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Introduction
Technological advances continue to increase both the ease 
and accuracy with which measurements of the genome and 
phenome can be obtained and, consequently, genomic-based 
studies of diseases such as cancer often involve highly diverse 
types of data collected on large groups of patients. The primary 
goals of such studies involve identifying genomic features use-
ful for characterizing patient subgroups as well as predicting 
patient-specific disease course and/or likelihood of response 
to treatment. Doing so requires computational methods that 
handle complex interactions, accommodate genetic heteroge-
neity, and allow for data integration across multiple sources.

A number of statistical methods are available for feature 
identification and prediction of a time-to-event phenotype 

such as overall survival or time to recurrence (for a review, 
see Chen et al.1, Li and Li,2 and Wei and Li3). Most often, 
classical models for a survival response are coupled with 
some dimension reduction methods for individual4–6 or 
grouped predictors,1,2,7,8 providing a concise representa-
tion of the genomic features affecting patient outcome. 
Although useful, the majority of these methods identify a 
set of covariates common to all patients and as a result may 
“distort what is observed” in the presence of heterogeneity.9 
Survival-supervised clustering approaches naturally accom-
modate heterogeneity, providing for efficient and effective 
identification of patient subgroups.10,11 However, these 
approaches do not identify salient features associated with 
subgroups and, as with the aforementioned methods, may 
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sacrifice power and accuracy by focusing on one (or a few) 
data set(s) in isolation.

Latent Dirichlet allocation (LDA)12 models are particu-
larly well tailored for accommodating heterogeneity, selecting 
features, and characterizing complex interactions in a high-
dimensional textual setting, but their application in genom-
ics has been limited. By far, the most common application 
concerns identifying groups of words that co-occur frequently 
(topics) across large collections of text (eg, a collection of arti-
cles or abstracts). The derived topics provide insights into the 
collections’ content overall as well as into the specific content 
within a document, and estimated document-specific distribu-
tions over topics are useful in classifying new documents.12–14

An extension allows for topic estimation to be supervised 
by a response that is suitably described by a generalized linear 
model.15 So-called supervised LDA (sLDA) debuted with a 
study of movie reviews (each considered a document) and esti-
mated topics (collections of co-occurring words in a review) 
that determined the number of stars (supervising response) a 
movie received. Derived topics included ones having highest 
weight on words such as “power”, “perfect”, “fascinating”, and 
“complex”; another with highest weight on “routine”, “awful”, 
“featuring”, “dry”; a third on “unfortunately”, “least”, “flat”, 
“dull”; and so on. The movie-review–specific distribution over 
topics proved useful in classifying movies. Those with highest 
weight on the “power” topic generally had a high number of 
stars while those with highest weight on the “unfortunately” 
topic had a low number; those with weight on the “routine” 
topic most often ended up in the middle. Differences between 
the distributions also provided insights into differences 
between movies that received a similar number of stars.

Our interest here is not in evaluating movies. However, it 
is important to note that the questions addressed in Blei and 
McAuliffe15 are identical in structure to the most important 
questions we face in cancer genomics. In the former, questions 
include: “Given reviews and ratings for a group of movies, 
can we identify collections of words (topics) that discriminate 
movie reviews? Can each movie be described by a distribu-
tion over those topics? Can distributions over topics provide 
insights into differences between similarly rated movies? And 
can a movie-specific distribution over topics be used to predict 
what the rating of a new movie will be?” In cancer genomics, 
the questions include: “Given genomic, clinical, and survival 
information on a group of patients, can we identify collec-
tions of genomic and clinical features (topics) that define and 
discriminate among patient subgroups? Can a patient be well 
described by a distribution over those topics? Can distribu-
tions over topics provide insights into the genomic differences 
between two patients with similar survival? And can a patient-
specific distribution over topics be used to predict survival of 
a new patient?”

To address these types of questions, we extend LDA for 
use in a clinical and genomic setting. Specifically, survival-
supervised LDA (survLDA) is developed in the second section 

to facilitate topic supervision by a time-to-event response 
with censoring. Unlike in the textual domains of Blei et al.12,  
Porteous et al.13, and Biro et al.14, the definition of a document 
is not obvious in this setting. The Methods section details the 
construction of documents, one for each patient, where words 
describe clinical events, treatment protocols, and genomic 
information from multiple sources. As we show in the Appli-
cation of survLDA to the TCGA data section, application 
of survLDA to this collection of documents provides for the 
identification of topics useful in characterizing patient sub-
populations as well as individual patients in a study of ovar-
ian cancer conducted as part of The Cancer Genome Atlas 
(TCGA) project.16 Classification of new patients is consid-
ered in the third section, and we conclude with the Discus-
sion section.

