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ABSTR ACT: The relationship between wound healing and cancer has long been recognized. The mechanisms that regulate wound healing have been 
shown to promote transformation and growth of malignant cells. In addition, chronic inflammation has been associated with malignant transformation in 
many tissues. Recently, pathways involved in inflammation and wound healing have been reported to enhance cancer stem cell (CSC) populations. These 
cells, which are highly resistant to current treatments, are capable of repopulating the tumor after treatment, causing local and systemic recurrences. In this 
review, we highlight proinflammatory cytokines and developmental pathways involved in tissue repair, whose deregulation in the tumor microenvironment 
may promote growth and survival of CSCs. We propose that the addition of anti-inflammatory agents to current treatment regimens may slow the growth 
of CSCs and improve therapeutic outcomes.
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Introduction
Tumors have been described as wounds that do not heal.1 
Recently, inflammatory processes that occur during normal 
wound healing have been linked to the pathological state 
of many tumors. Normal epithelial tissue exists in a state of 
homeostasis where tissue regeneration is tightly regulated by 
epithelial stem cells located within highly specialized niches. 
During tissue injury, replenishment of epithelial cell loss is 
ensured by the proliferation of these stem cells and their prog-
eny in response to proinflammatory cytokines.2,3 Additionally, 
numerous potent growth factors released by macrophages and 
lymphocytes during wound healing promote stem cell prolif-
eration and plasticity. Among these are morphogens that are 
commonly associated with embryonic development.4

Many of the factors involved in the inflammatory micro-
environment have also been identified as key contributors to the 
cancer stem cell (CSC) niche. CSCs have been identified in a 
number of solid tumors and are thought to be a subpopulation 
of tumor cells that resemble normal stem cells and continuously 
undergo differentiation to populate the heterogeneous tumor. 
In this review, we focus on breast CSCs and highlight proin-
flammatory factors, which are involved in regulation of normal 
adult stem cells during tissue repair and have also been shown to 
promote survival and proliferation of CSCs in breast cancer. We 
propose that the presence of inflammation in the tumor microen-
vironment may contribute to tumor aggressiveness and treatment 
resistance by shifting the equilibrium between differentiated and 
undifferentiated tumor cells toward a CSC phenotype.
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Wound Healing, Chronic Inflammation,  
and the Tumor Microenvironment
Wound healing is a dynamic process that consists of an inflam-
matory phase followed by epithelial cell proliferation and tissue 
remodeling. In normal tissue, the inflammatory phase is limited, 
lasting only 3–14 days. Tissue injury induces immediate recruit-
ment of neutrophils, which are later replaced by macrophages 
and lymphocytes. Infiltrating leukocytes play a major role in 
secretion of inflammatory cytokines, growth factors, and che-
mokines, which stimulate proliferation of progenitor cells and 
recruitment of keratinocytes and endothelial cells during the 
proliferative phase of wound healing.2 At this stage, granula-
tion tissue forms, angiogenesis is induced, and new extracellular 
matrix (ECM) is secreted. Epithelial cells undergo epithelial–
mesenchymal transition (EMT) and migrate to the edges of the 
wound to impart re-epithelialization of the damaged tissue. In 
the final phase of wound healing, the maturation phase, wound 
contraction, and differentiation of fibroblasts to myofibroblasts 
result in the formation of scar tissue. Failure to exit the inflam-
matory stage results in improper tissue remodeling and is associ-
ated with impaired wound healing in many disorders including 
diabetes mellitus, pressure necrosis, and vasculitis.5

Likewise, chronic inflammation has been linked to tumori-
genesis, tumor progression, and metastasis in many different 
cancers. The tumor microenvironment shares many features of a 
chronic wound. Infiltrating leukocytes present within the tumor 
and associated stroma stimulate tumor growth, invasion, and 
angiogenesis. Tumor-associated macrophages (TAM), tumor-
associated dendritic cells (TADC), and tumor infiltrating lym-
phocytes are a source of proinflammatory mediators in the tumor 
microenvironment. Environmental stimuli, such as hypoxia and 
DNA damaging agents, elicit secretion of chemokines from tumor 
cells that recruit pro-tumor inflammatory cells and help to shape 
the pro-tumor immune response.6 Wound healing responses 
associated with tissue injury have been shown to promote the 
growth of breast cancer (Table 1). It has recently been shown that 
injection of wound fluid close to the tumor site in mice bearing 
syngeneic breast cancer xenografts resulted in increased tumor 
growth.7 Additionally, acute tissue injury associated with biopsy 
in rodent models of breast cancer is reported to promote lung 
metastasis.8 It has recently been recognized that the abundance 
of inflammatory cytokines and growth factors that occur during 
post-therapy wound healing can also contribute to survival and 
expansion of resistant CSCs.9–11

CSCs and Treatment Resistance
CSCs are a subpopulation of cells within a tumor that share 
features with normal stem cells in which they have the ability 
to self-renew and differentiate into multiple lineages.12,13 Ini-
tially described in leukemia,14,15 CSCs have been identified in 
a variety of solid cancers including brain,16 breast,17 prostate,18 
pancreas,19 melanoma,20 and colon.21–23 Injections of small 
numbers of CSCs into immunocompromised mice resulted in 
formation of heterogeneous tumors, suggesting that these cells 

are the tumor-initiating population.17 According to the CSC 
theory, tumors, like normal tissue, are organized in a hierarchy 
with a small number of CSCs at the top. Only the CSC popu-
lation has the ability to initiate tumors and create differentiated 
progeny, which lack the ability to do so, and thus contribute to 
the heterogeneity of tumors. This is believed to be a dynamic 
process that is regulated by epigenetic events24 and may be 
induced by inflammatory factors25 or cellular stress.26 Thus, the 
number of CSCs present within the tumor is highly variable 
and influenced by the tumor microenvironment.

