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Introduction
Somatic alterations in DNA copy number (CNAs, also 
commonly referred to as somatic copy number variants), 
ranging in size from kilobases to entire chromosomes, are 
a hallmark of cancers, and identification of recurrent gains 
and deletions is vital to improving the biological understand-
ing of these complex diseases. Examples of recurrent CNAs 
include deletion of the CDKN2A/B locus at 9p21, associated 
with poor prognosis1–3 in diffuse large B-cell lymphomas, 
and amplification of HER2 at 17q21, used as a biomarker 
for outcome and to guide treatment4–6 in breast cancer. In 
contrast to CNAs, germline DNA copy number variants 
(CNVs) represent gains or deletions of genomic sequence, 
either inherited or de novo, ranging in size from kilobases to 

megabases7–10 and may impact the dosage of genes or regu-
latory elements. Copy number variants are part of normal 
variations within the human genome and provide genetic 
diversity, with over 100,000 recurrent CNVs currently iden-
tified in the Database of Genomic Variants.11 In addition, 
copy number variation within tumor genomes is comprised 
of both germline CNVs retained in tumor cells and somatic 
copy number alterations. While CNVs have been linked 
with many complex neurological and developmental disor-
ders,12–14 the role of these variants in cancer is still emerging. 
Numerous studies have identified CNVs as cancer suscep-
tibility loci in multiple cancer types,15,16 including deletion 
of UGT2B17 and decreased risk of colorectal cancer,17 dele-
tions in the APOBEC3 gene cluster and increased risk of 
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breast cancer,18,19 and deletion of WWOX and increased risk 
for lung cancer.20 CNVs may also be relevant to cancer in a 
pharmacogenetic context, with CNVs in or around genes rel-
evant for absorption, distribution, metabolism, and excretion 
of anticancer drugs potentially altering drug sensitivity and 
toxicity in patients.21–23

Comparative genomic hybridization DNA microarrays 
(aCGH) based upon bacterial artificial chromosome (BAC) 
library sequences or synthesized oligonucleotides were devel-
oped specifically for genome-wide interrogation of DNA 
copy number, and currently have a resolution in the kilobase 
range.24,25 Statistical issues associated with aCGH, includ-
ing removal of technical variation and biological interpre-
tation of array measurements, have led to the development 
of numerous algorithms for normalization, chromosome 
segmentation, and copy number calling.26–30 More recently, 
genotyping arrays that were initially designed for genome-
wide evaluation of single nucleotide polymorphisms (SNPs) 
have been adapted, through the use of additional processing 
of probe intensity data, to identify DNA copy number. In 
addition to the ability to capture both SNPs and copy num-
ber changes, genotype arrays can also provide information 
on copy number neutral loss of heterozygosity (LOH).31 
Although dependent on the platform used, genotype arrays 
typically have a higher overall resolution compared to com-
parative genomic hybridization (CGH) arrays, but variability 
in probe density in genotyping arrays may lead to areas of 
higher and lower coverage within the genome.31,32 As with 
aCGH, computational approaches to handle raw data in the 
form of allele-specific probe signal intensity derived from 
the hybridization of a single DNA sample have been devel-
oped to process and interpret DNA copy number in genotype 
arrays. While DNA copy number calling is possible on both 
Illumina and Affymetrix genotyping platforms, this review 
provides a brief summary of algorithms freely available to 
academic users for Illumina genotyping array data, focusing 
on commonly utilized hidden Markov model (HMM)-based 
approaches for CNV detection.

HMM-based copy Number detection and 
Algorithms for Illumina Genotype data
HMMs are full probabilistic models that function to determine 
an unknown sequence of states based upon a sequence of obser-
vations. Markov models model stochastic processes in which 
known sequences are produced from a finite number of discrete 
states, where each new state of a sequence is only dependent upon 
the previous state. In the Markov model, a change from any 
one state to another is described by a matrix of transition prob-
abilities. In contrast to the basic Markov model, the sequence of 
states is hidden in the HMM and can only be inferred through 
a sequence of observed random variables. In addition to a state 
transition probability distribution used in the Markov model, 
each state in an HMM has an emission probability distribu-
tion modeling the observed variable as a function of a particular 

hidden state. To identify the hidden sequence with the highest 
likelihood based upon the model, HMMs first optimize model 
parameters (including the emission and transition probability 
distributions) to best describe the observed sequence of vari-
ables. With the model parameters optimized, HMMs can then 
determine the most probable sequence of hidden states using a 
dynamic programming approach.

