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Introduction
Genome-wide association studies (GWAS) are used to iden-
tify single-nucleotide polymorphisms (SNPs) associated with 
complex diseases such as cancer.1 However, most GWAS 
analyze the main effects of SNPs. Epistasis is observed when 
the effect of an SNP is modified by other SNPs.2–4 Epistasis 
between SNPs helps to explain how multiple SNPs interact 
to cause disease. For example, epistasis between genes has 
been associated with hypertension,5 sporadic breast cancer,6 
and several other diseases.7 Epistasis also plays a subtle part in 
explaining missing heritability.8,9 Thus, identifying epistatic 
SNP interactions is of interest to better understand disease eti-
ology. Furthermore, some studies suggest that, if the epistatic 

variance is larger than the additive variance, more power can 
be achieved to detect SNPs by searching for epistasis between 
SNPs rather than evaluating only the main effects.10

A variety of tools have been used to detect epistasis, such 
as regression,11–14 Bayesian methods,15–20 and artificial intel-
ligence algorithms.21–27 For higher order interactions, where 
regression methods are not suitable, several machine learning 
methods such as multifactor dimensionality reduction,28 tree-
based methods,25 and entropy-based methods23,29 have been 
proposed, as they use classifiers and feature selection to reduce 
the computational burden.

In this article, we use simulations to explore the strengths 
and weaknesses of an information theory approach29 for 
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detec ting epistasis compared to the logistic regression 
approach. We perform studies in which we simulate SNPs with 
and without the main effects. We also consider three types of 
interaction patterns and two types of linkage disequilibrium 
patterns. Finally, we demonstrate the practical application of 
these methods to identify an epistasis network. We use data 
from a head and neck cancer GWAS of the FSD1L gene that 
involves 1,154 cases and 1,542 controls. We then attempt to 
replicate our findings in an independent head and neck can-
cer GWAS of the FSD1L gene that involves 1,031 cases and 
2,965 controls.

Materials and Methods
We used a case–control study design to introduce the 
approaches to epistasis network analysis; however, the meth-
ods are also applicable to continuous phenotypes. The case–
control status is denoted by a binary indicator Y, which takes 
the value of 1 or 0, corresponding to the categorization of 
the individual as being among the cases or the controls. The 
epistasis networks are networks in which the nodes are SNPs 
and the edges between the nodes correspond to the interaction 
between the SNPs. Hereafter, we define the two approaches 
for developing epistasis networks.

Information theory approach. For ease of presentation, 
we consider epistasis between two SNPs, A and B. Each SNP 
can have three possible genotypes: AA, Aa, and aa, which are 
coded as 0, 1, and 2, respectively, and where a is the minor 
allele. In the information theory approach, the association of 
the disease with an SNP or with the interaction between a 
pair of SNPs is quantified by assigning weights referred to as 
mutual information when a single SNP is studied and infor-
mation gain when the interaction between SNPs is studied.30 
In the regression framework, these weights correspond to the 
respective odds ratios of the main or interaction effects. Spe-
cifically, mutual information between two variables provides 
a measure of the reduction in randomness in a variable when 
information about another variable is available. The mutual 
information of SNP A and the case–control status Y (the main 
effect of SNP A) is defined as

 I A Y H Y H Y A( ; ) ( ) ( ),= −

where H(Y) is the entropy of Y, which is defined as
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The mutual information I(A;Y) ranges from 0 to 1. A zero 
value for the mutual information indicates independence, ie, 
SNP A has no effect on disease status Y. A higher value of the 
mutual information indicates a stronger relationship between 
SNP A and the disease status.

Given a pair of SNPs A and B, the information gain of 
A and B (interaction effect) is defined as

 IG A B Y I A B Y I A Y I B Y( ; ; ) ( , ; ) ( ; ) ( ; ).= − −

The information gain takes values between –1 and 1. A 
positive value indicates interactions that explain a part of the 
phenotypic variance; a zero value indicates interactions that 
do not explain any phenotypic variance; and a negative value 
indicates that modeling the interactions will be redundant 
because the information is already contained in the main 
effects (ie, modeling would possibly lead to multicollinear-
ity). In this analysis, an information gain greater than zero 
was considered to represent a significant interaction.