The presence of CSCs in breast cancer specimens has been 
associated with poor prognosis. Higher levels of CSCs, identi-
fied by the phenotype CD44high/CD24-/low/ESA+,27,28 and high 
expression of the enzyme aldehyde dehydrogenase (ALDH)29 
predict poor clinical outcome for breast cancer patients.30–32 
Investigation of patients with surgically resected invasive 
ductal carcinoma after chemotherapy showed that patients 
with CD44high/CD24-/low tumor cells had shorter cumulative 
disease-free and overall survival, suggesting that this popula-
tion may be an important factor of malignant relapse in these 
patients.33

Expression of CSC markers in breast cancer is predictive 
of metastasis.34,35 Breast CSCs have been linked to metas-
tasis through enhanced expression of EMT proteins. Inves-
tigation of gene expression patterns of CD44high/CD24-/low 
cells revealed upregulated expression of genes associated with 
EMT compared to non-stem like cells.36 Overexpression of 
the EMT-associated protein Twist, or treatment with TGF-β,  
a known inducer of EMT, leads to an increased number of 
cells bearing CSC phenotypes in non-tumorigenic human 
mammary epithelial cells.37 Likewise, inhibition of EMT 
has been shown to reduce the number of CD44high/CD24-/low 
cells as well as limit self-renewal properties in mammosphere 
forming assays.38 Therefore, a higher amount of EMT-related 
proteins may promote increases in the breast CSC population 
and pose a greater risk of breast cancer metastasis.

Growing evidence suggests that breast CSCs are chemo- 
and radioresistant. CD44high/CD24-/lowESA+ breast cancer 
cells were found to be more resistant to chemotherapeutic 
agents, such as paclitaxel and 5-fluorouracil, compared to the 
bulk of tumor cells.39 Chemotherapy has been found to be less 
effective on breast CSCs because of multiple mechanisms that 
include overexpression of ATP-binding cassette transporters 
(eg, ABCG2), upregulation of multidrug resistance transport-
ers (eg, MDR1), and enhanced ability to survive and repair 
damaged DNA.32,40–42 The size of the breast CSC popula-
tion may therefore determine chemotherapeutic sensitivity. 
Expression of CSC markers has been shown to be predictive 
of response to neoadjuvant chemotherapy in breast cancer 
patients, further confirming the resistance of this population to 
standard chemotherapy.

The breast CSC population has also been shown to be 
resistant to radiation therapy.40,43 CD44high/CD24-/low breast 
CSCs have an increased ability to scavenge free-radicals and 
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Table 1. Comparison of signaling pathways involved in wound healing and cancer.

PATHWAY FUNCTION IN WOUND HEALING FUNCTION IN CANCER

Hedgehog

* regulation of stem cell proliferation and plasticity * regulation of cancer stem cell proliferation and 
plasticity

* Induction of EMT to promote epithelial cell 
migration

*induction of eMt in cancer cells

*angiogenesis *angiogenesis

* Re-epithelialization and wound closure *Chemoresistance

Notch

* Cell proliferation and migration of endothelial 
cells, keratinocytes, and fibroblasts at wound site

* Survival and proliferation of cancer stem cells

* Recruitment of inflammatory cells to wound site

wnt

*Migration of epithelial cells * Self-renewal of the cancer stem cells

*Self-renewal of stem cells *Cancer stem cell plasticity

*Progenitor cell plasticity * Contributes to radioresistance of cancer stem cells

tGF-β

*angiogenesis *angiogenesis

*Inflammatory cell infiltration * Expansion of cancer stem cell population

*Fibroblast proliferation *Fibroblast proliferation

* Re-epithelialization and wound contraction *regulator of eMt in cancer cells

*induction of eMt

iL-1 β/iL-6/stat3

* Recruitment of inflammatory cells to wound site *Self-renewal of cancer stem cells

*Proliferation of progenitor cells *Cancer stem cell plasticity

* Initiates re-epithelialization and wound closure 
through activation of developmental pathways

*Tumor growth and metastasis

* regulation of genes in cancer progression

iL-8

* Chemoattractant to recruit inflammatory cells to 
wound site

*Cancer stem cell proliferation

* Chemoattractant to recruit inflammatory cells to 
tumor microenvironment

 

overcome oxidative stress.44,45 Although radiation preferentially 
kills non-tumorigenic cells resulting in the enrichment of 
CSCs,40 the increase in the number of breast CSCs follow-
ing ionizing radiation is not fully explained by preferential 
killing of non-tumorigenic cells.46,47 It has been proposed that 
differentiated cancer cells may acquire stem cell traits under 
certain microenvironmental stressors.48,49 Radiation-induced 
re-programming of CSCs has been observed in vitro;47,50 
however, in vivo conversion of non-stem cells into CSCs may 
require a complex network of signals from the microenviron-
ment and signaling changes within the cancer cells.

The initiation and progression of breast cancer rely on 
changes within the malignant epithelial cells as well as the 
tumor microenvironment. Normal and tumorigenic non-stem 
cells have the ability to spontaneously convert to a stem-like 
state.51 In addition, it has been shown that in vivo, differenti-
ated cells can de-differentiate/re-program spontaneously under 
the right microenvironment conditions.52 Conversion of non-
stem cells to CSCs either occurring spontaneously or therapy 
induced is tightly regulated by the tumor microenvironment. 
Thus, changes in the cellular populations or signals within the 
tumor microenvironment may drive proliferation and survival 

of the CSC population, promoting tumorigenicity, tumor 
recurrence following treatment, and metastasis.