Methods
The LdA model. We briefly review the LDA model as 

detailed in Blei et al.12 Assume there are D documents indexed 
by i = 1,..., D, each of which consists of Ni words. The vocabu-
lary is the unique set of length V indexed by v = 1,…, V, from 
which the documents’ words arise and is usually taken to be the 
union of all words over documents. Further, assume that there 
are K latent “topics” indexed by k = 1,…, K, that govern the 
assignment of words to documents. Each topic corresponds to 
a discrete distribution over the V words in the vocabulary, with 
parameters given by the V-vector τk. Likewise, each document 
is assumed to be a mixture over the K topics with mixing coef-
ficients θi (a K-vector parameter), indicating the proportion of 
words sampled from each topic.

For a given document i, Ni words arise from the follow-
ing generative process, given the system-wide hyperpara-
meters α (a K-vector Dirichlet parameter) and the τ1:k (the 
topic V-vectors):

1. Draw topic proportions θi ∼ Dirichlet(α).
2. For each of the Ni words, indexed by j:

a. Draw a topic assignment Zij|θi ∼ Multinomial(1,θi), 
where Zij ∈ {1, …, K}.

b. Draw a word Wij|Zij, τ1:k ∼ Multinomial (1,τZij), 
where Wij ∈ {1, …, V}.

With this model in place, a variational expectation- 
maximization (EM) algorithm may be used to estimate the 
joint posterior distribution of θi and Zi Ni, :1 , given wi Ni, :1 , α, 
and τ1:k for each document i (expectation step [E-step]) and 
then to estimate the system-wide hyperparameters α and 
τ1:k (maxi mization step [M-step]). Upon convergence, the 
variational EM yields optimal values for the key quantities 
of interest, namely posterior estimates of the topics (τ1:k) and 
document-specific distributions over topics (θ1:d). An exten-
sion of LDA by Blei and McAuliffe in 2008 allows for topic 
estimation to be supervised by a response that is suitably 
described by a genera lized linear model. When time-to-event 
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responses such as survival times are of interest, sLDA is not 
directly applicable since it does not accommodate censoring.

The survLdA model. The survLDA model assumes the 
same setup as in Section 2, but allows for topics to be supervised 
by a time-to-event outcome. For document i, the survival out-
come is denoted by Ti; an indicator variable for death/censoring 
is also observed for each document, denoted by δi. The survival 
response 0| , ,i iT Z hβ  is described by a Cox proportional haz-
ards model17 with hazard function 0( | ) ( )ih t Z h t=  exp{ },′β Zi  
where Zi is a K-vector with components #{ } / .ik ij iZ Z k N= =  
In this Cox proportional hazards model, each regression 
coefficient βk exhibits the beneficent (negative) or deleterious 
(positive) effect of topic k on survival. We use a Weibull model 
for h0, noting that alternative specifications (eg, nonparamet-
ric)18 may be used. The system-wide model parameters for the 
survLDA model include a K-vector Dirichlet parameter α and 
the topic V-vectors τ1:k, just as in the LDA model described 
above. Specific to survLDA are survival response parameters 
β (a K-vector of regression coefficients) and h0(⋅) (the baseline 
hazard). As in LDA, a variational EM algorithm is used to 
estimate the joint posterior distribution of θi and Zi Ni, :1  given 
wi Ni, :1 , Ti, δi, α, τ1:k, β, and h0 for each document i (E-step) 
and then to estimate the system-wide hyperparameters α, τ1:K, 
β, and h0 (M-step). The derivation is given in the Appendix.

document construction in the tcGA cohort. Unlike 
in the textual domains of Blei et al.12, Porteous et al.13, and 
Biro et al.14 or in the movie review example described above, 
the definition of document is not obvious in this setting. To 
push the review analogy a bit further, whereas a movie review 
describes what is going on in a movie and provides an opinion 
on how the events were conveyed overall, we imagine patient 
reviews that describe what is going on in a patient with respect 
to genomic and clinical features. The analogy breaks down 
there, as the patient review does not contain an opinion on 
whether the features are positive or negative overall. Rather, 
the survLDA model is used to identify important features and 
estimate how these features relate to patient outcome as sum-
marized by a time-to-event phenotype such as survival.