CNV detection from Illumina genotyping data involves 
utilizing observed signal intensity data from the microarray 
to determine the hidden copy number at each locus surveyed 
in the genome. The Illumina GenomeStudio software uses 
scanned genotype microarray files and platform information 
files to output genotype calls and other metrics, including 
those necessary for most copy number calling methodologies: 
the log R ratio (LRR) and the B allele frequency (BAF). The 
LRR is the logged ratio of the observed R, calculated as the 
sum of normalized signal intensity at each locus (the sum of 
allele-specific probe intensity at polymorphic loci or probe 
intensity at non-polymorphic loci), to the expected R, the 
total probe intensity computed by linear interpolation of the 
observed allelic intensity ratio (θ) with respect to three canon-
ical genotype clusters (genotypes AA, AB, and BB) generated 
by Illumina using normal samples.33 The BAF represents the 
frequency at which the B allele is called at a SNP, interpo-
lated from the θ of three canonical genotype clusters and the 
sample θ.33 In general, deviations of the LRR from 0 suggest 
higher or lower signal intensity than expected for balanced 
copy number and a BAF deviating from 0, 0.5, or 1 (alleles 
AA, AB, and BB, respectively) may suggest the presence of 
copy number imbalance. In HMM-based CNV detection, the 
observed probes LRR and BAF represent residues emitted 
from the hidden copy number state at each locus. Each pos-
sible copy number state has specific emission probabilities that 
model the LRR and BAF composition for that state. Addi-
tionally, copy number states are dependent on neighboring 
loci such that there is a probability associated with remain-
ing in the current copy number state or transitioning to a new 
copy number state at the next locus. After the LRR and BAF 
emission probability and transition probability parameters 
are optimized for the observed sequence of LRRs and BAFs,  
a dynamic programing algorithm can use the optimized 
parameters in the HMM to determine the most likely sequence 
of hidden copy number states given the sequence of observed 
LRRs and BAFs.

Three HMM-based approaches to CNV detection using 
LRR and BAF data from Illumina genotyping microarrays 
are QuantiSNP,34 PennCNV,35 and GenoCN.36 The statistical 
models underlying these software packages share similarities 
and differences with regard to the core elements of HMMs, 
including the number of states, emission probabilities of LRRs 
and BAFs, state transition probabilities, para meter estimation 
and optimization, and selection of the optimal sequence of 
hidden copy number states that can be used for biological 
interpretation.
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Hidden copy number states. All three tools employ a 
total of six discrete copy number states. Two states exist for 
deletion: full deletion (a null genotype and a copy number of 0)  
and single deletion (a genotype of allele A or B and a copy 
number of 1). The normal states have a genotype composition 
of heterozygotes (genotype AB) or homozygotes (genotype 
AA or BB) and a copy number of 2. While QuantiSNP has 
two separate normal states for heterozygotes and homozygotes, 
PennCNV and GenoCN combine normal heterozygotes and 
homozygotes into a single state and have an additional nor-
mal state representing copy number neutral LOH. Lastly, two 
states exist for gains, single copy gains (genotype AAA, AAB, 
ABB, or BBB and a copy number of 3), and double copy gains 
(genotype AAAA, AAAB, AABB, ABBB, or BBB and a 
copy number of 4).

transition probabilities. In QuantiSNP, an exponen-
tial function involving the distance between two adjacent 
SNPs and a length inferred from the data is used to determine 
an a priori probability that copy number state change occurs 
between two adjacent loci. In the transition matrix, any state 
change has equal probability, whereas the probability of 
remaining in a copy number state differs between non-normal 
copy number regions, normal heterozygous regions, and  
normal homozygous regions. PennCNV determines transi-
tion probabilities by incorporating parameters estimated by 
the Baum–Welch algorithm37 into an exponential function 
that uses the distance between two adjacent SNP loci and a 
constant distance, set to either 100 Mb for the copy number 
neutral LOH state or 100 kb for all other states. The transi-
tion matrix uses a common calculation for all state changes 
and another common calculation for remaining in a state. 
Transition probabilities in GenoCN, a continuous-time 
HMM, are determined using an intensity matrix to model 
the instantaneous transition rate as well as using the distance 
between two adjacent SNPs. These parameters are used in 
two exponential functions of the transition matrix, one to 
calculate copy number state change probabilities and another 
to calculate the probability of remaining in a copy number 
state.