Inflammatory Cytokines in Wound Healing  
and CSCs
Inflammatory cytokines play an important role in wound heal-
ing and tissue repair. Cytokines such as interleukin (IL)-1β, 
IL-6, and IL-8 are strongly upregulated during the inflamma-
tory phase of wound healing. They help to initiate re-epithelial-
ization and wound closure through activation of developmental 
pathways.3 These cytokines have also been reported to be pres-
ent in the tumor microenvironment and contribute to tumor 
growth and increased stemness of tumor cells.

IL-1β is one of the first cytokines to be released during 
response to tissue injury. It is induced by platelet aggregation 
and leads to the recruitment of inflammatory cells to the site 
of tissue injury.3,53 IL-1β signaling stimulates the produc-
tion of IL-6 and IL-8 in inflammatory cells via an NF-κβ-
dependent pathway.54 Activation of IL-6 and IL-8 signaling 
pathways results in phosphorylation and nuclear activation of 
signal transducer and activator of transcription 3 (STAT3), 
which is a key regulator of genes involved in tissue repair and 
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cancer progression.55 Levels of IL-6 and IL-8 at the injury 
site increase exponentially during the initial phases of wound 
healing and decrease following re-epithelialization.53 Elevated 
levels of IL-1β, IL-6, and IL-8 have been associated with 
chronic inflammation in many disorders including rheumatoid 
arthritis,56 sepsis,57 cardiovascular disease,58 and diabetes.59,60 
IL-8 serves as a potent chemoattractant and is required for the 
recruitment of inflammatory cells to the site of injury.61 IL-6 
also plays a role in macrophage recruitment and is important 
for wound closure and re-epithelialization.62 In addition, IL-6 
knock-out mice demonstrate impaired wound healing. Punch 
biopsies in these mice took up to three times longer period to 
heal than those of wild-type mice and exhibited delayed reepi-
thelialization.63,64 Likewise, targeted knock-down of STAT3 
resulted in impaired proliferation of epidermal progenitor 
cells and delayed wound healing, resembling that of the IL-6 
knockouts.65

In breast cancer, high levels of IL-6 and IL-8 are associated 
with poor prognosis.66,67 Activation of these signaling pathways 
within the tumor cells and the tumor microenvironment has 
been linked to tumor growth and metastasis.68,69 High levels 
of IL-6 are critical for NF-κβ-mediated transformation, mam-
mosphere formation, and tumorigenesis.70 Treatment of nor-
mal mammary tissues with recombinant IL-6 or IL-8 results in 
increased self-renewal and expression of stem cell markers.71–73 
Inhibition of IL-8 receptor binding68 and STAT3 activation74 
has been shown to decrease tumorigenicity of breast cancer 
cell lines. Within the tumor microenvironment, IL-6 and IL-8 
are secreted by TAM, TADC, mesenchymal stem cells, and 
CSCs.75 Activation of IL-6 in tumor cells has been shown to 
activate a positive feedback loop, increasing both the secretion 
of IL-6 and the binding of IL-6 to its receptor.72 In addition, 
STAT3 signaling in inflammatory cells induces transcriptional 
activation of NF-κβ, leading to increased release of IL-6 and 
IL-8 within the tumor microenvironment.76 Interestingly, acti-
vation of IL-6-STAT3 signaling induces a stem-like phenotype 
in non-stem cells.25,77 IL-6 was shown to activate Oct-4 signal-
ing and increase xenograft formation in non-CSCs, suggesting 
an effect on stem cell plasticity. Thus, inflammatory signaling 
within the tumor microenvironment may promote changes 
in differentiated cancer cells by increasing expression of stem 
cell markers and self-renewal properties. This may represent a 
change in function of existing tumor cells or the emergence of 
CSCs within inflammatory microenvironments.

Developmental Pathways in Wound Healing  
and CSCs
In addition to the initiation of inflammatory cascades, wound-
ing results in reactivation of developmental pathways that, in 
some ways, recapitulate the tissue generation that occurs dur-
ing embryogenesis. Developmental pathways are activated by 
inflammatory factors at the beginning of the proliferative phase 
of wound healing and are crucial to wound closure and tissue 
regeneration, which occur in the later phases. Similar to wound 

healing, developmental pathways can be activated in the tumor 
microenvironment by immune cells,78 inflammatory signaling 
cascades,79 and in response to cellular stress.80 These pathways 
are important for the proliferation and survival of breast CSCs, 
as well as stimulation of angiogenesis and initiation of metas-
tasis. Key developmental pathways that are activated during 
wound healing are described in the following subsections.

Hedgehog. The hedgehog (HH) pathway is a key mor-
phogenic pathway involved in many aspects of embryonic 
development, including regulation of embryonic stem cells, tis-
sue patterning, and angiogenesis.81,82 HH pathway activation 
occurs when a secreted ligand (Sonic, Desert, or Indian) binds 
to the surface receptor Patched (PTCH). This binding releases 
the inhibition of the transmembrane receptor SMOOTH-
ENED (SMO), setting off a signaling cascade that results in 
the nuclear translocation of the Gli family of transcription fac-
tors. Transcriptional targets for Gli include genes controlling 
proliferation, angiogenesis, differentiation, EMT, and survival. 
Recently, a role for HH in wound healing and tissue repair has 
become evident. Activation of HH signaling has been reported 
to promote proliferation of epithelial progenitor cells during 
airway injury83 and contributes to epithelial cell migration by 
inducing EMT.84 Diabetic mice treated with topical Sonic 
hedgehog (SHH) experienced improvements in re-epithelial-
ization and wound closure.85 Inhibition of HH signaling has 
been shown to impair cutaneous wound healing both by inhib-
iting angiogenesis and by decreasing proliferation of progenitor 
populations.86 HH signaling is activated in the area surrounding 
the wound and promotes plasticity of epidermal cells during re-
epithelialization, leading to increases in stem cell populations.86