We use data from the TCGA ovarian project to construct 
patient-specific reviews or documents that summarize clinical 
and genomic features. For each of 511 patients in the TCGA 
ovarian cohort, clinical information such as age at diagnosis, 
date of surgery, surgical outcome, adjuvant therapies, time to 
recurrence, treatment at recurrence, overall survival, and doz-
ens of other variables are available. Also available are high-
throughput measurements of gene expression, methylation, 
single-nucleotide polymorphism (SNP)/copy number varia-
tion (CNV)s, and microRNAs.

For document construction, we use words associated with 
drugs, gene expression, and methylation, noting that other 
data sources could be integrated in a similar way. Specifically, 
the vocabulary (the union of words across all documents) 
includes words associated with commonly administered drugs 
(platinum, taxol, doxorubicin, topotecan, and gemcitabine) as 

well as words derived from potentially relevant genes. For gene 
words, we consider the 991 genes from the 12 cancer-related 
pathways defined in Jones et al.19, since studies suggest that the 
vast majority of cancer-causing mutations lie in genes within 
these pathways. We also include the 5000 genes having mRNA 
expression that is most correlated with overall survival in the 
TCGA cohort as well as the 5000 having methylation that is 
most correlated. Given the considerable overlap between these 
lists, the two combined give 7452 unique genes for a total of 
7897 genes from which words are derived.

Ideally, a patient’s document will provide a comprehensive 
description of his/her clinical and genomic state. Toward this 
end, a patient’s document received a drug word for each drug 
the patient received and a gene word for gene ‘X’ if the patient 
showed aberrant expression for that gene. To determine the 
direction of aberrant expression, we considered the associa-
tion between gene expression and survival time. If increased 
expression was associated with decreased survival time for 
gene X, then any patient with expression in the uppermost 
10th percentile for that gene received a gene word. Similarly, 
if decreased expression was associated with decreased survival 
time, then any patient with expression in the lowest 10th per-
centile received a gene word. The same procedure was applied 
to methylation data. Once all documents were constructed, 
the term-frequency inverse-document frequency (tf – idf ) 
statistic was applied to identify words with discriminating 
power, as is commonly done in LDA applications.20 Term-
frequency, tf(t,d), is the normalized frequency of a word t in 

a document d: specifically, tf t d
f t d

f w d w d
( , )

( , )
max( ( , ) : )

=
∈

 

where f(t,d) is the frequency of the term t in document d, and 
max f(w,d): w ∈ d is the maximum frequency over all terms 
in the document. The inverse-document frequency is given 

by | |( , ) log
| : |

Didf t D
d D t d

=
∈ ∈

 where |D| is the number of 

documents in the corpus and |d ∈ D: t ∈ d| is the number of 
documents in the corpus for which t appears. The idf of a rare 
term is high, whereas the idf of a common term is low. The tf 
– idf statistic tf – idf(t,d,D) = tf(t,d) * idf(t,D) combines these 
two measures21 and is used here to identify terms that are rela-
tively rare across documents (ie, discriminating), but relatively 
common within some sub-collection of documents.

To provide further detail, if a word shows up exactly the 
same number of times across all the documents (eg, the word 
“the” shows up 10 times in each of all the documents we have), 
then the tf – idf value of this word in every document will be 
0 since idf will be zero (since the document frequency is the 
proportion of documents that contain this word [in this exam-
ple, 1] and idf is log of the inverse-document frequency [here, 
0]). On the other hand, a word’s tf – idf value in a document 
will be higher if it shows up in some documents but not oth-
ers. For example, if we have a word that appears in 10% of the 
documents, then tf – idf is 2.3 (assuming documents of equal 
length since then tf is 1 and idf is log(10)). In a TCGA cohort, 
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words with tf – idf $0.25 were retained in the final collection 
of documents following the study by Horacek et al (2010).22

Prediction. Given a new patient with clinical and genomic 
data, it may be of interest to construct a document w1:n and use 
it to predict survival. With a fitted model {α,τ1:K}, the poste-
rior mean 1 1: :|new N KZ Z w α τ= , ,  can be obtained in order to 
estimate from which topics this new patient draws words and 
in what proportions. As was the case during model fitting, this 
posterior must be approximated via variational inference. We 
do so by following the same procedure as outlined in the first 
subsection of the Appendix, except that all survival-related 
terms in the evidence lower bound are dropped; see the Pre-
diction section in the Appendix for details.