Logistic regression approach. In standard logistic 
regression modeling, interactions between SNP A and SNP B 
are evaluated by testing the significance of βAB:

logit P Y SNPA SNPB SNPA SNPBA B AB( ( )) *= = + + +1 0β β β β

We used Bonferroni correction to account for multiple 
comparisons. For an epistasis network of k SNPs, the number 
of multiple comparisons is the sum of the total number of main 
effects (k) and the total number of interactions (k(k−1))/2. The 
Bonferroni-corrected P-value used was 0.05/(total number of 
interactions + total number of main effects).

simulations. We performed simulation studies to inves-
tigate the performance of the methods. We considered several 
scenarios to simulate the SNPs involved in an epistasis net-
work: scenarios with different linkage disequilibrium patterns 
and scenarios with presence or absence of main and interac-
tion effects. In scenarios 1 and 2, all the SNPs were in linkage 
equilibrium, whereas in scenarios 3 and 4 the SNPs were in 
linkage disequilibrium. We used the linkage disequilibrium 
pattern of the FSD1L gene from the head and neck cancer 
GWAS data to mimic realistic linkage disequilibrium pat-
terns. In scenarios 1 and 3, all the SNPs were simulated with 
only interaction effects and without main effects, whereas in 
scenarios 2 and 4 the SNPs were simulated with both interac-
tion and main effects. For each scenario, we used 10 SNPs to 
simulate three different epistasis networks (see Figs. 1A, 2A, 
and 3A, and Table 1). We used a logistic regression model to 
simulate 10,000 cases and 10,000 control samples:

 
log ( ( ))it P Y SNP i SNP i SNP ji ij

ij i ji
= = + +

≠=
∑∑1 0

1

10

β β β
 

where β0 2= − . For the different simulation scenarios, the SNPs 
and interacting pairs that were significant are listed in Table 1.
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results
We analyzed the simulated data from the four simulation sce-
narios using the information theory approach and the logistic 
model approach as described previously. For each simulation 
scenario, the results are presented for the three interaction 
networks in Figures 1A, 2A, and 3A (referred to as networks 
1, 2, and 3, respectively).

simulation scenario 1. In simulation scenario 1, the 
SNPs were in linkage equilibrium and had interacting effects, 
but no main effects. For the simulation based on network 1 
(Fig. 1A), the information theory approach exactly identified 
all five interaction effects without any false positives (Fig. 1B). 

The logistic regression approach also identified all five simu-
lated interaction effects; however, it also falsely identified 
several interactions that were not simulated (Fig. 1C). In the 
simulation using network 2 (Fig. 2A), which included two 
SNPs (SNP 5 and SNP 1) that were common in two indepen-
dent interactions, the information theory approach identified 
only two of the five interactions simulated (Fig. 2B), whereas 
the logistic regression approach identified all five interactions; 
however, it also identified several false positive interactions 
(Fig. 2C). In the simulation using network 3 (Fig. 3A), which 
involved only the interaction between SNP 1 and SNP 2, 
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figure 1. epistasis networks for the four scenarios simulated on the basis 
of network 1. (A) the true simulated epistasis network. (B) epistasis 
network for simulation scenario 1 – information theory approach. 
(C) epistasis network for simulation scenario 1 – logistic regression 
approach. (D) epistasis network for simulation scenario 2 – information 
theory approach. (E) epistasis network for simulation scenario 2 – logistic 
regression approach. (f) epistasis network for simulation scenario 
3 – information theory approach. (g) epistasis network for simulation 
scenario 3 – logistic regression approach. (H) epistasis network for 
simulation scenario 4 – information theory approach. (I) epistasis 
network for simulation scenario 4 – logistic regression approach.
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figure 2. epistasis networks for the four scenarios simulated on 
the basis of network 2. (A) the true simulated epistasis network. 
(B) epistasis network for simulation scenario 1 – information theory 
approach. (C) epistasis network for simulation scenario 1 – logistic 
regression approach. (D) epistasis network for simulation scenario 
2 – information theory approach. (E) epistasis network for simulation 
scenario 2 – logistic regression approach. (f) epistasis network for 
simulation scenario 3 – information theory approach. (g) epistasis 
network for simulation scenario 3 – logistic regression approach. 
(H) epistasis network for simulation scenario 4 – information theory 
approach. (I) epistasis network for simulation scenario 4 – logistic 
regression approach.
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the information theory approach and the logistic regression 
approach identified the true simulated interaction; however, 
both approaches also identified a few false positive interac-
tions (Fig. 3B and C).