Prolonged activation of HH during cutaneous wound 
healing results in suppression of differentiation and reprogram-
ming of cells to resemble interfollicular epidermal progenitor 
cells. These de-differentiated cells behave as tumor initiat-
ing CSCs, resulting in the formation of basal cell carcinoma 
(BCC).87 In addition to BCC, HH signaling has been shown 
to be important for maintenance of both normal and malignant 
stem cells in the skin,88,89 prostate,89 pancreas,90 brain,91 and 
breast.92,93 Similar to its role in wound healing, HH signaling 
in malignant tissues induces proliferation of progenitor popula-
tions and induces EMT within the stem cell compartment.94,95 
Although some tumors have constitutive activation of HH sig-
naling, activation of the pathway can also arise from the tumor 
microenvironment. Release of SHH ligand by TAM has been 
reported in breast cancer models and promotes expansion of 
CSC populations and drug resistance through HH-mediated 
regulation of drug transporters.78

HH signaling plays a role in stem cell expansion, both in 
wound healing and within the tumor microenvironment. Com-
ponents of the pathway including Gli-1, Gli-2, and PTCH are 
highly expressed in normal and malignant mammary stem cells. 
Activation of the HH signaling is necessary for mammosphere 
formation and for treatment of mammary stem cells with SHH 
increasing the size of mammosphere, indicating that the HH 
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signaling is involved in regulation of self-renewal and prolif-
eration of mammary stem cells.92 We have recently shown that 
release of SHH from tumor cells is induced by chemotherapy 
treatment in breast cancer cells and serves to expand stem-like 
populations.9 Breast cancer cell lines treated with docetaxel 
showed an expansion of cells bearing the CD44highCD24-/low  
phenotype, as well as increased mammosphere formation 
and expression of the stemness gene OCT4. This expansion is 
dependent on the HH signaling as it can be blocked with SHH 
blocking antibodies or SMO inhibitors. It is unknown whether 
the expansion of CSCs driven by chemotherapy-induced HH 
is due to the exit of CSC from G0 and increased proliferation, 
or enhanced resistance of the CSC populations through SHH-
induced upregulation of drug transporters and DNA repair 
enzymes. Alternatively, it is possible that HH stimulation, induced 
by inflammation associated with chemotherapeutic stress, may 
alter the plasticity of non-stem like populations, causing them to 
acquire a CSC phenotype. Several studies have shown that lin-
eage committed cells may have the capacity to acquire stemness 
features during alterations in homeostasis such as those that occur 
during wound healing and the tumor microenvironment.96–100 
For example, release of SHH from peri-follicular sensory nerve 
endings has been shown to result in permanent conversion of 
hair follicle progenitor cells into intrafollicular epidermal stem 
cells during wound healing. The progeny of these converted cells 
is capable of generating long-lasting epidermal clones suggesting 
the conversion of committed follicular cells into self-renewing 
epidermal stem cells.98,99 Further research is needed to determine 
if SHH contributes to plasticity of breast cancer cells in the con-
text of an inflammatory microenvironment.

WNT pathway. Canonical WNT signaling occurs 
when secreted WNT glycoproteins bind to the membrane 
protein Frizzled and low-density lipoprotein receptor-related 
protein 5/6. This binding stimulates a downstream signaling 
mediator, Dishevelled, which stabilizes the transcriptional 
co-activator β-catenin, leading to increased nuclear levels of 
β-catenin. In the absence of stimulation by WNT ligands, 
β-catenin is targeted for proteasomal degradation by glycogen 
synthase kinase 3β. WNT signaling is an important mediator 
of embryonic development and regulates differentiation and 
EMT. During tissue injury, WNT ligands are highly expressed 
during the early phases of wound healing and promote migra-
tion of epithelial cells.101 WNT signaling is also necessary for 
formation of new hair follicles during cutaneous wound healing 
by driving self-renewal of interfollicular epidermal stem cells102 
and initiating de-differentiation of epidermal cells to follicular 
progenitor cells.103

Activation of WNT signaling is predictive of poor prognosis 
in breast cancer.104 Immunohistochemical expression of nuclear 
β-catenin has been associated with a basal-like gene signature 
in breast cancer, and higher levels of cytoplasmic and nuclear 
β-catenin have been found in cells bearing the CD44highCD-
24low/- phenotype.105 Evidence of the role of the WNT path-
way in the maintenance of the CSC population comes from 

transgenic mouse models in which overexpression of WNT1 
under control of the Mouse Mammary Tumor Virus promoter 
leads to an increase in Thy1+CD24+ tumor progenitor cells.106 
Additionally, WNT signaling has been shown to promote de-
differentiation of normal mammary cells, suggesting that it may 
also play a role in stem cell plasticity.107 Targeted knockdown 
of WNT1 in breast cancer cell lines decreases the expression of 
stem cell markers such as ALDH, inhibits sphere formation, 
and decreases in vivo tumor forming ability.108 In addition, 
WNT signaling has been implicated in the radioresistance of 
CSCs. Overexpression of WNT/β-catenin signaling promotes 
survival of mammary epithelial progenitor cells after exposure 
to clinically relevant doses of radiation through upregulation of 
survivin.43 These findings suggest that the presence of WNT 
ligands in the tumor microenvironment may promote survival 
and resistance of CSCs.