Given Znew  measures related to topic membership can be 
predicted for the new patient. This may be done qualitatively 
(eg, “This patient is predicted to belong strongly to the first 
topic and survival for that topic is poor, hence her prognosis 
is bad.”) or quantitatively (eg, predicting median survival time 
using the parametric survival model).

Application of survLdA to the tcGA data
Given documents constructed as described above for each 
of the 511 women are considered, we applied survLDA. The 
supervising outcome of interest is all-cause mortality; and in all 
analyses, we used K = 7 topics, the last being the background 
topic. Application of survLDA provides two quantities of pri-
mary interest. The topics τ1:k or estimated distributions over 
words identify clinical and genomic features that co-occur fre-
quently in some groups of patients, but less frequently in oth-
ers; and the document-specific distributions over topics θ1:D 
characterize individual patients by specifying the proportions 
of their features coming from each topic. Of interest is deter-
mining the salient features in patient-specific documents that 
are represented by these topics and ultimately how the topics 
relate to overall survival.

results
The left panel of Figure 1 shows a heat map with patients 
(columns) clustered according to topic membership for the six 
nonbackground topics (rows). The proportion of a patient’s 
document words coming from a topic ranges from near 0 
(almost no words, deep blue) to near 1 (virtually all words, red). 
As shown, most patient documents have the majority of words 
coming from a single topic, while some are best described by 
mixtures over topics. To see how differences among topics 
translates to differences in overall survival, the right panel 
of Figure 1 shows Kaplan–Meier curves for TCGA patients 
grouped by topic membership. Specifically, each patient is 
assigned to the topic having the highest weight in her docu-
ment, as estimated by θ1:d. Patients with documents having 
highest weight on topic 1, for example, show dramatically 
reduced survival (44% at 1.5 years), whereas patient docu-
ments best described by topic 2 show average survival (76% at 
1.5 years). A closer look at the words underlying these topics 
provides some insight into the differences and identifies fea-
tures that may be worthy of further investigation.

The left panel of Figure 2 presents the topic-specific distri-
butions over words for each topic. Red (blue) indicates an over-
abundance (dearth) of a word’s weight in the corpus belonging 
to a particular topic. The right panel of Figure 2 shows a close-
up view, highlighting 40 high-weight words that in part dif-
ferentiate topics 1 and 2. A number of the results observed are 
consistent with prior studies. For example, CD163 expression 
levels have recently been shown to be prognostic of outcome 
in ovarian cancer patients, with higher expression associ-
ated with poor outcome.23,24 This is consistent with what we 
observe, with an abundance of CD163 words in the poor out-
come (topic 1) group. Similarly, increased expression of IGF2 
has also been associated with poor survival in ovarian cancer 
patients.25 Here we observe high methylation of IGF2AS 
(which is correlated with IGF2)26 in the poor outcome group, 
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figure 1. The left panel shows a heat map of the estimated patient-specific distributions over topics (θ) for each of 511 patients (the background topic is 
not shown). topics are given in the rows; patients are clustered along the columns. Colors range from deep blue (topic underrepresented in the patient’s 
document) to red (topic overrepresented). The right panel shows Kaplan–Meier survival curves for patients classified into one of the six nonbackground 
topics. each patient was assigned to the topic having highest weight in his/her document, as estimated by θ1:d.
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figure 2. the left panel shows a heat map of the topics derived from survLDa. topics are shown in the columns; words are clustered along the rows. 
the colors range from blue (word underrepresented in the topic) to red (word overrepresented), with white in the middle (average representation). 
to aid in interpretation, we add the risk direction and data source from which each word was derived. for example, CYP19A1 – mRNA indicates that 
underexpression of CYP19a1 is associated with increased risk and that CYP19a1 words were entered into a document for patients with underexpression 
of CYP19a1. as the heat map shows, there are many words that distinguish topics 1 and 2, having high weight in one topic but not the other. the insets 
highlight 40 such words; those having high weight in topic 1 (topic 2) are shown in the upper (lower) right.

