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Introduction
The most common and most lethal type of kidney cancer or 
renal cell carcinoma (RCC) is clear cell renal cell carcinoma 
(ccRCC).1 Much heterogeneity exists within the ccRCC 
subtype of kidney cancer, and various factors are used to 
characterize the disease. This includes disease stage, tumor 
size, tumor cell morphology, lymph node status, and patient 
response to treatment.2 The Cancer Genome Atlas (TCGA) 
ccRCC study3 used multiple platforms to determine the asso-
ciations between the molecular signatures of the disease and 
patient survival. These analyses identified a role for the PI(3)
K/AKT pathways in tumorigenesis and ccRCC progression, 
and therefore as therapeutic targets.

The goal of this paper is to find gene signatures that 
are associated with patients’ survival times. Based on the 

understanding of most disease processes, the ccRCC phenotype 
does not result from a mutation in a single gene, but rather 
from a coordinated series of interactions involving multiple 
molecular pathways and multiple genes.4 Our main hypothesis 
is that genes influencing patient’s survival times are cumula-
tive effects of a given gene as well as its (upstream) regulators. 
The main goals of this study are (1) to determine the whole 
genome causal network from gene expression data and (2) to 
relate each gene expression to patient survival, adjusting for 
the estimated causal network (hence, regulators). The incorpo-
ration of analytic methods that are based on network models of 
gene expression has improved our ability to identify elements 
that can serve as biomarkers of patient prognosis. Because the 
interactions between the expressions of different genes are 
assessed within a biological network, this construct is labeled 
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as a gene co-expression network. In a layout of this network, 
the gene functions are shown as vertices and the significant 
associations between gene functions are shown as connec-
tions (or edges) between them.5 All edges in a co-expression 
network are undirected and can be quantified by different 
statistical measures, such as marginal correlations, partial 
correlations, or mutual information.6 In existing approaches, 
there are two main aspects of gene co-expression networks: 
(1) hub genes and (2) modularity. In a co-expression network 
that corresponds to a set of genes, hub genes are the genes that 
connect to a significant proportion of the total genes in the 
network. In contrast, a modularity approach focuses on a sub-
network that has a higher density of edges within groups of 
genes than between them. Recent works, such as Han et al.7, 
Taylor et al.8, Patel et al.9, and Yang et al.10, uncovered prog-
nostic genes for an outcome variable based on the characteris-
tics of genes in the co-expression network.

Although the undirected co-expression network esti-
mated from observational gene expression data has been use-
ful to select prognostic genes, they do not explicitly account 
for directionality of the mechanistic regulation between the 
genes. The delineation of causal (directed) relations among 
genes would be useful not only in discovering (upstream) reg-
ulators for a particular gene but also in identification of pre-
dictive gene signatures involved in cancer progression. Causal 
relationships can be concisely represented by directed acyclic 
graph (DAG) models, and given an estimated/known DAG 
model, the causal effects can be computed using standard 
methods as in Pearl.11

However, a DAG model is not directly identifiable (in a 
statistical sense) from observational/static gene expression data. 
Maathuis et al.12, proposed a method called IDA (intervention-
calculus when the DAG is absent) to infer bounds on total 
causal effects under a limited causal structure estimated from 
observational data. Motivated by the IDA method, we propose 
methods to rank genes based on their effects on patient survival 
times, adjusting for their causal structure, ie, regulators. Our 
method has two main steps: estimating the causal structure of 
genes that identifies network modules for each gene and its reg-
ulators (“parents”), and then, subsequently, using the modules 
consisting of a gene and its parents to estimate the effects on 
survival times. In essence, this constitutes a network-oriented 
method as opposed to univariate gene analyses – thus, refining 
the estimations since it adjusts for potential confounders (as we 
demonstrate in the sequel).

