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Introduction
Cancer is characterized by the accumulation of genomic 
abnormalities that result in activated oncogenes and inac-
tivated tumor suppressor genes. These deregulated genes 
are known as “driver genes.” Identifying genes that “drive” 
oncogenesis is central to improving our understanding of 
the mechanisms of cancer and to developing new anticancer 
therapies. Driver genes can be used as biomarkers of cancer 
susceptibility. For instance, inherited mutations in BRCA1  

and BRCA2a are strong indicators of breast and ovarian cancer 
risk.1 Driver genes can also be used to define common genetic 
profiles shared by subgroups of patients who may benefit from 
targeted treatment strategies. For example, ERBB2b (also 
known as HER2/neu) is amplified and overexpressed in 20% 

a �breast cancer 1/2, early onset.
b ��v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived 
oncogene homolog avian).
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to 25% of breast cancers2 and is the target of the monoclonal 
antibody trastuzumab (marketed as Herceptin, http://www.
herceptin.com/breast/), a drug that is effective only when 
ERBB2 is amplified and overexpressed. Those who seek to 
compile a catalog of additional driver genes must attempt to 
distinguish them from the larger number of “passenger genes,” 
which have been disrupted as a result of cancer progression but 
do not confer growth or survival (dis)advantage.

Driver genes may be deregulated through a number 
of mechanisms, operating at the levels of both DNA and 
RNA to trigger oncogenesis. The first genomic aberration 
consistently found to be associated with malignancy in 
humans was a translocation between BCRc and ABLd on 
chromosomes 9 and 22, a discovery that led chromosome 
9 to be known as the Philadelphia chromosome.3,4 Following 
this discovery, a drug named Imatinib (commercialized 
as Gleevec, http://www.gleevec.com/) was developed to 
specifically inhibit the resulting fusion gene BCR-ABL. 
A translocation between TMPRSS2e and the ETS (E 26) 
family of genes (ERGf, ETV1g and ETV4h) occurs fre-
quently in prostate cancer.3 Copy number alterations, such 
as genomic amplifications or deletions, are also common in 
cancer (eg, amplification of ERBB2 is common in breast 
cancer, as mentioned above). In addition, mutations can 
cause deregulation of driver genes leading to oncogen-
esis. For instance, the TP53i mutation, which makes the 
cell insensitive to signals of apoptosis,5 is present in most 
human tumors. Epigenomic modifications, such as histone 
methylation, acetylation, and chromatin modifications, also 
contribute to tumor formation and progression. By activat-
ing downstream oncogenes (eg, HRASj in gastric cancer) 
and by silencing tumor suppressors (eg, RB1k in retinoblas-
toma6), these modifications lead to chromosomal instability 
and to more frequent and aggressive tumors.

We have recently developed a data-mining strategy called 
TRIAngulating Gene Expression (TRIAGE through clinico-
genomic intersects) to guide the identification of potential 
driver genes, which are typically deregulated in only a subset 
of tumor samples. TRIAGE triangulates three levels of infor-
mation: gene expression, gene location and clinical survival. 
We have used TRIAGE to discover and validate a novel onco-
gene RAB11FIP1l that promotes metastasis in breast cancer.7 
TRIAGE has also been used to characterize patients with the 

c �breakpoint cluster region.
d �c-abl oncogene 1, non-receptor tyrosine kinase.
e �transmembrane protease, serine 2.
f �v-ets erythroblastosis virus E 26 oncogene homolog (avian).
g �ets variant 1.
h �ets variant 4.
i ��tumor protein p53.
j �v-Ha-ras Harvey rat sarcoma viral oncogene homolog.
k �retinoblastoma 1.
l �RAB11 family interacting protein 1 (class I).

fusion gene RPS6KB1-VMP1m, a mutation caused by tandem 
duplications.8 In this work, we describe recent refinements to 
the TRIAGE scoring methodology and we present the results 
of simulations testing this new scoring. Further, we describe 
the results obtained when we applied the newly refined TRI-
AGE approach to discover new candidate oncogenes and 
tumor suppressors in five human cancers.

The first step in the TRIAGE methodology is to iden-
tify “expression footprints” (ie, regions that are either induced 
or repressed at the RNA level and are therefore referred to 
as “induced” or “repressed” expression footprints, respec-
tively). These areas, which are identified using a novel mea-
sure called a Local Singular Value Decomposition (LSVD) 
score, may overlap at the level of DNA with other genomic 
events including copy number alterations, mutations or epig-
enomic changes and may contain driver genes. TRIAGE then 
uses dual survival analyses to distinguish driver genes from 
passenger genes located in the same expression footprint. The 
first survival analysis identifies the genes that are significantly 
associated with the time-to-event outcome (eg, time to local 
or distant recurrence) by fitting a Cox proportional hazards 
model9 over all patients in the cohort. The second survival 
analysis identifies potential driver genes by testing associa-
tions with the time-to-event outcome in the samples that are 
not characterized by these expression footprints.