which at first may seem to be a contradiction given that 
increased methylation often results in decreased expression. 
However, that is not the case for IGF2, where increased meth-
ylation correlates with increased expression.25

Other genes such as TRPC3, ALDH1A3, and FOXP1 
have been studied in other cancers; and our results suggest 
that these genes may play important roles in ovarian cancer 
as well. Underexpression of TRPC3 has been correlated with 
poor prognosis in lung cancer,27,28 as has hypermethylation 
of ALDH1A3 in bladder cancer.29 FOXP1 is a relatively 
well-known tumor suppressor gene with increased expres-
sion associated with improved outcomes among breast cancer 
patients.30 As in these studies, we observe TRPC3 underex-
pression and ALDH1A3 hypermethylation in our poor prog-
nosis group and increased FOXP1 expression in patients with 
longer survival.

It is interesting to note that with the exception of CD163, 
these genes would not likely have been identified in this cohort 
using other approaches, as the marginal P-values from a Cox 
proportional hazards test are far from overwhelming (CD163 
P = 0.013, IGF2AS P = 0.631, ALDH1A3 P = 0.951; FOXP1 
P = 0.188; TRPC3 P = 0.282), indicating that although there 

are differences in the expression and/or methylation of these 
genes between patients primarily described by topics 1 and 
2, those differences are obscured by heterogeneity in the full 
cohort. Although further investigation of these and other 
genes that display markedly different abundance patterns 
between patient subtypes might improve our understanding of 
the mechanisms that underlie differences between the groups, 
we note that a main advantage of LDA models in general and 
survLDA in particular is that topics describe co-occurrence of 
groups of words, not just occurrence of high-frequency words. 
The left panel of Figure 3 is a co-occurrence heat map show-
ing the percentage of topic 1 patients having a given pair of 
words in their document. It is clear that the majority of topic 1 
patients show high co-occurrence of topic 1 words and low co-
occurrence of topic 2 words. The same holds true of patients 
best described by topic 2 words (right panel). Consequently, 
characterization of patient subtypes by these collections of 
genes taken together may prove to be more informative than 
characterization by individual genes. To further investigate 
whether these gene groups are meaningful, in the following 
section we evaluate their prognostic utility in independent 
patient populations.
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Prediction on independent data sets. To evaluate 
survLDA for patient-specific prediction, we consider two inde-
pendent data sets. Specifically, we consider 240 patients from 
the study by Tothill et al.31, conducted in Australia consisting 
of patients with ovarian, tubal, and peritonial cancers; we also 
consider 260 patients from the study by Yoshihara et al.32 con-
ducted in Japan. These independent populations are referred 
to hereinafter as the validation patients. Although the TCGA 
data we have used is restricted to patients with stage III or 
IV serous ovarian adenocarcinomas, these independent studies 
are more heterogeneous and thus present a more challenging 
(and realistic) validation data set. Documents for the valida-
tion patients were derived as described in Section 2 with the 
quantile thresholds taken from the training set (TCGA) data. 
Identifying thresholds in the training data allows us to con-
struct documents for validation patients one at a time, as would 
be required in any setting where patient-specific prediction was 
of interest. Drug and methylation words were not included as 
the validation data sets did not contain this information.

With documents in hand, the survLDA output was used 
to predict topic membership for patients in the validation set, 
using the prediction approach given in Section 2. The left panel 
of Figure 4 shows survival for patients best described by words 
from topics 1 and 2, the two topics discussed earlier. There 
is a significant difference between survival in the two groups 
(P = 0.037). As in the training set, those patients predicted to 
belong to topic 2 have better survival, on average, than those 
patients predicted to belong to topic 1. Although statistically 
significant, the difference in the survival curves is attenuated 
relative to that observed in the training set (73% vs. 93% at 
1.5 years in the validation set; 44% vs. 76% in the training set). 