The most challenging part of this analysis is to estimate 
the causal structure for a large number of genes (typically on 
the order of 104). IDA starts from a completely connected 
graph in which all pairs of genes are connected and iteratively 
removes the edges (“thins the graph”) by excluding edges 
with all orders of conditional independences (marginal inde-
pendence, first-order conditional independence, and so on). 
However, to exclude an edge, the set of variables (conditioned 
on) needs to be a set of all subsets of the inter-connected 

variables – which leads to an exhaustive search over the large 
number of edges and vertices. Using penalized regression 
technique, we estimate sparse graphical models and use algo-
rithms based on IDA to estimate the causal structure – thus, 
enabling us to scale our methods to such high-dimensional 
genomics data. Applying our methodology to TCGA ccRCC 
tumor samples, we found significant gene modules in ETS and 
Notch family. The signatures also involve the genes ARID1A 
and SMARCA4, which were found by the TCGA Research 
Network’s study of ccRCC.3

In Section 2, we introduce and describe our methodology. 
In Section 3, we present the results of the analysis of TCGA 
data to select prognostic gene signatures for the survival time 
of patients with ccRCC. In Section 4, we provide a summary 
and discussion.

Methods
We propose an approach for estimating the effect of each 
gene on patient survival, adjusted for the causal structure of 
all the genes of interest. The causal structure forms modules 
for each gene that consists of a gene and its parents – where 
parents are defined by the set of genes having a directed edge 
(pointing) toward a gene in a graph. The main challenge is 
that the unique determination of modules is unidentifiable 
from observational gene expression data. To address this 
issue, we propose a principled statistical procedure that con-
sists of two main parts: (1) estimating the causal structure, 
which includes direct and indirect relations among genes, for 
high-dimensional gene expression data and (2) evaluating 
the effects of each gene under the ambiguous causal struc-
ture. Figure 1 concisely describes the entire workflow of our 
method. Briefly, the causal structure is first estimated through 
several undirected/partially directed graphs from Steps 1 to 6 
and the edges are sequentially thinned with different impli-
cations of the dependencies for edges in different graphs. 
The eventual causal structure represented by the completed, 
partially directed acyclic graph (CPDAG) in Step 6 includes 
undirected edges when the directions are not identifiable. To 
address the issue of identifiability, several effect sizes of each 
gene for all possible modules from the CPDAG are obtained 
by the Cox-proportional hazards model, and the minimum 
effect size is used for ranking the genes. As opposed to the 
single gene analysis, we refine the estimation of effect size 
based on the estimated causal structure and show how this 
leads to better quantification of the prognostic effects. In the 
following subsections, we describe in detail our method for 
the causal structure estimation and the effect size evaluation 
given the causal structure.

estimation of the causal structure for genes. We 
study the causal relations of p variables X1, … , Xp by a DAG 
G = (V, E) with a set of vertices V = {1, … , p} and a set of 
edges E ⊆ V × V. All edges in the DAG are directed; in that, 
(v, w) ∈ E but (w, v) ∉ E for all v ∈ V ≠ w ∈ V. The acyclic 
graph means that the DAG contains no cycle (no path from 
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a vertex to the same vertex along with directed edges). In our 
context, the vertices/variables represent genes, and the edges 
represent directed relations between pairs of these genes. We 
assume that X = (X1, … , Xp)T ∈ Rp follows a multivariate 
normal distribution Np(0, Σ) with the density function ƒΣ(⋅). 
The parent vertices of a vertex i ∈ V are defined by the vertices 
pointing toward the vertex i. We denote the parent vertices 
of i ∈ V by pai, and the corresponding variables by X

ipa . The 
Markov properties determined by the DAG G admit recursive 
factorization of the joint probability density function ƒΣ,

 
1

1

( , , ) ( | )
i

p

p i pa
i

f X X f X XΣ
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The joint distribution of X is decomposed into condi-
tional densities of each variable given its parents. Because sev-
eral different DAGs may determine the same factorization, 
the DAG G is not identifiable from the observational distribu-
tion. The Markov property on the observational distribution 
of X provides the relations of conditional independence among 
the random variables. However, a collection of all the DAGs 

that correspond to the same set of conditional independence 
restrictions can be assembled into a Markov equivalence class, 
which can be determined based on observational data.