TRIAGE represents several improvements over classi-
cal approaches to the analysis of differential expression. First, 
unlike single whole cohort survival analysis, the TRIAGE 
approach allows one to distinguish between driver and passen-
ger genes. Second, it is sensitive enough to detect driver genes 
that are deregulated in a small subset of patients, whereas clas-
sical analyses are only able to detect genes that are commonly 
deregulated in most patients (as described in a number of 
detailed reviews10–13). Third, it is able to identify the samples 
and genes that contribute to the expression footprint. Further-
more, contrary to previous methods,14 which derive a measure 
of significance for each sample separately, TRIAGE analyzes 
the whole tumor cohort simultaneously. Finally, unlike other 
methods,15 it does not require samples from normal tissues.

Here, we present the statistical properties of the LSVD 
score, which we characterized using simulated data. We then 
present the results of our analysis to identify potential candi-
date driver genes by applying TRIAGE to five human cancers 
and we discuss the resulting catalog.

Methods
The TRIAGE approach comprised three main steps, as out-
lined in Figure 6, and described in detail below:

1.	 The LSVD score is used to identify induced (or repressed) 
genomic expression footprints from gene expression data. 
Genomic regions containing a substantial proportion of 

m �ribosomal protein S6 kinase, 70kDa, polypeptide 1- vacuole membrane protein 1.
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genes that are either over- or under-expressed in multiple 
tumors contain potential oncogenes or tumor suppressor 
genes, respectively. The LSVD score that we used to per-
form the analyses presented here has been refined in this 
version of TRIAGE.

2.	 Unselected survival analysis is used to identify associations 
between patient survival and gene expression profiles in the 
expression footprints. Gene expression profiles that are sig-
nificantly associated with either increased or reduced risk 
of failure by Cox proportional hazards regression models 
are indicative of potential oncogenes or tumor suppressor 
genes, respectively.

3.	 Selected survival analysis is used to distinguish driver genes 
from passenger genes in the expression footprints. While the 
expression of passenger genes may be associated with 
survival, driver genes are expected to be associated with 
survival even in samples where the respective expression 
footprint is present; this is not the case for passenger 
genes. This expectation is based on the assumption that 
driver gene expression in tumors will often be deregu-
lated by mechanisms other than copy number alteration 
or other regional events. The genes that are significantly 
associated with survival in both the unselected and 
selected survival analyses are interpreted as potential 
driver genes.

These three steps are further detailed below.
Using LSVD score to identify induced (or repressed) 

genomic expression footprints. The objective of this step is 
to identify regions (ie, expression footprints) of co-expressed 
(ie, co-induced or co-repressed) genes and corresponding sub-
groups of tumors that share the same expression footprints. 
The problem can be posed as the analysis of an undirected 
bipartite graph between the set of tumor samples and the 
set of genes. An edge between a tumor sample and a gene is 
established if the gene is overexpressed (or repressed) in that 
particular sample, ie, if its expression is above (or below) a 
predefined threshold (denoted by a) in that particular sample, 
an edge between the tumor sample and the gene is established. 
Next, we identify dense subgraphs in which the connectivity 
between tumor samples and genes is higher.

The link structure is then analyzed using Singular Value 
Decomposition (SVD) constrained upon the localization of 
gene nodes in the genome as described below.

In the following procedures, we consider the measure-
ment of gene expression for a set of n tumors over m genes. 
For each chromosome c; c ∈ {1,…,K}, let Ec denote the matrix 
of log2 of gene expression of dimensions n × mc (with ∑cmc=m), 
where mc is the number of genes on chromosome c.

The expression footprints are identified by analyzing Ec 
using LSVD according to the following steps:

1.	 Defining the bipartite graph structure by transforming 
Ec into binary connectivity matrix Yc

2.	 Deriving chromosome localized matrices Ylc, for each 
location “lc”

3.	 Applying SVD and computing the connectivity or LSVD 
score ∆lc

4.	 Identifying the regions of interest (ie, expression 
footprints).

While the first step is slightly different for the analysis 
of induced and repressed expression footprints (as described 
below), steps 2, 3, and 4 remain the same.

Defining the gene–tumor bipartite graph. Ec is trans-
formed into binary connectivity matrices Ac for induced 
expression footprints and Dc for repressed expression foot-
prints through the discretization rule.

i.	 Induced expression footprints.
For each tumor sample j and gene i, the transformation of 

the expression data into Ac is obtained as follows:
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where vi is either the median of E Ec i c in[ ] [ ], ,1 …{ }. Although 
not required by the method, if samples from normal tissues 
are available, we can alternatively use the mean of the signal 
for gene i among normal tissue samples for vi; and σi is the cor-
responding adjusted median absolute deviation (MAD).
ii.	 Repressed expression footprints

For each tumor sample j and gene i, matrix Ec is trans-
formed into Dc as
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Yc = Ac to identify induced expression footprints and Yc=Dc 
to identify repressed expression footprints.