emission probabilities. Emission probabilities for the 
LRR are calculated in a similar fashion for QuantiSNP, 
PennCNV, and GenoCN, with the model using a mixture 
of a uniform distribution to model technical noise in the 
microarray and a normal distribution to model the LRR 
observations from a given state. BAF emission probabilities in 
QuantiSNP are also modeled using a mixture of uniform and 
normal distributions, but also include half-normal distribu-
tions for homozygous genotypes. In PennCNV, BAF emis-
sion probabilities are modeled as either a mixture of uniform 
and normal distributions (BAF between 0 and 1) or a mixture 
of point mass and truncated normal distributions (BAF is 0 
or 1). GenoCN models BAF emission probabilities using a 
uniform distribution component and several truncated normal 
distribution components.

Parameter optimization. In QuantiSNP, an objective 
Bayes-based HMM, normal-gamma conjugate priors are 
used for emission model parameters, and hyperparameters are 
estimated from a reference data set using maximum marginal 
likelihood techniques. The model hyperparameters are then 
optimized using an expectation maximization algorithm.38 
In contrast, PennCNV estimates initial model parameters 
empirically using data from several large CNV regions in a 
large set of training samples. The Baum–Welch algorithm is 
then used to optimize the parameters by training the model 
to maximize the likelihood of LRR and BAF observations. 
Initial parameters of the model are estimated from the LRR 
and BAF data in GenoCN, and parameter optimization is 
performed using the Baum–Welch algorithm.

optimal hidden state selection. Both QuantiSNP and 
PennCNV utilize the Viterbi algorithm to infer the most likely 
sequence of copy number states once all parameters within the 
model have been optimized. In contrast, GenoCN uses the 
optimized parameters to estimate the posterior probabilities 
for each SNP of a particular copy number state.

Performance comparison and conclusions
Performance reviews of CNV detection using Illumina geno-
typing data have focused predominantly on HMM-based 
approaches and commercially available software packages 
using different statistical models.39–42 When applied to both 
real and simulated data, the number of CNVs detected, as 
well as the identification of the genomic boundaries of the 
CNVs, varies between algorithms.39,40,43 Moreover, the abil-
ity to accurately detect CNVs may be dependent on micro-
array platform, copy number of the CNV, CNV size, and the 
number of array SNPs within a CNV region.40,43 HMMs have 
shown a relatively low false positive rate but high false nega-
tive rate when calling CNVs, although individual algorithm 
performance can vary between data sets.40,42,43 Other com-
mercial CNV calling software packages that employ differ-
ing computational approaches, including cnvPartition within 
Illumina GenomeStudio and Nexus Copy Number (BioDis-
covery), have typically demonstrated decreased specificity and 
sensitivity relative to HMMs in comparative studies.40,42,43

To provide a performance evaluation between the three 
HMM-based CNV detection algorithms, data for three Hap-
Map individuals of European ancestry (NA06985, NA06991, 
and NA06993) genotyped on the Illumina Human610-Quad 
BeadChip v1.0 were obtained from the NCBI GEO data-
base44 (GEO accession: GSE17205). CNV detection for these 
samples was performed using the default settings in Quanti 
SNP, PennCNV, and GenoCN. Total CNV regions were 
identified, along with their associated copy number state, and 
region overlap between methods was defined as regions having 
at least one shared probe and copy numbers of the same type 
(gain or deletion). QuantiSNP and GenoCN identify more 
CNV regions in these samples when compared to PennCNV 
(Table 1). Moreover, the majority of CNV regions identified 
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by PennCNV overlap with both QuantiSNP and GenoCN, 
and only a limited amount of unique CNV regions are identi-
fied by PennCNV. In contrast, the majority of CNV regions 
identified by QuantiSNP and GenoCN in the HapMap sam-
ples are unique to the algorithm. The distribution of CNV size 
for each sample, in terms of kilobases and also with regard 
to the number of probes on the genotyping array, was com-
pared between detection methods (Fig. 1). For all three sam-
ples, PennCNV identified regions with the largest size (both 
in length and number of probes), whereas the CNV regions 
identified by GenoCN were predominantly the smallest (both 
in length and number of probes). Interestingly, instances were 
observed in which QuantiSNP and GenoCN identified mul-
tiple CNV regions within a single CNV region identified by 
another algorithm.