The approaches described by Spirtes et al.13, and Pearl11 
rely on a series of conditional independence tests to estimate 
a Markov equivalence class. The framework of the induc-
tive causation (IC) algorithm is based on the theorem in 
Andersson et al.14: two DAGs are Markov equivalent if and 
only if they have the same skeleton and the same v-structures. 
The skeleton of a DAG G is obtained by replacing all directed 
edges with undirected edges. A v-structure is an ordered trip-
let of vertices (i, j, k) such that G contains the directed edges 
(i, k) ∈ E and ( j, k) ∈ E and (i, j) ∉ E (i → k ← j). From the 
observational distribution, the skeleton and v-structures can 
be identified and are represented by a partially directed acyclic 
graph (PDAG). The undirected edges in the skeleton and the 
directions present in the v-structures imply conditional inde-
pendencies among the variables corresponding to V:

1. There is an edge between vertices i and j in the skeleton if 
and only if the variables Xi and Xj are dependent, condi-
tional on variables corresponding to XS = {Xk: k ∈ S} for 
all S ⊆ V \{i, j}.

2. In a v-structure i → k ← j, Xi and Xj are dependent, con-
ditional on every set that contains Xk or its descendants.

The framework of the IC algorithm11 relies on the con-
ditional independence constraint and consists of three steps:  
(1) estimation of the skeleton by conditional independence 
tests, (2) identification of the v-structures, and (3) completion 
of the PDAG obtained from (1) and (2). We follow the frame-
work of the IC algorithm by modifying the details of the algo-
rithms to be suitable for high-dimensional data. We describe 
each step of our method in the following subsection.

Estimation of the skeleton. Spirtes et al.13, described various 
algorithms for estimating the skeleton. Our method is a mod-
ification of the standard algorithm known as the Peter and 
Clark (PC) algorithm, which has been shown to be consistent 
for high-dimensional sparse graphs.15 The modification of the 
PC algorithm is based on the concept of a moral graph of a 
DAG. Given a DAG G, moralization of a DAG is executed 
by connecting the vertices i and j that form a v-structure i → 
k ← j, and replacing all directed edges by undirected edges. 
This moral graph is a Gaussian graphical model (GGM) that 
is specified by the structure of zeros in the inverse covariance 
matrix Σ–1.16 The PenPC algorithm17 starts from a GGM 
instead of a completely connected graph in the PC algorithm. 
The PenPC algorithm uses penalized regressions to estimate 
the GGM, which allows for the removal of a large amount of 
edges from the initial stage. The sparsity of the GGM makes 
skeleton estimation feasible for high-dimensional data, such as 
our ccRCC gene expression data, with p = 14,576. Motivated by 
the PenPC algorithm, the estimation of the skeleton proceeds 
in two stages: (1) the GGM is estimated based on penalized 

1. Completely connected
graph

2. Correlation graph

3. Gaussian Graphical
Model (GGM)

4. Skeleton

5. PDAG
(Skeleton + v-structures)

6. CPDAG
(Markov Equivalence

class)

7. Cox proportional hazards
model for each vertex, adjusted

for the CPDAG

Introduction of patient
survival time data

Completion

V-structure detection

Conditionally
independent pairs given
any subsets in all other
variables are excluded

Conditionally
independent pairs given

 all other vertices are
excluded

Marginally independent
pairs are excluded

figure 1. Workflow to obtain the whole genome causal structure: pairs 
of genes (edges) are sequentially excluded by conditional (marginal) 
independence tests, starting from a completely connected graph and 
arriving at a skeleton. V-structure detection and completion steps then 
follow. PDaG is partially directed acyclic graph and CPDaG is completed 
PDaG.
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full-order partial correlations and (2) more edges in the GGM 
are removed by lower order (unpenalized) partial correlation 
tests. From a known DAG, G = (V, E), we can construct the 
GGM by the moralization and the skeleton by replacing the 
directed edges with undirected edges. We denote the GGM 
and the skeleton of the DAG, G = (V, E), by Gm = (V, Em) and 
Gu = (V, Eu) with superscripts. The edges in Em and Eu are all 
undirected, which means that (i, j) ∈ Eu ⇔ ( j, i) ∈ Eu. In an 
undirected graph, the neighborhood of a vertex v is defined by 
the set of vertices that are connected to v.