TGF-β. The transforming growth factor-beta (TGF-β) 
superfamily consists of a large number of structurally related 
proteins that include TGF-β cytokines (TGF-β1, TGF-β2, and 
TGF-β3), bone morphogenic proteins (BMP), anti-mullerian 
hormones, and activins among other growth factors. Although 
originally discovered in malignant tissues, TGF-βs have many 
physiological functions in normal tissue processes such as 
embryonic development, immune responses, and wound heal-
ing. TGF-βs are secreted from many cell types during tissue 
injury including platelets, macrophages, endothelial cells, kera-
tinocytes, and fibroblasts.70 They can also be released upon dis-
ruption of the ECM.109,110 During the wound healing response, 
TGF-βs stimulate pleiotropic effects that are dependent on 
cell type, spatial concentration, and temporal distribution.111 
TGF-βs are involved in angiogenesis, inflammatory cell 
infiltration, fibroblast proliferation, and wound contraction. 
TGF-β1 knockout mice exhibit defects in re-epithelialization 
and formation of granulation tissue.112 Activation of TGF-β1 
is important for induction of EMT in keratinocytes during 
re-epithelialization of cutaneous wounds.113

For years, it has been known that TGF-β is a key regula-
tor of EMT in cancer cells.114,115 Because of its role in EMT, 
TGF-β is involved in the acquisition of CSC-like properties, 
which is necessary for breast cancer cell metastasis.37,114,116,117 
Treatment of immortalized human mammary epithelial cells 
with TGF-β increases the CD44high/CD24-/low population and 
the ability of cells to form tumorspheres. Treatment of breast 
cancer cells with TGF-β not only increases stem cell popula-
tions but also induces a mesenchymal phenotype, suggesting 
that they have entered into EMT.37 This link between EMT 
and breast CSC properties may be a prerequisite for metastasis 
and TGF-β is believed to be the driving force behind this.117

Important sources of TGF-β are present in the tumor micro-
environment. Stromal cells, cancer cells, and cancer cell-associated  
platelets are among the cell types in the niche responsible for 
secreting TGF-β.118,119 Once CSCs metastasize to different sites, 
they primarily produce TGF-β and induce EMT in order to 
create their own niche.120 In addition, TGF-β signaling can be 
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induced by chemotherapy and leads to increases in IL-8 expres-
sion as well as increases in cells bearing CSC phenotypes. Inhibi-
tion of TGF-β signaling is able to block IL-8 induced expansion 
of CSC and sensitizes breast cancer xenografts to chemother-
apy.11 Thus, TGF-β within the tumor microenvironment may 
regulate the breast CSC population to aid in chemoresistance.

NOTCH. The Notch signaling pathway regulates cell 
fate decisions during development, including cell fate specifi-
cation, differentiation, proliferation, and survival.121–124 Studies 
have shown that Notch signaling is critical for normal embry-
onic development since the absence of Notch or Notch ligands 
in mice is embryonically lethal because of angiogenic vascular 
remodeling defects that affect the embryo, yolk sac, and the pla-
centa.125,126 Notch pathway activation occurs when any of the 
four transmembrane Notch receptors (Notch1–4) interact with 
one of the five membrane-bound ligands from the protein fam-
ilies of Delta or Jagged ( Jagged-1 and -2, Delta-like (DLL)-
1, -3, and -4), which are located on the surface of adjacent 
cells.127–129 Following binding of the ligand to the Notch recep-
tor, cleavage of the extracellular Notch domain by the metal-
loprotease TNF-α-converting enzyme (ADAM 17), a member 
of the ADAM (a disintegrin and metalloprotease domain) 
family of metalloproteases,130 generates a short-lived inter-
mediate that is then cleaved by the γ-secretase complex.131,132 
This final cleavage releases the active intracellular domain of 
Notch, NICD, which translocates to the nucleus and functions 
as a transcriptional activator to upregulate the expression of a 
number of genes that are associated with differentiation and 
survival including the family of transcription factors, HES and 
HEY,133,134 cyclin D1,135 and c-Myc.136 Recent studies sug-
gest that Notch signaling is also crucial for tissue homeostasis 
in adults including angiogenesis and vascular homeostasis,123 
lymphocyte expansion and immune function,137 synaptic plas-
ticity,138 and neural cell responses to injury.139

There is also evidence of a role for Notch signaling in wound 
healing. Notch1 and Jagged-1 are highly expressed in the epi-
dermis after tissue injury140 and inhibition of Notch signaling 
has been shown to decrease cell proliferation and migration of 
cultured vascular endothelial cells, keratinocytes, and fibroblasts 
in a mechanical scratch wound assay. When Notch signaling 
is reduced or inhibited by a γ-secretase inhibitor in mice, the 
healing of dermal wounds is delayed, whereas treatment with 
the Notch ligand, Jagged peptide, enhances wound healing.141 
However, in healing corneal epithelium, Notch1 expression is 
reduced at the leading edge of the wound and inhibition of 
Notch signaling increases cell migration in vitro and accelerates 
corneal epithelial wound closure in vivo,142 indicating that the 
role of Notch signaling in wound healing may be tissue depen-
dent. Notch has also been found to be involved in the inflam-
matory response of wound healing. Myeloid-specific Notch1 
deletion in mice results in decreased macrophage recruitment 
and TNF-α expression in a wound healing assay.143 In addi-
tion, both activation and deletion of Notch1 disrupt the epi-
dermal barrier and can trigger an inflammatory infiltrate.144,145 

Although Notch plays a role in epidermal differentiation in 
development,133,146 the effects of Notch signaling on differen-
tiation of epidermal progenitors during wound healing have 
not fully been investigated. However, Notch has been shown to 
crosstalk with HH and WNT pathways,133 both of which are 
involved in regulation of progenitor proliferation and plasticity 
during cutaneous wound healing.