Performance of these three CNV detection approaches 
was further assessed by comparison with previously identified 
CNVs within these samples. Conrad and others45 examined 
40 HapMap individuals of European and African ancestry 
using an oligo-based CGH array with a median probe spacing 
of 53 bp to identify a catalog of putative CNV regions within 
the sample set. This catalog was subsequently used to generate 
a CGH-based CNV-typing array that was applied to a set of 
450 HapMap individuals of varying ancestry. PCR validation 
of a subset of CNVs on the CNV-typing CGH array suggested 
that the false discovery rate in these data was ∼15%; therefore, 
these data were selected as the gold standard for validation of 
the HMM-based CNV detection in the three aforementioned 

Table 1. CnVs detected in three Hapmap samples using QuantisnP, PennCnV, and GenoCn. the Hmm-based CnV detection tools were 
applied to Illumina Human610-Quad BeadChip v1.0 data from three Hapmap samples of european ancestry (na06985, na06991, and 
na06993). for each sample, the total number of CnVs detected using each algorithm is listed along with the percentage of regions unique to 
each algorithm and the percentage of regions that overlap results from the other CnV detection algorithms.

QuantiSNP NA06985 NA06991 NA06993

total regions 103 120 113

% unique regions 33.0% 41.7% 38.1%

% PennCnV overlap 10.7% 14.2% 11.5%

% GenoCn overlap 19.4% 11.7% 15.9%

% PennCnV and GenoCn overlap 36.9% 32.5% 34.5%

PennCNV NA06985 NA06991 NA06993

total regions 63 61 60

% unique regions 11.1% 8.2% 5.0%

% QuantisnP overlap 14.3% 21.3% 21.7%

% GenoCn overlap 15.9% 6.6% 10.0%

% QuantisnP and GenoCn overlap 58.7% 63.9% 63.3%

GenoCN NA06985 NA06991 NA06993

total regions 169 108 132

% unique regions 48.5% 42.6% 50.8%

% QuantisnP overlap 11.2% 13.0% 13.6%

% PennCnV overlap 6.5% 4.6% 4.5%

% QuantisnP and PennCnV overlap 33.7% 39.8% 31.1%

HapMap samples (NA06985, NA06991, and NA06993). A set 
of 2419 CNVs from the CNV-typing array contained at least 
one probe from the Illumina Human610-Quad BeadChip v1.0 
and was used for comparison. To identify true positive and false 
positive CNVs, CNV calls from the HMM-based approaches 
were considered validated if at least one probe overlapped with 
the regions identified by Conrad et al and the CNV regions 
had a similar copy number type (gain or deletion). In addi-
tion, CNV regions from Conrad et al that had normal copy 
number were examined in the same manner to identify true 
negatives and false negatives. Results from these comparisons 
show that all three HMM-based detection approaches have a 
high specificity (.98%) when examining CNV overlap with 
the Conrad et al regions (Table 2). In contrast, the sensitivity 
of these tools was low (,15%), with PennCNV demonstrating 
the worst performance for all samples and GenoCN demon-
strating the best performance in two of the three HapMap 
samples (Table 2). PennCNV had the lowest false discovery 
rate in two of the three HapMap samples and QuantiSNP the 
largest false discovery rate, although the converse was true in 
the third sample. To examine how performance changed rela-
tive to genotype microarray probe coverage in CNV regions, 
the list of gold standard CNVs was filtered to remove CNV 
regions that encompassed less than a minimum number of 
probes on genotype microarray. This filtering was performed 
in a stepwise fashion from a minimum of two probes to five 
probes. These data showed that as minimum probe coverage 
within CNV regions was increased, sensitivity also increased 
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because of a decrease in false negatives, although specificity 
decreased because of a decrease in true negatives (Table 2).