Note that l-order conditional independence means that 
conditional independence exists between two variables given 
l number of variables. The conditional independence is assessed 
by estimated partial correlations |

ˆ
ij Sρ  between Xi and Xj given 

a subset of other variables {Xk: k ∈ S ⊆ V \{i, j}}. For test sta-
tistics, we calculate the Z-transformed partial correlations, 

1 2 1 1| | |
ˆ ˆ( / ) log( / )i iij S j S j Sz ρ ρ= + − , and reject the null hypothesis 

if 13 1 2| || | | | ( / )ij Sz n S α−− − > Φ − , where Φ is the standard 
normal distribution function and 0 , α , 1 is the P-value 
cutoff. Hereafter, we provide the details of the algorithm.

[Step 1] Estimation of the GGM, Gm = (V, Em). 
Meinshausen and Bühlmann18 proposed a regression-based 
approach to estimate a GGM. The neighborhood of v is esti-
mated by a penalized regression of the variable corresponding 
to v versus the remaining variables. After estimating all 
p penalized p – 1 dimensional coefficients by separate esti-
mations, the graph structure is estimated based on the zero 
structure of those coefficients. For a response Xv where v ∈ V, 
we use procedures 1A and 1B, given below:

Procedure 1A. Marginal correlations are calculated 
between Xv and all other variables, {Xw: w ∈ V \{v}}. Set 
w ∈ ne0(v) if the P-value from the marginal correlation test 
between Xv and Xw is less than α, which is the P-value cutoff, 
where ne0(v) is the set of neighboring vertices of v in the cor-
relation graph.

Procedure 1B. For all Xv, v ∈ V, we select a neighbor-
hood, denoted by ne(v), using a penalized regression with Xv 
as a response variable and the variables {Xw: w ∈ ne0(v)} as 
explanatory variables,

0 0

0

0

1

2
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ne ne
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where xv is an n × 1 vector for n measurements of vari-
able Xv and X vne0

( ) is the n × |ne0(v)| matrix for variables  
{Xw: w ∈ ne0(v)} and 1β β β= …

0|ne ( )|( , , )T
v v v v .17 The tuning 

para meters, λv and τv, are selected by using an extended Bayes-
ian information criterion19 for each regression. From all the 
estimated regression coefficients ˆ{ : , and }vw v w V v wβ ∈ ≠ , 
we estimate the edge set of the GGM, Em, by

 Em = {(v, w): βvw ≠ 0 and βwv ≠ 0}.

In the Step 1 of the PenPC algorithm,17 they fit the p 
penalized regressions without marginal independence tests at 
the beginning; in other words, all regressions involve p – 1 cova-
riates. In this algorithm, we include the neighborhoods from 
the correlation graph for each response variable as the covariates 
in the penalized regression corresponding to the response.

[Step 2] Estimation of the skeleton, Gu = (V, Eu). If an 
edge (v, w) belongs to Em, which is an edge set of the GGM, 
the genes Xv and Xw are conditionally dependent given all 
other genes (full-order conditional independence). An edge 
(v, w) in a skeleton is equivalent to the variables Xv and Xw, 
which are conditionally dependent given all subsets of the 
other variables. Therefore, more edges will be removed from 
the GGM if any lower order partial correlation test provides a 
P-value greater than the threshold α. For an edge (v, w) that 
is in the GGM but removed from the skeleton ((v, w) ∈ Em 
and (v, w) ∉ Eu), we calculate a separation set that is the union 
of the sets that induce conditional independence between the 
variables Xv and Xw.

Our algorithm performs the partial correlation tests from 
the first order, l = 1, until l exceeds the maximum size of the 
neighborhoods in the current graph. We denote ne(i, G) as the 
set of neighbors for i ∈ V in an undirected graph G. Our algo-
rithm is summarized in detail in Figure 2. It starts from the 
first-order partial correlation tests because we already tested 
marginal correlations to estimate the GGM. For a fixed order, 
l, each edge is tested by partial correlations given the subsets 
in the neighborhood for either vertex that forms the edge. We 
changed the order-independent version of the PC algorithm 
in Colombo et al.20 to an algorithm that can operate in parallel 
with the vertices and the order l. The main difference between 
our algorithm and the PC algorithm is in the calculation of 
the separation sets. While the PC algorithm stops testing an 
edge when a separation set is obtained, our algorithm exhaus-
tively searches all vertices that participate in any of the separa-
tion sets (Step 2.2.1 of Fig. 2). The exhaustive search provides 
a more accurate estimation of the v-structures.

v-structure identification. All edges (v, w) ∉ Eu have 
separation sets denoted by Svw. Consider a triplet (v, w, k) such 
that v–k–w in the skeleton. From the conditional indepen-
dence property of the v-structure, if v → k ← w, k must not 
be in the separation set Svw because Xv and Xw are condition-
ally dependent given any set containing the variable Xk cor-
responding to the child vertex k. Thus, we direct the triplet as 
v → k ← w if k ∉ Svw.