Of course, some decrease in performance is expected as one 
moves to an independent validation set. Here we also lose some 
predictive ability as the validation set does not contain infor-
mation about methylation or treatment, and so our predictor 
was built using a single data source (expression). Nevertheless, 
the ability to recover at least some information regarding out-
come suggests that the topics are biologically relevant.

discussion
A problem pervasive in genomic-based studies of disease 
concerns taking large, diverse data sets collected on a cohort 

figure 3. Heat maps showing co-occurrence of the 40 high-weight topic 1 and topic 2 words shown in figure 2. the left heat map considers the  
25 patients having documents with highest weight on topic 1. shown are the percentages of those patients having both words in their document, ranging 
from 0 (blue) to 100% (red). the black line separates topic 1 and topic 2 words. the right panel is similar, showing percentages of co-occurrence in 
documents of the 85 patients best described by topic 2 words.
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figure 4. topic-based prediction of overall survival in an independent 
patient cohort.
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of patients and using the information contained therein to 
characterize patient subtypes as well as individuals. Compu-
tational scientists often address this problem by performing 
analysis within a single data type and comparing results sub-
sequently in an effort to identify a signal supported by the 
disparate analyses (eg, a gene’s SNPs, expression, and methy-
lation all associate with a phenotype). Comparing results 
manually has its obvious disadvantages. At the same time, 
meta-analysis approaches such as Fisher’s combined probabil-
ity test can be limited by low power33; and efforts to combine 
data directly are challenged by measurements on different 
scales with differential dependencies. The survLDA-based 
framework proposed here addresses these challenges by 
transforming the information contained in high-throughput 
genomic screens into text. Doing so has both advantages and 
disadvantages.

One advantage is that data integration is seamless. In the 
implementation presented, a word for a gene is assigned to a 
patient’s initial document if the gene shows extreme expres-
sion; the same word is assigned if the gene shows extreme 
methylation. In this way, a document may contain copies of 
words associated with extreme genomic features, measured 
from expression and/or methylation. Other types of data are 
easily incorporated into the framework. For example, just as 
with extreme expression or methylation, a gene word could be 
included in a document if that gene harbored a CNV.

A second advantage is that the threshold required for a 
gene to be included in the analysis is much lower than would 
be required with other methods. As detailed in the Methods 
section, some preselection of genes is done, but the selection 
does not require even nominally significant association with a 
survival endpoint, as is often required in survival studies with 
high-dimensional covariates.4,7,34 This allows for the identi-
fication of many important genes, some previously known to 
be involved in cancers other than ovarian, which would not 
otherwise have been considered.

Although the identification of individual genes may prove 
useful, a main advantage of LDA in general and survLDA in 
particular is that it reveals groups of genomic aberrations that 
co-occur together (topics) and then characterizes individual 
patients by those groups. The topics themselves are useful in 
that they define collections of genes, methylations, or other 
covariates among which undiscovered interactions might 
occur, while the patient-specific distributions over topics give 
insights into the similarities and differences among patients 
that go beyond the information that can be gained from 
grouping by like outcome.

Our findings of the predictive ability of the approach are 
mixed. In our earlier work,35 we conducted simulation stud-
ies to assess predictive ability under a variety of settings. As 
that work suggested for the sample size considered here, there 
is some ability for prediction, but improvements are expected 
with increases in the number of patients as well as improve-
ments in document creation strategies. As detailed in,35 

sample sizes larger than those considered here are required 
to improve prediction significantly. In general, more work is 
needed to better understand the specific effects of sample size, 
document size, word frequencies, and replication, which are 
determined in part by the method used for document con-
struction. Our approach to assign a word for any gene showing 
extreme expression or methylation was motivated by the study 
of Zilliox and Irizarry,35 where the authors identify bimodal 
genes and, for each individual and each gene, assign a binary 
variable indicative of mode membership. The resulting gene 
expression ‘barcode’ for each patient proved useful in classi-
fying patients into biologically meaningful groups36 and the 
extrapolation of their approach proved to be an effective strat-
egy here. Another possibility is to assign an increasing number 
of words in direct proportion with signal. For example, con-
sider breaking a gene’s expression into deciles, say, and assign 
1–10 words for each document (eg, a value between the sixth 
and seventh deciles gets seven words). We did not favor this 
approach for two main reasons. First, the approach assumes 
linearity of expression and methylation, which is often not the 
case. Second, the approach results in documents having few 
unique words, which reduces specificity of topics as well as 
document-specific distributions over topics. Document con-
struction continues to be explored, and improvements are 
expected to prove useful in a number of settings.