Deriving localized matrices. To account for the 
localization of expression footprints in the genome, we 
derive localized connectivity matrices. Local matrices Ylc 
at location “lc” are derived from Yc using genes located in 
max , ,min ,maxl l lc c c−( ) + ( )( )



ϖ ϖ0  on chromosome c, 

where ϖ is the user-set window size.
Performing SVD of localized matrices Ylc. SVD 

decomposes a matrix Ylcof dimensions n × mlc into a product 
of three matrices U, Σ, and VTsuch that
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where U and V are of dimension n × n and mlc × mlc, respectively, 
and Σ is a n × mlc rectangular diagonal matrix.16 Σ contains 
singular values in descending order (by convention). The 
columns U are called the left singular vectors (ordered by 
importance or eigen weights), which form an orthonormal 
basis, ie, ui ⋅ uj = 1 for i = j and ui ⋅ uj = 0 otherwise. Similarly, 
the rows of VT contain the elements of the right singular vec-
tors (ordered by importance) and form an orthonormal basis.

The largest or principal singular value of Ylc summa-
rizes the density of the network. Its value increases with 
the number of links but it does not allow one to distinguish 
between networks in which links are concentrated around a 
few genes and tumor samples and networks in which links 
are spread among different genes and/or tumor samples. 
To account for this observation, in the newer version of the 
LSVD score, the singular vectors associated with the prin-
cipal singular value are also appropriately included in the 
definition of improved version of LSVD score as described 
in the next subsection.

Identifying the regions of interest. As shown by 
Kleinberg,17 the discriminative ability of the principal singu-
lar value increases with the number of repeated multiplica-
tions of the matrix to be decomposed. In order to build the 
final score, SVD is thus applied on matrices Plc and Qlc, which 
are based on the repeated multiplication of the square matrices 
Y Ylc

T
lc and Y Ylc lc

T , respectively, and are defined below.
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These matrices can be decomposed by SVD as

	 P V Vlc lc lc
T= Σ  and Q U Ulc lc lc

T= Σ

where Ulc and Vlc contain the singular vectors associated with 
the tumor samples and the genes, respectively.

Then, an LSVD score ∆lc at lc is obtained by weighing the 
principal singular value of Plc denoted by λlc

( )1  (which is also 
the principal singular value of Qlc) by the corresponding first r 
values (r = min(n,mlc)) of the ordered principal singular vectors 
of Plc and Qlc:
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In the above formula, the value of λlc
( )1  is linked to the 

number of links between the tumor samples and the genes. 
The weights Ulc k r

T
∈{ }[ ]1 1, , ,

 and Vlc k r∈{ }[ ]1 1, , ,
 are associated with 

the tumor samples and genes respectively and summarize 
the importance of the nodes in the network structure  
(ie, the number of links as well as the importance of the nodes 
to which they are connected; see Kleinberg17 for a detailed 
interpretation).

Higher the LSVD score, the higher confidence in the 
expression footprint around lc indicating that the genes at this 
location are contributing to the expression footprint in a sub-
set of tumor samples.

Finally, the genomic regions with consecutive LSVD 
scores above the predetermined threshold represent the expres-
sion footprints. The weights Ulc k r

T
∈{ }[ ]1 1, , ,…

 and Vlc k r∈{ }[ ]1 1, , ,…
 are 

used to identify the tumor samples and genes around location 
lc that contribute to these footprints as their weights are differ-
ent from zero. Relative to the previous version of TRIAGE, 
the incorporation of principal singular vectors in this step in 
the current version is a major refinement.

Dual Survival Analysis
Dual survival analysis is used to distinguish between driver 
and passenger genes.

Let Eij denote the log2 of expression of gene i i m; , ,∈{ }1…  
in tumor sample j j n; , ,∈{ }1… . Let T be the possibly censored 
survival time for each tumor sample j.

1.	 Unselected survival analysis
�First, for each gene i, in a selected expression footprint,  
a Cox proportional hazards (Cox-PH) model9 is fit.
The Cox-PH model is defined by the following hazards 

function

	
h t E h t Eij i ij( ) = ( ) ( )0 exp β

where h t0
( ) is an unknown baseline hazards function and βi  is 

a parameter to be estimated. The model can also be expressed 
in terms of the survival function at time t as

	
S t E S tij

Ei ij( ) = ( ) ( )
0

exp β

The score statistic and associated P-value are then used to 
assess the significance of the association.
2.	 Selected survival analysis

Since passenger genes located in the expression foot-
prints may also be associated with the survival outcome, a 
so-called selected survival analysis is conducted to reevalu-
ate the association between survival and gene expression 
in the absence of expression footprint. Driver genes are 
indeed assumed to influence the survival outcome even in 
the tumor samples that do not have the expression foot-
print.7 For this reason, model (1) is applied to the tumor 
samples that do not contribute to the footprint (ie, the 
tumor samples with weights Ulc k n∈{ }[ ]1 1, , ,

 equal to 0 for the 
expression footprint in consideration). The score statistic 
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and associated P-value are used to assess the significance of 
the survival association.