Using all the graphs, the correlation graph, GGM, and 
skeleton, in our algorithm, we determine the v-structures for 
the triplets, (v, w, k), such that (v, k) ∈ Eu, (w, k) ∈ Eu, and 
(v, w) ∉ Eu. From our method, the edges are sequentially 
removed, working from a completely connected graph to the 
correlation graph, from the correlation graph to the GGM, 
and from the GGM to the skeleton. From the algorithm in 
Figure 2, we have separation sets Svw only for edges excluded 
between the GGM and the skeleton. The separation sets for 
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edges excluded from the correlation graph are empty sets. For 
edges excluded between the correlation graph and the GGM, 
the separation sets are all the other variables, ie, V \{v, w} for 
an edge (v, w). The triplet with (v – k – w) in the skeleton 
forms a v-structure, v → k ← w, if one of the following condi-
tions (a) or (b) is satisfied:

a. The edge (v, w) is excluded from the correlation graph.
b. (i) The edge (v, w) is in the GGM, ie, Xv and Xw are mar-

ginally correlated and partially correlated given all other 
variables {Xk: k ∈ V \{v, w}}, and (ii) k ∉ Svw.

Using the above rules, we obtain a PDAG that represents 
the skeleton and v-structures.

Completion of the PDAG. The completion of the PDAG 
obtained from the skeleton and v-structures is accomplished 
by maximally orienting the remaining undirected edges, with 
restrictions of no directed cycle and no extra v-structure. 
This completion is done by applying several deterministic 
rules from Meek21 and Pearl.11 The resulting graph is called 
the CPDAG. It represents the Markov equivalence class. The 
directed edges in the CPDAG exist in every DAG in the 
equivalent class; otherwise, the directions for the undirected 
edges in the CPDAG are reversible in some DAGs in the 
equivalent class.

selection of gene signatures based on the causal gene 
modules. In this section, we identify which genes have a sig-
nificant effect on survival time. The unsupervised causal struc-
tural learning in the previous section provided a CPDAG that 
represents a Markov equivalence class. The main idea is that 
when we model a gene in relation to survival time, we adjust 
for its parent genes, which are obtained from the CPDAG. If 
the DAG that represents the causal relations for V is known, 
the parent genes for all vertices are obvious. Using the unique 
gene modules for each gene, we can obtain the effect of a 
gene on patient survival by including the expressions of its 
parent genes in a Cox-proportional hazards model. However, 
the undirected edges in the CPDAG generate uncertainty in 

determining the parent genes: the arrows of the undirected 
edges imply either directions. Similar to the IDA method,12 
our approach accounts for all possible parent genes by switch-
ing the directions for the undirected edges and obtains the 
lower bound for the effect of a gene on survival time.

For a gene i, we define a set of parents { j: j → i} and 
children { j: j ← i} only for the directed edges. If all neigh-
boring vertices of i are directed, then we have an obvious 
parent set for i. For an undirected edge that connects to ver-
tex i in the CPDAG, the parents and children are indistin-
guishable. Under this uncertainty, all effects are computed 
by switching the directions without creating extra v-struc-
tures or cycles on the CPDAG. The detailed algorithm 
for constructing the candidate set of parents for a vertex is 
described in Maathuis et al.12