simulation scenario 2. In, simulation scenario 2, all the 
SNPs were in linkage equilibrium and had both interaction 
and main effects. For the simulation based on network 
1 (Fig. 1A), the information theory approach identified 
only two of the five interaction effects that were simulated 
(Fig. 1D). In contrast, the logistic regression approach iden-
tified all the simulated interactions; however, it additionally 
identified several false positives (Fig. 1E). In the simulation 

using network 2, the information theory approach identified 
only two of the five interactions simulated (Fig. 2D), whereas 
the logistic regression approach identified the simulated 
interactions as well as several false positives (Fig. 2E). In the 
simulation with network 3, the information theory approach 
failed to identify the true simulated interaction and identi-
fied two false positive interactions (Fig. 3D). In contrast, 
the logistic regression approach identified the true simulated 
interaction (Fig. 3E); however, it also identified several false 
positive interactions.

simulation scenario 3. In simulation scenario 3, the 
SNPs were in linkage disequilibrium and had interaction 
effects, but no main effects. In the simulation using network 1,  
the information theory approach exactly identified all five 
interaction effects that were simulated (Fig. 1F), whereas 
the logistic regression approach identified interactions that 
were not simulated in addition to the simulated interactions 
(Fig. 1G). In the simulation using network 2, the informa-
tion theory approach identified three of the five true simulated 
interactions, whereas the logistic regression approach identi-
fied several false positives in addition to the simulated interac-
tions (Fig. 2F and G). In the simulation using network 3, both 
approaches identified the true simulated interaction without 
any false positives (Fig. 3F and G).

simulation scenario 4. In simulation scenario 4, the 
SNPs were in linkage disequilibrium and had both inter-
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figure 3. epistasis networks for the four scenarios simulated on the basis 
of network 3. (A) the true simulated epistasis network. (B) epistasis 
network for simulation scenario 1 – information theory approach. (C) 
epistasis network for simulation scenario 1 – logistic regression approach. 
(D) epistasis network for simulation scenario 2 – information theory 
approach. (E) epistasis network for simulation scenario 2 – logistic 
regression approach. (f) epistasis network for simulation scenario 3 – 
information theory approach. (g) epistasis network for simulation scenario 
3 – logistic regression approach. (H) epistasis network for simulation 
scenario 4 – information theory approach. (I) epistasis network for 
simulation scenario 4 – logistic regression approach.

Table 1. Details of the four simulation scenarios.

SIMULATIoN 
SCENARIo 

MAIN 
EffECTS

INTERACTIoN 
EffECTS

LINkAgE 
DISEqUILIBRIUM

scenario 1 none (1,2), (3,4), (5,6), 
(7,8), (9,10)

no

none (1,2), (1,4), (5,6), 
(5,8), (9,10)

no

none (1,2) no

scenario 2 1, 3, 9 (1,2), (3,4), 
(5,6), (7,8), 
(9,10)

no 

1, 3, 9 (1,2), (1,4), (5,6), 
(5,8), (9,10)

no

1, 3, 9 (1,2) no

scenario 3 none (1,2), (3,4), 
(5,6), (7,8), 
(9,10)

Yes

none (1,2), (1,4), (5,6), 
(5,8), (9,10)

Yes

none (1,2) Yes

scenario 4 1, 3, 9 (1,2), (3,4), 
(5,6), (7,8), 
(9,10)

Yes

1, 3, 9 (1,2), (1,4), (5,6), 
(5,8), (9,10)

Yes

 1, 3, 9 (1,2) Yes

Notes: all the main effects and interaction effects that were present were 
simulated with an odds ratio of 2.
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action effects and main effects. For the simulation based 
on network 1, the information theory approach identified 
only two of the five interaction effects that were simulated 
(Fig. 1H), whereas the logistic regression approach identified 
several false positives in addition to the five simulated inter-
actions (Fig. 1I). For the simulation based on network 2, the 
information theory approach identified only one of the five 
true simulated interactions, whereas the logistic regression 
approach identified several false positives in addition to the 
five simulated interactions (Fig. 2H and I). For the simulation 
based on network 3, the information theory approach failed 
to identify the true simulated interaction, whereas the logistic 
regression approach identified the true simulated interaction 
(Fig. 3H and I).

Head and neck cancer data. We applied both approaches 
to data from a GWAS of head and neck cancer. The study 
participants were patients at The University of Texas MD 
Anderson Cancer Center (UT MD Anderson) with newly 
diagnosed, histologically confirmed, previously untreated 
head and neck cancer, including cancers of the oral cavity, 
pharynx, and larynx. The study genotyping was performed in 
two phases. The data from phase 1 included 2,696 individu-
als: 1,154 head and neck cancer patients and 1,542 controls. 
The data from phase 2 included 3,996 individuals: 1,031 cases 
and 2,965 controls. The institutional review board at UT MD 
Anderson approved the case–control study, and all partici-
pants provided written informed consent.