Finally, genes that are significantly associated with sur-
vival in both the unselected and selected survival analyses are 
interpreted as candidate driver genes.

Simulations to Study the Properties of the LSVD Score
Simulation scheme. We conducted a simulation study 

to evaluate the statistical properties of the LSVD score (∆ lc),  
when used to identify expression footprints. Induced and 
repressed expression footprints were considered separately.

We simulated gene expression datasets composed of 
m = 1,000 genes profiled among n = 100 tumor samples. Gene 
expression values were simulated with a log-normal distri-
bution Log N− ( )µ σ,  with expectation eµ σ+0 5 2.  and variance 
e e2 2 2 1µ σ σ+ −( ).18 Parameter σ was taken to be 1. The value of 
µ was equal to 0 for genes that did not belong to the expres-
sion footprint, was positive for genes in regions of induced 
expression footprint, and was negative for genes in regions 
of repressed expression footprint. A log2 transformation was 
then applied and the resulting expression was denoted as Xij
for gene i i m; , ,∈{ }1…  in tumor sample j j n; , ,∈{ }1… .

As genes involved in the same or related pathway 
are likely to be co-expressed, we generated datasets with  
so-called “clumpy” dependence (ie, while gene measurements 
are dependent upon each other in small groups, measurements 
in each group are independent from the other groups) using the 
following procedures.19,20 For each group of 10 genes indexed 
by k k; , ,= 1 10 , a random vector R R i nik= =, , ,1 , was gen-
erated from a standard normal distribution N 0 1,( ). The data 
matrix E was then built so that E R Xijk ij ij= ⋅ + − ⋅ρ ρ1 , 
where ρ was the correlation between two groups of genes cho-
sen to be 0, 0.25, 0.5 or 0.75. Finally, in order to evaluate the 
behavior of our LSVD score in approximating real genomic 
data analysis, we standardized the dataset using quantile 
normalization.21

Number of configurations were considered in order to study 
the influence of (i) percentage of tumors contributing to the 
expression footprint, (ii) number of genes forming the expres-
sion footprint, (iii) mean value of the log-normal distribution µ,  

(iv) window size ω, (v) threshold parameter a used to define 
deregulated expression, and (vi) correlation parameter ρ.  
These configurations are summarized in Table 1. Additional 
details for each configuration are provided in Supplementary 
File 1. For each configuration, 200 repetitions of simulations 
were performed.

Simulation Results
Simulations results for configurations (i), (ii), and (iii) are pre-
sented in Figures 1, 2, and 3, respectively. Simulation results 
for configurations (iv), (v), and (vi) are shown in Figures S1, 
S2, and S3 in Supplementary File 2, respectively.

Figure  1 presents the variation of the LSVD score for 
different percentages of tumor samples contributing to the 
induced expression footprint. The LSVD score ∆ lc allows one 
to detect the expression footprints that are shared by 5 to 30% 
of the samples. Simulations for repressed expression footprints 
yielded similar results (data not shown).

Results for expression footprints of varying sizes (Fig. 2) 
show that the value of ∆ lc is saturated for expression footprints 
.10 genes because of the window size of ω = 5 genes. The 
value of ∆ lc is smaller for expression footprints of sizes 10 or 
fewer genes. We obtained similar results for repressed expres-
sion footprints (data not shown).

The influence of the mean expression change is depicted in 
Figure 3A for induced expression footprints and in Figure 3B 
for repressed expression footprints. The score increases with 
the absolute value of the gene effect. The greater the abso-
lute mean value of the log-normal distribution, the higher the 
score.

Figure S1 in Supplementary File 2 presents the results of 
simulations similar to configuration (ii) for different window 
sizes (ω = 5; 10; 20). The LSVD score is lower for smaller win-
dow sizes while its variance is larger.

Figure S2 in Additional File 2 shows the results of sim-
ulations similar to configuration (ii) for different threshold 
parameters (a = 1; 1.5; and 2) indicating that the value of ∆ lc  is 
robust to the variation of a.

Finally, the influence of the correlation parameter on ∆ lc  
was determined for simulation configuration (vi) for ρ  =  0; 

Table 1. Parameter settings used in the six simulated configurations.

Value of the parameters

Configuration % of  
tumors

Number of  
genes in the  
foot print

Mean value of gene  
expression

Window size (w) Threshold (a) Correlation

Induced Repressed

(i) 5 to 80% 20 3 −3 5 1.5 0

(ii) 20% 5 to 100 3 −3 5 1.5 0

(iii) 20% 20 1.5 to 4 −4 to −1.5 5 1.5 0

(iv) 20% 20 3 −3 5 to 20 1.5 0

(v) 20% 20 3 −3 5 1 to 2 0

(vi) 20% 20 3 −3 5 1.5 0 to 0.75
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Figure 1. Graph (A) and boxplot (B) of the LSVD scores for 1,000 overexpressed, simulated genes contributing to the expression footprint for varying 
percentages of tumor samples (representing over 200 repetitions).
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Figure 2. Graph (A) and boxplot (B) of the score value for 1,000 overexpressed simulated genes, for different expression footprint sizes over  
200 repetitions.