In adult skin, loss of Notch1 expression can lead to tumor 
development through alterations of the stroma and creation 
of a wound-like environment in the skin,147 indicating that 
the changes in Notch signaling consistent with increases in 
inflammation can promote tumor growth. Expression of Notch 
receptors and its ligands has been found to be upregulated in 
a number of hematopoietic and solid tumors including colon, 
lung, pancreas, and breast.148–153 In breast cancer, high levels 
of Notch1 are associated with poor prognosis.154,155 Likewise, 
expression of Jagged-1 protein or mRNA has been associated 
with lower disease-free survival, basal-like phenotype, and poor 
prognosis in breast cancer.156,157

Inhibiting Notch signaling by γ-secreatase inhibitors, anti-
Notch1, or anti-DLL-4 monoclonal antibodies has been shown 
to result in antitumor activity in a variety of cancers.158–161 
Promotion of tumor development through altered Notch sig-
naling may be in part through survival and proliferation of 
CSCs. Specific inhibitors to Notch receptors or ligands have 
been reported to reduce breast tumor initiating cell frequency 
or depletion of stem-like breast cancer cells.162–164 Inhibiting 
Notch1 in triple-negative breast tumors results in tumor growth 
inhibition, decreased tumor growth upon reimplantation, and 
delayed tumor recurrence possibly due to reduction in the CSC 
population.165 In addition, knockdown of the Notch1 receptor 
inhibits breast cancer cell growth by induction of apoptosis and 
can enhance chemosensitivity of breast cancer tumors through 
reduction of CSC frequency.166 Therefore, including Notch 
inhibitors in the therapeutic regimen for certain cancers may be 
useful to target the CSCs to enhance chemo- and/or radiosen-
sitivity and prevent cancer recurrence.

Pharmacological Inhibition of Inflammatory  
and Developmental Pathways
Recently, new therapies targeting developmental pathways 
such as WNT, Notch, and HH have entered clinical trials 
(Table  3). Additionally, many anti-inflammatory agents that 
are currently under development for treatment of chronic 
inflammatory conditions may also be beneficial to cancer 
patients (Table 2). Multiple strategies have been used to tar-
get the IL-1β–IL-6–STAT3 pathway for both autoimmune 
diseases and cancer. Inhibition of the IL-1 signaling cascades 
via IL-1 receptor antagonists (IL-1Ra; Kineret(R) or anakinra/
Amgen, Inc) or blocking antibodies Rilonacept (IL-1 Trap/
Arcalyst Regeneron Pharmaceuticals) effectively block IL-6–
STAT3 signaling in autoimmune disorders and have some 
success in the treatment of inherited autoimmune diseases.167 
These agents are currently in clinical trials for treatment of 
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multiple myeloma, as well as some solid tumors. Additionally, 
IL-6 blocking antibodies are in clinical trials for various dis-
eases. Siltuximab, a chimeric antibody to IL-6 developed by 
Johnson and Johnson, recently gained Food and Drug Admin-
istration (FDA) approval for treatment of Castleman’s disease 
and is currently in clinical trials for cancers such as multiple 

myeloma and prostate cancer as well as other solid tumors. 
Recently, results from a double-blinded randomized clini-
cal trial indicated improvement in response rates to standard 
therapy in patients with multiple myeloma, but no change in 
overall survival or progression-free survival.168 Phase I/II dose 
escalation trials in solid tumors have shown that the drug is 

Table 2. Current clinical trials of anti-inflammatory agents in chronic inflammatory diseases and cancer.

TARGET INHIBITOR OTHER NAME CONDITION PHASE NCT NUMBER

iL-1

Kineret anakinra Rheumatoid arthritis; Juvenile rheumatoid 
arthritis; Myocardial infarction and heart 
failure; Type I and II Diabetes; Advanced 
cancers including breast, pancreatic, 
colorectal

i/ii/iii/iV NCT02018458; NCT01802970; 
NCT02021422; NCT01175018; 
NCT00789724; NCT00645840; 
NCT01950299; NCT00117091; 
NCT02236481; NCT02021422; 
NCT02090101; NCT01300650; 
NCT00213538; NCT01936844; 
nCt00037648

ilaris Canakinumab;  
aCZ885

Autoinflammatory disease; Systemic juve-
nile idiopathic arthritis; Schnitzler syndrome; 
Type I and II diabetes; Atrial fibrillation; 
COPD; Gout

i/ii/iii NCT01390350; NCT01676948; 
NCT00891046; NCT00947427; 
NCT01080131; NCT00663169; 
NCT01356602; NCT02204293; 
NCT00819585; NCT00927810; 
NCT01068860; NCT00605475; 
NCT01805960; NCT00581945; 
NCT00487825; NCT00424346; 
nCt00504595

arcalyst Rilonacept;  
iL-1 trap

Autoinflammatory disease; Gout; Systemic 
sclerosis; Juvenile Idiopathic arthritis; 
Cryopyrin-associated periodic syndromes; 
Type I Diabetes; Chronic kidney disease; 
Cardiovascular disease

i/ii/iii/iV NCT00962026; NCT00288704; 
NCT00417417; NCT01663103; 
NCT00534495; NCT00855920; 
NCT01538719; NCT00094900; 
nCt00582907

iL-6

Tocilizumab actemra Rheumatoid arthritis; Juvenile idiopathic 
arthritis; schizophrenia; Type I diabetes; 
HIV infection; systemic sclerosis; Non-ST 
elevation myocardial infarction; recurrent 
ovarian cancer

i/ii/iii/iV NCT02087696; NCT01194414; 
NCT02010216; NCT01941095; 
NCT01347983; NCT01696929; 
NCT02034474; NCT00868751; 
NCT01603355; NCT00642460; 
NCT01904292; NCT02165345; 
NCT01637532; NCT01532869; 
NCT01491074; NCT02049437; 
nCt02293837

sirukumab Cnto 136 Rheumatoid arthritis; Lupus nephritis;  
Lupus erythematosus

i/ii/iii NCT01606761; NCT01273389; 
nCt01702740

iL-8

Reparixin – Rheumatoid arthritis; Pancreatic islet 
transplantation in type 1 Diabetes Mellitus; 
delayed graft function after kidney or lung 
transplantation; HER2 negative breast 
cancer; stage II breast cancer

i/ii/iii NCT01220856; NCT02001974; 
NCT00248040; NCT01861054; 
NCT01967888; NCT01817959; 
nCt00224406

