GLiMMPS showed less 
variation than estimates obtained from PennSeq, which could 
contribute the loss of power for GLiMMPS.

Next, we compared the performance of PSMeta and 
GLiMMPS independently by conducting FDR adjustment 
on exon-trio-SNP pairs that converged for each individual 
method. Since PSMeta converged for a significantly larger 
proportion of the pairs, we detected notably more sQTL 
SNPs in PSMeta as compared to GLiMMPS: 22,150 
exon-trio-SNP pairs, containing 16,757 sQTL SNPs for 
624 exon-trios in 447 genes for PSMeta, but only 7,409 
exon-trio-SNP pairs, involving 6,251 sQTL SNPs for 272 
exon-trios in 216 genes for GLiMMPS (Table 1). This result 
suggests that due to its intrinsic computational advantage, 
PSMeta greatly outperformed GLiMMPS in genome-wide 
search for sQTL SNPs.
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discussion
The advent of RNA-Seq has equipped us with a powerful tool 
to systematically search for sQTLs that regulate the pattern of 
alternative splicing. In sQTL analysis using RNA-Seq data, it is 
important to account for exon-inclusion level estimation uncer-
tainty, directly model variation in the precision of exon-inclusion 
level estimates between samples, and allow for non-uniform read 
distribution along transcripts. In this study, we evaluated three 
statistical methods, including random effects meta-regression, 
beta regression, and generalized linear mixed effects model, for 
the analysis of sQTLs. In contrast to GLiMMPS, which uses 
junction reads only to quantify exon-inclusion levels, we used 
PennSeq,20 a statistical method that utilizes all available reads 
and allows for non-uniform read distribution. Using both simu-
lated and real RNA-Seq datasets, we demonstrated that PSMeta 
is the best performing method, and identified sQTLs at low 
FDRs but higher power when compared to GLiMMPS.

The main reason for power improvement of PSMeta 
over GLiMMPS is due to the efficient use of additional 
RNA-Seq read information in exon-inclusion level estima-
tion. Closer examination of the simulated data showed that 
the exon-inclusion levels using junction reads only were less 
well estimated as compared to PennSeq, which uses all avail-
able reads including those from flanking constitutive exons. 
Another reason is that GLiMMPS cannot explicitly model 
paired-end data structure, but PennSeq can effectively uti-
lize paired-end read information in its modeling. In paired-
end RNA-Seq data with tight distribution of insert size, 
reads mapped to flanking constitutive exons can provide 
useful information about the exon-inclusion level. By using 

the generalized linear mixed effects model with estimates 
obtained from PennSeq, we confirmed that the power loss of 
GLiMMPS was due to the use of less-accurate estimate of 
exon-inclusion levels.

We also examined the impact of non-uniformity on 
the performance of different methods. The power of all 
methods decreased for exon-trios that demonstrate severe 
non-uniformity. Among the four methods we evalu-
ated, PSGLMM and PSBeta had slightly inflated FDRs. 
The FDRs of both PSMeta and GLiMMPS were under 
control, but PSMeta had greater power. Overall, PSMeta 
appeared to be the most reliable yet powerful method for 
sQTL analysis.

In this study, we only focused on exon-skipping events, 
but the framework we presented can be easily generalized to 
examine other types of alternative splicing, including intron 
retention, alternative 5′ splice site, alternative 3′ splice site, 
and mutually exclusive exons. For example, for alternative 
splicing events that involve alternative 5′ splice site, we can 
treat the relative abundance of the isoform with alternative 
5′ splice site as the quantitative trait in random effects meta-
regression. Analysis for events that involve intron retention, 
alternative 3′ splice site, and mutually exclusive exons can be 
performed in a similar fashion.

In our analysis, we estimated the exon-inclusion lev-
els first and then identified sQTLs using regression-based 
methods. This two-stage approach might be less powerful 
than identifying sQTLs using a one-stage approach, which 
avoids estimating exon-inclusion levels directly. We are cur-
rently pursuing extensions in this direction. Another possible 
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Figure 5. Illustrative examples of sQTL SNPs identified by PSMeta but were missed by GLiMMPS. The horizontal axis shows the genotype (represented 
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direction of future research is to consider the overall splicing 
pattern of a gene by simultaneously considering the relative 
abundances of all isoforms of the gene. This analysis will give 
a single test statistic for each gene instead of one statistic for 
each exon-trio. We expect this approach to have increased sta-
tistical power due to its reduced burden of multiple testing.

conclusions
In summary, we have evaluated three statistical methods for 
the analysis of sQTLs in RNA-Seq. As shown by both simu-
lations and the analysis of real data, the most robust method 
is PSMeta, a random effects meta-regression-based approach. 
An appealing feature of PSMeta is that it can be easily imple-
mented using existing software packages. Results from our 
study will be instructive for researchers in selecting the appro-
priate statistical methods for sQTL analysis.
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