0.25; 0.5; 0.75. Figure S3 in Additional File 2 shows that the 
higher the correlation, the smaller the value of ∆ lc, as the addi-
tion of the correlation introduces noise in the dataset. Even 
with this noise, expression footprints are still detectable. Sim-
ulations using different sample sizes (n = 50; 100; 200; 500) 
yielded similar results (data not shown). Thus, the sample size 
did not affect the value of ∆ lc.

Deriving Driver Gene Catalogs in Five Cancers
In this section, we present the results obtained when we used 
TRIAGE to identify candidate driver genes that are deregulated 
in subpopulations of tumors. We used five large datasets repre-
senting cancers of the breast, ovary, lung, colon, and glioma.

The datasets that we used are summarized in Table  2; 
sample sizes varied from 111 to 741 patient tumors. Gene 
expression was measured using Affymetrix HU133A, 
HU133B, and HU133Plus2.0 arrays (Affymetrix, Santa 
Clara, CA, USA). We used na32 annotation files obtained 
from Affymetrix (http://www.affymetrix.com). Raw data 
were normalized using quantile normalization.21 We averaged 
the measurements of transcripts that corresponded to the 
same gene on a chromosome. Different types of survival out-
comes were available in different datasets, defined as follows. 
Overall survival (OS) was defined as the time from inclusion 
of the respective patient in the study (eg, surgery) until death 
or last follow-up. Relapse free survival (RFS) was defined as 
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the time from inclusion until disease-related death, disease 
recurrence (either local or distant), or last follow-up. Disease 
metastasis-free survival (DMFS) was defined as the time 
interval between inclusion to the first distant recurrence event 
or to last follow-up.

For each dataset, ∆ lc was calculated for each chromo-
somal arm with a sliding window of size ω = 5. Induced and 
repressed expression footprints were identified separately.  
A threshold corresponding to median madlc lc∆ ∆( ) ± ( )2 , with 
“mad” representing adjusted MAD, was chosen to identify 
relevant expression footprints. Regions with LSVD score 
exceeding this threshold were selected and extended by ω on 
either side for dual survival analyses. The extended regions 
were considered to be expression footprints.

Unselected and selected survival analyses were performed 
using the genes within the expression footprints. Associations 
between gene expression and “poor” prognosis were obtained 
for the genes located within induced expression footprints in 
order to identify potential oncogenes. Associations between 
gene expression and “good” prognosis were obtained for those 
within repressed expression footprints in order to identify 
potential tumor suppressor genes. A threshold of P = 0.05 was 
used to indicate statistical significance for both sets of survival 

analyses. Circular plots22 (see Supplementary File 3) provide 
an overview of these results, including the value of ∆ lcfor each 
chromosome and the location of potential oncogenes and 
tumor suppressors along the genome. For instance, the plot 
in Figure S5 in Supplementary File 3 (from the breast cancer 
study) indicates that the highest values of ∆ lc were located on 
chromosome 17q for the induced expression footprint and on 
chromosome 7p for the repressed expression footprint. The 
largest sets of potential oncogenes were observed on chromo-
somes 17q, 19, and 8. Potential tumor suppressors were located 
throughout the genome.

Supplementary Files 4 and 5 provide lists of putative 
oncogenes and tumor suppressors selected by TRIAGE for 
different cancers studied. A pathway analysis on the selected 
genes (1638 oncogenes and 1196 tumor suppressors) performed 
using Ingenuity Pathway Analysis (Ingenuity Systems, www.
ingenuity.com); see Supplementary File 6) shows signifi-
cant enrichment in cancer annotated genes, most specifically 
in carcinoma, in solid tumor, and in several other types of 
tumors and cancers. A total of 786 genes were classified under 
this category. Other pathways commonly observed in cancers 
including apoptosis, cell death, cell growth and proliferation, 
and tumor morphology were also significantly enriched.
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Table 2. Description of the different cancer studies. The two rightmost columns give the number of putative driver genes identified by TRIAGE.

GEO ID Cancer  
type

Platform Sample  
size

No of  
survival data

Survival  
outcome

Ref. No of potential  
oncogenes

No of potential tumor  
suppressors

GSE9891 Ovarian HU133Plus2.0 295 220 RFS [29] 171 227

GSE16011 Glioma HU133Plus2.0 284 266 OS [30] 985 784

GSE17538 Colon HU133Plus2.0 232 232 RFS [31] 71 63

GSE3141 Lung HU133Plus2.0 111 111 OS [32] 46 26

Combined study* Breast HU133A+B 741 624 DMFS [33] 445 118

Notes: *GSE3494, GSE1456, GSE6532, GSE4922.
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Figure 4. Number of genes in common among different cancer types.

a dosage effect. For COL1A2, high LSVD scores are more 
localized indicating that, although this gene does not belong 
to a large region of deregulation, it might be activated by other 
mechanisms, such as methylation or fusion.