Although all three of the described CNV detection 
packages for Illumina genotyping microarrays are based 
upon HMMs, outcomes of performance comparisons pre-
sented here and found in other studies highlight how modi-
fication of core HMM elements can impact the results of 
these models. Specifically, variations in the computation of 
LRR and BAF emission probabilities, transition probabili-
ties, parameter optimization, and hidden copy number state 
identification impact both the number and size of CNVs 
detected from genotyping microarray data. Yet these dif-
ferences in core HMM elements do not lead to one meth-
odology globally outperforming the other methodologies. 
Instead, variations of the HMMs produce improvements 
in certain aspects of performance. PennCNV generally has 
a lower false discovery rate when compared to the other 
approaches, yet it also has a lower sensitivity and the regions 
identified predominantly overlap with regions detected using 

the other two methodologies. QuantiSNP and GenoCN 
appear to have higher sensitivity and higher false discovery 
rates than PennCNV, likely because of the increased number 
of CNV regions detected by these methodologies. Owing to 
the low sensitivity observed here for all three HMM-based 
approaches, these tools must be used with the understanding 
that they will not provide a comprehensive catalog of CNVs 
within a genome. Furthermore, the observed false discov-
ery rates and sensitivities emphasize the need for additional 
experimental validation of CNVs identified from Illumina 
genotyping microarrays when conducting genome-wide asso-
ciation studies of disease risk and outcome. Given the mixed 
nature of the performance of the currently available HMM-
based CNV detection algorithms for Illumina genotyping 
data, the need exists for continued development of approaches 
to model the core HMM elements so that sensitivity  
can be increased and the false discovery rate decreased. Alter-
natively, utilization of CNV calls from multiple HMM-based 
algorithms may provide a means to obtain an optimal balance 
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figure 1. size of CnVs detected in the Hapmap samples using QuantisnP, PennCnV, and GenoCn. the Hmm-based CnV detection tools were applied 
to Illumina Human610-Quad BeadChip v1.0 data from three Hapmap samples of european ancestry (na06985, na06991, and na06993). for each 
sample, boxplots were generated for CnV sizes from each Hmm-based detection method. Boxplots on the left are CnV sizes measured in genomic length 
(base pairs), and boxplots on the right are CnV sizes measured by the number of genotype microarray probes in the detected region.
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between sensitivity and false discovery rate using currently 
available HMM-based CNV detection tools.
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false discovery rate 53.66% 61.76% 59.09% 30.00% 24.24% 26.79% 28.89% 18.75% 25.53%

2 or more probes

sensitivity 11.95% 8.23% 11.46% 17.71% 13.02% 20.31% 14.29% 12.38% 17.33%

specificity 98.57% 98.50% 98.05% 98.98% 99.38% 98.98% 99.24% 99.54% 99.08%

false discovery rate 50.00% 60.61% 59.09% 27.66% 24.24% 25.00% 25.64% 19.35% 25.53%

3 or more probes

sensitivity 11.38% 10.66% 14.05% 21.38% 17.24% 24.83% 17.95% 16.13% 20.65%

specificity 98.03% 97.92% 97.49% 98.53% 99.10% 98.53% 98.89% 99.33% 98.78%

false discovery rate 56.25% 59.38% 57.50% 29.55% 24.24% 26.53% 26.32% 19.35% 25.58%

4 or more probes

sensitivity 12.50% 12.63% 15.96% 24.55% 20.91% 26.36% 20.66% 19.17% 22.50%

specificity 97.38% 97.39% 96.63% 97.95% 98.74% 98.10% 98.74% 99.22% 98.59%

false discovery rate 58.62% 58.62% 59.46% 32.50% 25.81% 29.27% 24.24% 17.86% 25.00%

5 or more probes

sensitivity 14.29% 14.46% 17.07% 23.53% 18.82% 25.88% 20.88% 18.89% 21.11%

specificity 96.76% 96.77% 96.02% 97.82% 98.61% 98.02% 98.63% 99.22% 98.83%

false discovery rate 58.62% 58.62% 60.00% 35.48% 30.43% 31.25% 26.92% 19.05% 24.00%
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