Danirixin GsK1325756 COPD: Respiratory syncytial virus (RSV) 
infection

i NCT02130193; NCT02201303

aZd5069 Asthma; COPD; Bronchiectasis i/ii NCT01890148; NCT01704495; 
NCT01962935; NCT01233232; 
nCt01255592

Navarixin SCH 527123;  
MK-7123

Asthma; COPD; Psoriasis i/ii NCT00632502; NCT00688467; 
NCT00441701; NCT00684593

SB-656933 COPD; Cystic fibrosis; Ulcerative colitis i/ii NCT00551811; NCT00748410; 
NCT00903201; NCT00605761

stat3

OPB-31121 Advanced and/or metastatic solid tumors i/ii NCT00955812; NCT01406574

aZd9150 ISIS-STAT3Rx;  
isis 481464

Advanced and/or metastatic solid tumors i/ii NCT01563302; NCT01839604

daraprim Pyrimethamine Chronic lymphocytic/small lymphocytic 
lymphoma

i/ii nCt01066663

OPB-51602 Advanced and/or metastatic solid tumors 
and hematologic malignancies

i NCT02058017; NCT01423903; 
NCT01184807; NCT01867073; 
nCt01344876
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Table 3. Current clinical trials of pharmacological inhibitors of developmental pathways.

TARGET INHIBITOR OTHER NAME CONDITION PHASE NCT NUMBER

Hedgehog

Vismodegib GdC-0449 Advanced and/or metastatic solid tumors i/ii NCT02073838; NCT01088815; 
NCT01713218; NCT00887159; 
NCT00957229; NCT00959647; 
NCT00636610; NCT00739661; 
NCT00968981; NCT00991718; 
NCT00833417; NCT01546519; 
NCT01209143; NCT01174264; 
NCT01064622; NCT00878163; 
nCt01195415

ipilimumab iPi-926 Advanced and/or metastatic solid tumors i/ii NCT01255800; NCT01371617; 
NCT01130142; NCT00761696; 
nCt01310816

erismodegib Lde225 Advanced and/or metastatic solid tumors i/ii NCT02151864; NCT01911416; 
NCT01579929; NCT01431794; 
NCT01757327; NCT01954355; 
NCT01694589; NCT01125800; 
NCT01787552; NCT01350115; 
NCT00880308; NCT01208831; 
NCT01769768; NCT01576666

PF-04449913 – Advanced and/or metastatic solid tumors i/ii NCT01842646; NCT01841333; 
NCT01286467; NCT01546038; 
NCT04449913; NCT0203877; 
nCt02226172

LeQ506 – Advanced solid tumor, recurrent or 
refractory medulloblastoma or locally 
advanced or metastatic basal
cell carcinoma

i nCt01106508

taK-441 – Advanced nonhematologic malignancies i nCt01204073

Itraconazole – relpased prostate cancer ii nCt01787331

LY2940680 – small cell lung carcinoma i/ii nCt01722292

sonidegib – Myeloid malignancies i nCt02129101

BMS-833923 – Extensive stage small cell lung cancer 
(ES-SCLC)

i nCt00927875

Notch

Notch inhibitor – Advanced and/or metastatic solid tumors i/ii NCT01158404; NCT02069730

MK0752 – Advanced and/or metastatic solid tumors i/ii NCT00106145; NCT01098344; 
nCt00645333

BMS-906024 – Advanced and/or metastatic solid tumors i NCT01653470; NCT01363817; 
NCT01292655; NCT01986218

PF-03084014 – Desmoid tumors/aggressive fibroma-
tosis; AIDS-related Kaposi sarcoma; 
Advanced solid tumor malignancy and 
t-cell acute lymphoblastic leukemia/
lymphoblastic lymphoma

i/ii NCT01981551; NCT02137564; 
nCt00878189

ro4929097 – Advanced and/or metastatic solid tumors i/ii NCT01238133; NCT01122901; 
NCT01196416; NCT01151449; 
NCT01198184; NCT01120275; 
NCT01232829; NCT01193881; 
NCT01218620; NCT01119599; 
NCT01145456; NCT01131234; 
NCT01096355; NCT01158274; 
NCT01141569; NCT01189240; 
NCT01200810; NCT01198535; 
NCT01149356; NCT01175343; 
NCT01217411; NCT01116687

Notch & 
Hedgehog

Vismodegib & 
ro4929097

GDC-0449 & 
ro4929097

Metastatic or unresectable breast can-
cer; Advanced or metastatic sarcoma

i/ii NCT01071564; NCT01154452

wnt signaling 
pathway

Resveratrol – Colon cancer i NCT02137421; NCT00256334; 
nCt00578396

Diclofenac & 
Calcitriol

Diclofenac & 
topical vitamin D3

Basal cell carcinoma iii nCt01358045

Genistein Metastatic colon cancer i/ii nCt01985763
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well tolerated, but so far the advantage of including Siltuximab 
in standard therapy regimens has not been clinically proven.169 
Antibodies to the IL-6 receptor gp-130 are also undergoing 
clinical trials for treatment of autoimmune diseases. Tocili-
zumab, an IL-6R blocking antibody developed by Hoffmann-
La Roche AG, has recently gained FDA approval for treatment 
of rheumatoid arthritis. Although it has been shown to have an 
effect on cachexia associated with non-small cell lung tumors, 
its role as a treatment for solid tumors has not yet been inves-
tigated clinically. Additionally, several inhibitors of STAT3 are 
currently under preclinical/clinical development for treatment 
of solid tumors.170–172 To date, Phase I dose escalation studies 
of STAT3 inhibitors have shown poor pharmacokinetics and 
severe dose-limiting side effects.173