Discussion
In this paper, we presented refinements of the TRIAGE 
method, an approach that we developed to identify potential 
driver genes. We first characterized the LSVD score using 
simulation. We next identified known and novel driver genes 
in cancer using gene expression data, genomic information, 
and survival data. TRIAGE uses two main steps. First, ∆ lc is 
derived using a LSVD score to identify regions of deregulated 
expression, called expression footprints. Then, two survival 
analyses were performed on the genes located within these 
selected loci. The score derived in the first step represents the 
linkage structure between the set of genes and the set of tumor 
samples. This score is obtained using three factors: the principal 
singular value, which quantifies the number of links between 
the tumor samples and the genes and the two ordered principal 
singular vectors of the LSVD, which together summarize the 
connectivity of the network. Calculating this score using local 
matrices allows us to take into account the location of expres-
sion footprints throughout the genome. Indeed, genes located 
in the same region are more likely to influence each other or to 
be influenced by chromosomal or epigenetic events.

In the second step, dual survival analyses are used to 
distinguish driver genes from passenger genes. First, unse-
lected survival analysis is used to identify the genes that 
are significantly associated with time-to-event outcomes.  
A selected survival analysis is conducted next by excluding the 

From the lists of potential oncogenes and tumor 
suppressors, we intersected those common to the different 
cancer types (see Fig. 4 for summary statistics). The number 
of genes commonly expressed in different cancer types was 
relatively small compared to the total number of genes identi-
fied for each individual cancer, indicating that driver genes are 
specific to a given cancer type. The most commonly expressed 
genes are listed in Table 3; the top four genes from this list 
are present in at least three different cancers. Among them, 
MMP1n belongs to the matrix metalloproteinase (MMP) fam-
ily, which is known to play a role in metastasis as up-regulation 
of MMPs lead to enhanced cancer cell invasion.23 IL8o is 
an important mediator of the inflammatory response and is 
implicated in various cancer types.24,25 COL1A2p encodes one 
of the chains for type I collagen and is methylated in multiple 
cancer cell lines.26,27 It is also involved in a fusion with gene 
PLAG1 in lipoblastoma, a benign infant tumor.28

Figure  5 displays the centered and normalized LSVD 
score for the different windows containing MMP1, IL8, 
and COL1A2 (0 corresponds to the window centered on the 
considered gene). Stars indicate studies where the gene was 
significantly associated with both the unselected and selected 
survival. For most studies, the LSVD score for MMP1 was 
high for all window sizes, suggesting that this gene belongs 
to a larger region of deregulation. In a similar way, IL8 
is deregulated as part of a large expression footprint. The 
deregulation of MMP1 and IL8 is strongly associated with 

n �matrix metallopeptidase 1 (interstitial collagenase).
o �interleukin 8.
p �collagen, type I, alpha 2.
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Table 3. Genes common to the five cancer studies.

Chr. Gene
Symbol

Gene Name GSE17536
Colon

GSE16011
Glioma

GSE3494
Breast

GSE3141
Lung

GSE9891
Ovarian

Total

Oncogenes              

4q IL8 Interleukin 8 1* 1* 1* 1* 0* 4

7q COL1A2 Collagen, type I, alpha 2 0* 1 0 1 1 3

9q ASPN Asporin 1 1 0 0 1 3

11q MMP1 Matrix metallopeptidase 1  
(interstitial collagenase)

1* 1* 1* 0* 0* 3

1q RPTN Repetin 0 1 0 1 0 2

1q S100A2 S100 calcium binding protein A2 1* 1 0* 0* 0 2

3q PLSCR4 Phospholipid scramblase 4 0 1 0 0 1 2

3q TM4SF1 Transmembrane 4 L six family  
member 1

1* 1 0* 0* 0* 2

4q LOC255130 Uncharacterized LOC255130 0 1 0 1 0 2

4q CXCL6 Chemokine (C-X-C motif)  
ligand 6 (granulocyte  
chemotactic protein 2)

0* 1 0* 1* 0 2

4q CXCL3 Chemokine (C-X-C motif) ligand 3 0* 1 0 1 0 2

4q AREG Amphiregulin (schwannoma-derived 
growth factor)

1* 1* 0* 0* 0* 2

4q C4orf46 Chromosome 4 open reading  
frame 46

0 1 1 0 0 2

5q FST Follistatin 0 1 0 0* 1* 2

5q GPX8 Glutathione peroxidase 8 (putative) 0 1 0 0 1 2

5q C5orf46 Chromosome 5 open reading  
frame 46

1 1 0 0 0 2

6p F13A1 Coagulation factor XIII, A1  
polypeptide

0 1 0 0 1 2

6p LY86 Lymphocyte antigen 86 0 1 0 0 1 2

6p HIST1H1D Histone cluster 1, H1d 0 1 1 0 0 2

6p HIST1H2AL Histone cluster 1, H2al 0 1 0 1 0 2

6q EYA4 Eyes absent homolog 4  
(Drosophila)