In addition to the means by which covariates are trans-
lated into words, there are many aspects of the proposed 
methods that require further development. In particular, sur-
vLDA assumes the simplest of Dirichlet priors on the distri-
butions of topics over patients and therefore the documents 
are considered conditionally independent given α. While this 
is a reasonable assumption for the TCGA data set we con-
sidered, there are other realms where correlation among the 
documents could arise. For example, one could have multiple 
documents arising from the same subject, one for each time 
point or tissue; or, when integrating multiple cancer types, 
subjects with the same type of cancer would be expected to 
be more alike than subjects with differing cancer types. Add-
ing such hierarchy has already been explored to some extent 
for traditional LDA,37 presenting a starting point for future 
methodological work.

Similarly, the composition of the topics themselves is 
essentially free. Were it not for our imposition of a background 
topic, the topics would be completely unstructured a priori. As 
it is, K − 1 topics are still governed solely by the data. This 
need not be the case, as methods similar to those proposed for 
construction of a background topic (see the Appendix) could 
be extended. In particular, the Dirichlet prior could be modi-
fied directly or a set of restrictions could be imposed for each 
topic and groups of words so that certain words cannot appear 
together or may only appear together in certain topics.

In summary, it is becoming increasingly clear that 
studies aimed at solving the most challenging problems in 
cancer genomics involve highly diverse types of data collected 
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on large groups of patients. Many methods will prove useful. 
We expect that advantage will be gained from methods that 
are able to integrate data and account for cohort heterogene-
ity, allow supervision by outcomes of interest such as survival, 
provide for patient-specific inference, and facilitate predic-
tion of unobserved outcomes. The proposed approach pro-
vides tools for these purposes in an effort to help ensure that 
maximal information is obtained from genomic-based stud-
ies of disease.
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Appendix
The survLdA variational eM. Posterior inference. For a 

given document i with survival response dyad (Ti, δi), the key 
quantity of interest is
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Thus, an approximation of the posterior given in (1) is 
obtained by maximizing L with respect to γi and φi Ni, : .1  The 
first, second, and third terms in (4), as well as the entropy 
H(qi), are identical to the corresponding terms in the ELBO 
for LDA12 and sLDA15:
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where Ψ denotes the digamma function. All that remains is to 
derive the fourth term of (4):
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where the normalizing value is known as the evidence. As in 
LDA12 and sLDA,15 the evidence cannot be exactly computed 
efficiently, so we will use mean-field variational inference 
using Jensen’s inequality to approximate it. For reviews of this 
and other variational methods, see Wainwright and Jordan38 
and Jordan et al.39

Let π = {α,τ1:k,β,h0} and qi i( )θ ,Zi, Ni1:  denote a variational 
distribution of the latent variables. For computational tracta-
bility, we choose a fully factorized variational distribution:
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where

	 θi|γi ∼ Dir(γi) and Zij|øij ∼ Discrete(øij).

With this quantity defined, the lower bound for the evi-
dence given by Jensen’s inequality is
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where the second term in the lower bound is the entropy H(qi) 
of the variational distribution. We will use L(⋅) to refer to the 
so-called evidence lower bound (ELBO) given in (3). We can 
expand the ELBO:
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where the K-vector
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We use block coordinate-ascent variational inference, 
maximizing (4) with respect to γi and then each øij in turn. As 
in sLDA,15 the terms of (4) involving γi are unchanged from 
LDA, and hence, the update for γi is
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Setting this equal to zero and plugging in φijk
new  yields:
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where proportionality means that the components of φij
new  are 

evaluated according to (12) and then normalized so that their 
sum is one. Variational inference proceeds by iteratively updat-
ing the variational parameters { }:γ φi Ni

, i,1  according to (10) and 

(12) in order to find a local optimum for the ELBO, which in 
turn best approximates the evidence given in (1).

Parameter estimation. We use maximum likelihood 
estimation based on variational EM. Our data are 
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In the E-step, we use the variational inference algorithm 
outlined here in the first subsection to estimate the approxi-
mate posterior distribution for each document–response pair. 
In the M-step, we maximize the corpus-level ELBO with 
respect to π, subject to some constraints. First, we take α to 
be (α0/K, …, α0/K), where α0 is specified a priori. This is not 
necessary; further structure could be placed on a, ranging 
from a simple Dirichlet prior as in (12) to more complicated 
structures allowing dependence among the documents more 
complex than simple conditional independence as in the study 
by The et al.37 However we, like Blei and McAuliffe,15 prefer 
letting α be user-defined, which is simple and straightforward, 
yet allows some flexibility in the model specification.