Several agents targeting developmental pathways are also 
in clinical development. The first HH inhibitor to gain clinical 
approval for the treatment of BCC was Vismodegib (GDC-
0449) developed by Genentech. This agent was found to have a 
significant effect on metastatic and resistant BCC. Preliminary 
findings indicate that this agent may also have anti-tumoral 
activity in medulloblastoma.174 Phase II trials of Vismodegib 
for treatment of other solid tumors are currently underway. 
Several other inhibitors to the HH pathway are also under 
clinical development, including Sonidegib (also known as 
Erismodegib or LDE225, Novartis) which has shown accept-
able toxicity profiles in Phase I trials and is currently progress-
ing into Phase II trials to examine efficacy in solid tumors.175 
Likewise, multiple agents are under preclinical/clinical devel-
opment for inhibition of γ-secretase, a key enzyme involved in 
Notch signaling. Phase I trials of RO4929097, a γ-sectrease 
inhibitor developed by Roche, have shown acceptable toxicity 
profiles and some evidence of anti-tumor activity.176

Significant crosstalk exists between developmental path-
ways in both wound healing and the tumor microenvironment. 
For this reason, combinatorial approaches with targeted inhibi-
tors for multiple developmental pathways are currently being 
explored. A Phase II study is currently underway to determine 
the effects of concurrent inhibition of the HH and Notch path-
ways in breast cancer. If successful, the combination of Vismo-
degib and RO4929097 may offer new treatment options for 
advanced or metastatic tumors. Additionally, crosstalk between 
developmental and inflammatory pathways within the tumor 
microenvironment has been reported. Currently, a Phase I trial 
of combination therapy using Vismodegib and the immuno-
suppressive agent Sirolimus (rapamycin; Pfizer) are underway. 
Advancement of this approach will depend on an acceptable 
toxicity profile, but may yield promising results for the treat-
ment of solid tumors including pancreatic and breast cancer. It 
is likely that combination therapies targeting both developmen-
tal and inflammatory pathways may lead to better responses. 
Additionally, studies have shown that treatment with radiation 
and standard chemotherapy induces a substantial wound heal-
ing response, which may further promote resistance and expan-
sion of CSCs.9,10,177,178 Activation of Notch signaling during 

post-surgical wound healing has been linked to increased 
metastasis.10 Thus, combinations of anti-inflammatory drugs 
with standard treatment approaches may prevent activation of 
developmental pathways responsible for cancer resistance and 
metastasis and lead to better clinical outcomes.

Conclusion
During the course of malignancy, tumor cells invade neighbor-
ing tissues, stimulate angiogenesis, remodel the ECM, undergo 
EMT, and metastasize. In doing so, they activate a chronic 
inflammatory response involving numerous cytokines, devel-
opmental pathways, and growth factors involved in the normal 
wound healing process. The presence of these factors within the 
tumor microenvironment is linked to an increase in the propor-
tion of cells bearing stem-like phenotypes, enhanced tumor-ini-
tiating properties, and increased resistance to standard therapies.

It is currently unclear whether the tumor microenviron-
ment confers a survival advantage through selection of resistant 
CSC or through upregulation of stem-like properties in non-
stem cells. Although evidence for cells bearing stem cell signa-
tures in resistant breast cancer is compelling, the origin of these 
cells is controversial. The question remains as to whether signals 
within the tumor microenvironment lead to proliferation of a 
small population of cells arising from genetically altered stem 
cells, or do they induce a stem-like phenotype in differentiated 
cells through upregulation of developmental signaling pathways 
and stem cell markers. Further, does this change in phenotype 
confer a functional change in differentiated cells so that they now 
behave as CSC, exhibiting self-renewal and tumor-initiating 
properties? As shown in Figure 1, we propose that when normal 
homeostasis is disrupted, either by tissue injury or by the tumor 
microenvironment, activation of inflammatory and develop-
mental pathways alters the ratio of stem cells to non-stem cells 
in two possible ways. The first is by driving existing slow-cycling, 
quiescent stem cell populations into the proliferative phase of 
the cell cycle. The second is by altering plasticity of differen-
tiated cells so that they obtain stemness properties. The latter 
of these processes is supported by recent evidence showing sig-
nificant cellular plasticity in normal tissue during wound healing 
processes. Lineage tracing experiments have shown that com-
mitted progeny in the lung and intestine can revert to a stem-
like phenotype and contribute to tissue regeneration.4,96,179 
Likewise, interconversions between stem-like and differentiated 
states have been reported in glioblastoma26 and breast cancer180 
cells after chemotherapy. Although both wound healing and the 
tumor microenvironment represent states of disrupted homeo-
stasis in which stem cell numbers may be increased, they differ 
significantly in that the level of stemness during wound healing 
is tightly regulated, with a number of stem-like cells returning 
to normal during the final phases of the healing process. In the 
tumor microenvironment, stem cell plasticity may be constant 
with an overall increase in stem-like cells.

The effect of inflammatory signals within the microen-
vironment on the cellular plasticity of tumor cells has yet to 
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be fully determined. Thus, it will be important to investigate 
whether blocking specific inflammatory signals, alone or in 
combination with other stem cell pathway inhibitors, can 
decrease CSC populations in a therapeutic setting and pro-
mote better responses to standard therapies. The answer to 
this question would help to uncover a link between inflamma-
tion and CSCs and determine whether, together or separately, 
they impact the response to therapy.
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