0 1 0 1 0 2

7p SKAP2 Src kinase associated  
phosphoprotein 2

0 1 0 0 1 2

7p HOXA3 Homeobox A3 0 1 0 0 1 2

7p HOXA-AS2 HOXA cluster antisense RNA 2  
(non-protein coding) 

0 1 0 0 1 2

7p HOXA4 Homeobox A4 0 1 0 0 1* 2

7p HOXA5 Homeobox A5 0 1 0* 0* 1 2

7p TAX1BP1 Tax1 (human T-cell leukemia  
virus type I) binding protein 1

0 1 0 1 0 2

7q HGF Hepatocyte growth factor  
(hepapoietin A; scatter factor)

0* 1* 0* 0* 1* 2

7q GNG11 Guanine nucleotide binding protein  
(G protein), gamma 11

1 1 0 0 0 2

8p DLC1 Deleted in liver cancer 1 0* 1 0* 0* 1 2

8q ANGPT1 Angiopoietin 1 0* 1* 0* 0* 1* 2

8q GPR172A G protein-coupled receptor 172A 0 1 1 0 0 2

9q ECM2 Extracellular matrix protein 2,  
female organ and adipocyte specific

0 1 0 0 1 2

10q ZWINT ZW10 interactor 0 1 1 0 0 2

(Continued)
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Table 3. (Continued)

Chr. Gene
Symbol

Gene Name GSE17536
Colon

GSE16011
Glioma

GSE3494
Breast

GSE3141
Lung

GSE9891
Ovarian

Total

10q ACSL5 Acyl-CoA synthetase long-chain  
family member 5

0* 1* 0 0 1 2

11p HRAS V-Ha-ras Harvey rat sarcoma  
viral oncogene homolog

0* 1* 1* 0* 0* 2

11p FIBIN Fin bud initiation factor 0 1 0 0 1 2

11p LGR4 Leucine-rich repeat-containing  
G protein-coupled receptor 4

0 0 1 0 1 2

11q CFL1 Cofilin 1 (non-muscle) 0* 0* 1* 1* 0* 2

11q PPP1CA Protein phosphatase 1, catalytic  
subunit, alpha isoform

0 1 1* 0 0 2

11q PDGFD Platelet derived growth factor D 0 1* 0 0* 1* 2

11q CASP4 Caspase 4, apoptosis-related  
cysteine peptidase

0 1 0* 0* 1* 2

12p NDUFA9 NADH dehydrogenase  
(ubiquinone) 1 alpha subcomplex,  
9, 39 kDa

0 1 1 0 0 2

12p OLR1 Oxidized low density  
lipoprotein (lectin-like) receptor 1

0 1 0* 0 1 2

12p GABARAPL1 GABA(A) receptor-associated  
protein like 1

1 0 0* 0 1 2

12q HOXC13 Homeobox C13 0 1 1 0 0 2

12q HOTAIR Hox transcript antisense intergenic  
RNA

0* 1 1* 0 0 2

12q RAP1B RAP1B, member of RAS  
oncogene family

0 1* 1 0 0 2

12q ATP5H ATP synthase, H+ transporting,  
mitochondrial F0 complex,  
subunit d

0 1 1 0 0 2

12q NUP107 Nucleoporin 107 kDa 0 1 1 0 0 2

12q MDM2 Mdm2, transformed 3T3 cell  
double minute 2, p53 binding  
protein (mouse)

0* 1* 1* 0* 0* 2

12q LUM Lumican 1* 0 0* 0* 1 2

12q DCN Decorin 1* 0* 0* 0* 1* 2

13q MIR1244–1 MicroRNA 1244-1 0 1 1 0 0 2

13q PTMA Prothymosin, alpha (gene sequence 
28)

0* 1 1 0* 0 2

13q LOC441454 Prothymosin, alpha pseudogene 0 1 1 0 0 2

14q SNORD114–3 Small nuclear RNA, C/D box 114–3 1 0 0 0 1 2

16p C16orf59 Chromosome 16 open reading frame 
59

0 0 1 1 0 2

16q GOT2 Glutamic-oxaloacetic  
transaminase 2, mitochondrial  
(aspartate aminotransferase 2)

0 1 1 0 0 2

16q CKLF Chemokine-like factor 0 1 1 0 0 2

17q BRIP1 BRCA1 interacting protein  
C-terminal helicase 1

0* 1 1* 0 0* 2

17q ABCA8 ATP-binding cassette, sub-family  
A (ABC1), member 8

0 1 0 0 1 2

18q ALPK2 Alpha-kinase 2 0 1 0 0 1 2

18q DSEL Dermatan sulfate epimerase-like 0 1 0 0 1 2

19q C19orf48 Chromosome 19 open reading  
frame 48

0 1 1 0 0 2

20q RPN2 Ribophorin II 0 1 1* 0 0 2

(Continued)
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Table 3. (Continued)