The τ1:k updates are unchanged from unsupervised LDA 
(12; 15) and are thus calculated in this manner:
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where proportionality means that each newˆ
kvτ  is normalized to 

sum to one.
The regression coefficients that comprise β and the base-

line hazard h0 must be numerically optimized with respect to 
maximizing the portion of the joint ELBO that depends on 
them. Numerical optimization is required as no closed form 
can be derived in general for the maximizing choice of β. The 
specific computations this process entails depend on the choice 
for h0. For example, when an exponential survival model is 
chosen, so that h0 = λ, β, and λ are numerically optimized by 
finding the solutions:
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Numerical optimization for a Weibull survival model is 
similar. In contrast, if we use a nonparametric Breslow estimate40 
for h0, we first update β given the current value for h0:

94 CanCer InformatICs 2014:13(s7)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


survLDA for personalized genomic-based studies of disease

0 0
11

(newˆ argmax )

argmax log ( ) exp( )
iND

i i i i ij
ji i

h H T
N

β β

β
δ δ β φ φ

==

=

 
= + −′ ′ 

  
∑ ∏

 L

 
  

(16)

Then, given the updated newˆβ β= , the maximum like-
lihood estimate of the baseline hazard h0 at the rth ordered 
survival time tr is given by40:
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where mr is the number of failures at time tr and Rr is the set 
of patients who have not failed or been censored by time tr.  
Regardless, once h0 has been updated an estimate of the cumu-
lative baseline hazard H0 follows immediately.

Prediction. Given a new patient with document w1:n and a 
fitted model {α,τ1:K}, the posterior mean 1 1new : :| N KZ Z w α τ= , ,  
can be obtained in order to estimate from what topics this new 
patient draws words and in what proportion. This is similar 
to the procedure outlined in the Posterior Inference subsec-
tion, except that all survival-related terms in the ELBO are 
dropped. Thus, under the same variational distribution as 
given in (2), the coordinate ascent updates are

 
γ α φnew = +

=
∑ j
j

N

1

 (18)

 φ υ ξjk i jkknew ∝ / +exp[ ]  (19)

where again j indexes words, k indexes topics, and proportion-
ality means that the components of φ j

new  are evaluated accord-
ing to the above update and then normalized so that their 

sum is one. Note that this variational sequence is identical to 
that in Blei and McAuliffe,15 as they point out that it does not 
depend on the particular response type.

Given Znew , measures related to topic membership can 
be predicted for a new document. This may be done qualita-
tively or quantitatively using the chosen survival model. For 
example, the predicted median lifetime can be obtained by 
solving the following equation for tmed

 :

 
exp ( )exp( )− ′  =H Z0

1

2
tmed new
 β  (20)

where H0 and β are taken from the fitted survLDA model.
Including a background topic. Finally, we introduce into 

the variational EM an ‘uninteresting’ background topic to act 
as a benchmark with respect to the supervising outcome. The 
background topic is used because in most documents (in our 
application as well as others), there is an imbalance in word 
frequency that is not totally overcome by considering term-
frequency and/or inverse-document frequency measures. In 
our setting, for example, there are far fewer drug-related words 
as compared with gene-related words due to the nature of the 
data. To address this, the background topic puts proportional 
weight on the words according to their final frequency sum in 
all the documents. Assuming the vocabulary contains V words 
in total and that each word in the vocabulary appears n1,n2,…, 
nV times through all the documents, the weight for each word 
in the background topic should be n

n
n

n
n

ni
V

i i
V

i

V

i
V

i

1

1

2

1 1∑ ∑ ∑= = =
, , ,… . Non-

background topics are then different deviations from this 
benchmark that express themselves through differential sur-
vival. In our application, the background topic would describe 
‘featureless’ documents that contain only the ubiquitous adju-
vant therapy information, nothing more. Upon convergence, 
the variational EM yields posterior estimates for the key quan-
tities of interest: posterior estimates for the θ1:D as well as for 
the composition (τ1:k) and outcome effect (β) of the K topics.
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