In this analysis, we developed epistasis networks for 
SNPs within the FSD1L gene. The FSD1L gene is located on 
chromosome 9 and is mainly expressed in neural tissue. The 
FSD1L gene codes for type 2 cystatins, which regulate the 
activity of endogenous cysteine proteinases such as cathepsin 
B, H, S, L, and K. These enzymes are involved in tumor cell 
invasion and metastasis.31 Therefore, we hypothesized that 
interacting SNPs in this gene may play a role in head and neck 
cancer etiology. In our study, a total of 617 SNPs were geno-
typed in the FSD1L gene. However, some of the SNPs were 
in high linkage disequilibrium. Our simulation study showed 
that linkage disequilibrium was confounded with epistasis 

(simulation study data not shown). Therefore, we considered 
only the SNPs in this gene locus that were in low linkage 
disequilibrium ( . )r 2 0 1<  to develop the epistasis network for 
head and neck cancer.

We computed the epistasis network for the phase 1 data 
and used the phase 2 data to validate the epistasis network. 
The epistasis networks we developed for the phase 1 data 
by using the information theory approach and the logistic 
regression approach are shown in Figure 4A and B, respec-
tively. The epistasis network based on the information theory 
approach identified the interaction between SNP rs630103 
and SNP rs10122572 to be significant, whereas the epistasis 
network based on the logistic regression approach identified 
the interaction between two different SNPs to be significant, 
namely, SNP rs2812312 and SNP rs2049347. The epistasis 
networks we developed for the phase 2 data (the validation 
dataset) by using the information theory approach and the 
logistic regression approach are shown in Figure 5A and B, 
respectively. In the validation dataset, the information the-
ory approach identified that the interactions between SNPs 
rs2049347, rs7038470, and rs10122572 are associated with 
head and neck cancer. The logistic regression approach iden-
tified that the interaction between SNP rs2812312 and SNP 
rs10990985 is significantly associated with head and neck 
cancer. None of the interactions identified from the phase 1 
epistasis networks was replicated in the phase 2 epistasis 
networks.

discussion
In this paper, we compare the information theory approach 
and the logistic regression approach for modeling epista-
sis networks. We used simulations to explore the strengths 
and weaknesses of the two approaches. We considered 
several simulation scenarios to simulate SNPs involved in an 
epistasis network with varying degrees of linkage disequi-
librium patterns and the presence or absence of main and 
interaction effects.

The information theory approach accurately identified the 
epistasis network when there were no main effects. However, in 
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figure 4. epistasis network for the phase 1 head and neck cancer GWas. (A) epistasis network – information theory approach. (B) epistasis network – 
logistic regression approach.
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the presence of only main effects, the interactions that included 
SNPs without main effects were not identifiable using this 
approach. In contrast, the logistic regression approach always 
included the true simulated interactions; however, it also included 
a higher number of false positives compared to the information 
theory approach. The higher number of false positives could be 
due to the fact that the logistic regression was performed using 
a single interaction at a time instead of including all the inter-
actions in a single multivariable regression model. This would 
lead to model misspecification in the logistic regression frame-
work. Importantly, covariates can be easily incorporated into the 
logistic regression approach, whereas inclusion of covariates is 
not straightforward in the information theory approach. The 
presence of SNPs in low linkage disequilibrium (r2 , 0.1) had 
little effect on the overall conclusions. However, when some 
of the SNPs were in high linkage disequilibrium, the epistasis 
was confounded with the linkage disequilibrium. Finally, in this 
work we considered information gain greater than zero to be a 
significant interaction; however, alternatively, one could evaluate 
the significance of epistasis by computing the null distribution 
through permutation of the case–control labels.

We applied the two approaches to develop epistasis net-
works for the head and neck cancer genetic data collected in 
two phases. The discrepancies between the logistic regression 
approach and the information theory approach were due to 
SNP rs2812312 having a significant main effect. Therefore, the 
interactions including SNP rs2812312 were possibly not iden-
tified by the epistasis networks modeled using the information 
theory-based approach, which is consistent with our obser-
vations from the simulation study. Furthermore, the epistasis 
networks identified using the data from phase 1 were not rep-
licated when we used the data from phase 2. This might have 
occurred because of the low power to detect epistasis in human 
GWAS data.32

In summary, we have provided insights into the con-
struction of epistasis networks using the information theory 
approach and the logistic regression approach. We concluded 
that the information theory approach more efficiently detects 
interaction effects when main effects are absent. In general, 

the logistic regression approach is appropriate in all scenarios 
but results in higher false positives. An understanding of the 
various strengths and weaknesses of these approaches provides 
insight for developing novel sophisticated methods to identify 
epistasis networks.
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