Chr. Gene
Symbol

Gene Name GSE17536
Colon

GSE16011
Glioma

GSE3494
Breast

GSE3141
Lung

GSE9891
Ovarian

Total

20q TTI1 TELO2 interacting protein 1 0 1 1 0 0 2

22q POM121L9P POM121 membrane  
glycoprotein-like 9, pseudogene 

0 1 0 0 1 2

Tumor Suppressor genes

1q TXNIP Thioredoxin interacting protein 0* 1 1* 0 0 2

1q TTC13 Tetratricopeptide repeat domain 13 0 1 0 0 1 2

2q MRPL30 Mitochondrial ribosomal  
protein L30

0 1 0 0 1 2

4p CCDC96 Coiled-coil domain containing 96 1 0 0 0 1 2

5q DMXL1 Dmx-like 1 0 1 0 1 0 2

6p PPP2R5D Protein phosphatase 2, regulatory  
subunit B’, delta isoform

0 1 0 0 1 2

8q ZNF704 Zinc finger protein 704 1 1 0 0 0 2

8q PAG1 Phosphoprotein associated with  
glycosphingolipid microdomains 1

1 1 0 0* 0 2

10q ANK3 Ankyrin 3, node of Ranvier  
(ankyrin G)

0 1 0 1 0 2

11q PITPNM1 Phosphatidylinositol transfer  
protein, membrane-associated 1

1 0 0 0 1* 2

12q SET SET translocation (myeloid  
leukemia-associated)

0* 1 0 0 1 2

17p LOC284014 Uncharacterized LOC284014 0 1 0 0 1 2

17p ZFP3 Zinc finger protein 3 homolog  
(mouse)

0 1 0 0 1 2

17p C17orf81 Chromosome 17 open reading  
frame 81

0 1 0 0 1 2

17p CYB5D1 Cytochrome b5 domain  
containing 1

1 0 0 0 1 2

18q TCF4 Transcription factor 4 0* 1* 1* 0* 0 2

19p CFD Complement factor D (adipsin) 0 0 1 1 0 2

21p LOC100132288 NA 0 1 1 0 0 2

21p LOC389834 Hypothetical gene supported  
by AK123403

0 1 1 0 0 2

Notes: For each study, 1 indicates that the gene was selected by the TRIAGE methodology and 0 indicates otherwise. A star (*) indicates that the 
gene has been shown to be associated with the disease (according to Genecards, www.genecards.org). The last column of the table presents 
the number of studies in which the gene was identified as potential driver. Details on hazard ratios and P-values are provided in Additional Files 
4 and 5.

tumor samples that contribute to the expression footprint in 
order to distinguish driver genes from passenger genes. Driver 
genes are presumed to have an impact on survival even in the 
absence of the corresponding expression footprint, whereas 
passenger genes are selected only because they are co-located 
with a driver gene and thus belong to the expression footprint. 
Potential driver genes are those that are significantly associ-
ated with survival in both the unselected and selected survival 
analyses.

Our simulation results illustrated that the value of ∆ lc
increases with the size of both the expression footprint size 
and the relative risk. While it is robust to varying thresh-
old parameters (ie, within a range of 1–2), it is affected by 
the size of the window, although it is important to note 

that this is not a problem if the same window size is used 
throughout the analysis. Indeed, the score was only satu-
rated in larger expression footprints, which were few in 
number.

Using real datasets derived from five different cancer 
types, we illustrated that TRIAGE was able to identify 
potential driver genes that were enriched for biological pro-
cesses known to be involved in cancer progression. Among 
the selected genes, known oncogenes such as MMP1, IL8, 
and COL1A2 were identified as drivers for multiple cancers. 
Many new potential driver genes were identified and further 
biological validation studies would be invaluable to confirm 
or disprove the importance of these genes in the etiology 
of cancer.
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Our results illustrate that TRIAGE offers several advan-
tages over traditional methods of expression analysis, which 
select genes that are commonly over- or underexpressed. In 
contrast, TRIAGE relies on patient heterogeneity to highlight 
different subtypes of gene expression. TRIAGE is thus a use-
ful tool for identifying the genes that distinguish between sub-
groups of patients having the same disease but differing in their 
genomic profiles, including differences in active driver genes. 
These subpopulations could thus potentially benefit from dif-
ferent treatments. Such patient-specific approaches are central 
to the increasingly influential field of personalized medicine.

TRIAGE is not without some limitations. Here, we 
focused on the analysis of gene expression. However, the 
mechanisms that underlie cancer are tremendously complex, 
involving a host of other genomic aberrations including copy 
number variations, mutations, and fusions. We anticipate 
that future refinements to the TRIAGE approach will allow 
us to account for these influences. TRIAGE is limited to the 
identification of driver genes harbored in regions associated 
with deregulated gene expression. However, many genes 
become deregulated in isolation through many mechanisms. 
For example, p53 is deregulated by a deleterious mutation 
but the expression of its genomic region is not deregulated. 
Similarly, fusion genes may be formed by translocations in 
the absence of tandem duplications. These limitations not-
withstanding, TRIAGE is a valuable tool to identify driver 
genes that are associated with regions of deregulated gene 
expression in cancer and may perhaps be applicable to other 
vexing conditions as well.
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