Application to Kidney cancer data
tcGA ccrcc data description. RNA-seq and clini-

cal data are available in TCGA for 480 patients with primary 
ccRCC. Among those 480 patients, 343 were censored; the 
quantiles of the observed survival times in days were 2 (0%), 
326.75 (25%), 456.35 (33%), 619.90 (45%), 731.00 (50%), 
830.15 (66%), 1,338.50 (75%), and 2,830 (100%). We ana-
lyzed RNA-seq V2 data from TCGA tumor tissues for 480 
patients with ccRCC (accessed as of November 7, 2013). We 
filtered out genes with 75 percentiles across the 480 samples 
less than 25. After removing genes with low expression, we 
obtained 14,576 genes that are used for downstream analy-
ses. The expression of each gene within each sample is mea-
sured by total read counts. We used log10 transformed total 
read counts in this study. We obtained a 480 × 14,576 residual 
dataset after removing the effects of several batch covariates 
by linear regression: 75th percentile of log10 total read counts, 
capturing the read depth for each sample, plate, and institu-
tion. Then we standardized the residual data to have a mean 
of zero and a unit variance for each gene. The final expres-
sion values conform very well with the normal distribution 
(Fig. 3) – thus, facilitating GGM approaches.

Input: GGM Gm = (V,Em) and a significance level α
Output: Skeleton Gu = (V,Eu) and separation set Sij for edges (i, j) ∈ Em and (i, j) /∈
Eu

1. Set l=0 and Gu = (V,Eu = Em)

2. Repeat l=l+1 until l > maxv∈V |ne(v,Gu)|

2.1 Set G = (V, F = Eu)
2.2 Repeat for all pairs (v, w) such that v ∈ V and w ∈ ne(v,G)

2.2.1 Calculate l-order partial correlations, ρ̂vw|S for all S ⊆ ne(v,G)\{w} and
|S| = l. If the maximum p-value is greater than or equal to α, remove w
from ne(v,Gu) and set Sij =

�
k Sk for the conditioning set Sk, for which

the p-values from testing ρvw|Sk
= 0 are greater than or equal to α.

2.3 Update (v, w) ∈ F ⇔ v ∈ ne(w,Gu) and w ∈ ne(v,Gu)

figure 2. A modified PC algorithm starting from a GGM.
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figure 4. Scatter plot of the effect sizes of all genes in relation to survival 
time, from the unadjusted model versus the network-adjusted model. 
The names of the top four genes from the network-adjusted model are 
listed on the graph. the green line represents equal effect sizes between 
the two models. The red dashed vertical and horizontal lines are drawn 
at the maximum in the absolute effects from the unadjusted model 
(0.35). the areas a1 and a2 indicate that effect sizes from the network-
adjusted model are greater than the maximum in the effect sizes from the 
unadjusted model.

From unsupervised learning, we estimated a whole 
genome expression network, that is a CPDAG in which some 
of the edges are directed, with the set of vertices V = {1, …, 
14,576}. Then we evaluated the effect of each gene in V by 
using a Cox-proportional hazards model, adjusting for the 
causal structure, CPDAG. The PC algorithm implemented in 
the pcalg package of Kalisch and Bühlmann15 and Colombo 
and Maathuis20 is not applicable for estimating a skeleton for 
the number of vertices we analyzed, P = 14,576. Thus, at the 
beginning of the PC algorithm, we used penalized regres-
sions, which are more suitable for these high-dimensional 
data. Based on the estimated causal structure for the genes, 
we evaluated the effect of each gene on survival time. We 
describe the details of the CPDAG estimation results in the 
Appendix.

results. Using graph theory terminology, we refer to 
“parent” (“child”) genes as genes pointing toward (away from) 
the gene of interest.

Gene rankings: Our gene ranking is based on the Cox-
proportional hazards model, adjusted for the estimated 
CPDAG and four clinical covariates: patient age and tumor 
stage, grade, and metastasis status. We refer to this model as 
the network-adjusted model. To benchmark our method, we 
considered the model that includes the gene expression and 
the four clinical covariates with no parent gene and refer it 
as the unadjusted model. Therefore, in the network-adjusted 
model (which includes the set of gene parents for each gene), 
we have more parameters than the unadjusted model. Figure 4 
displays the scatter plot of the effect sizes from the unadjusted 
model versus the network-adjusted model for all 14,576 genes. 
The slope of the regression line in the scatter plot was 0.893 
with zero intercept. The trend with the slope less than 1 indi-
cates that the effect sizes from the network-adjusted models 
are overall less than the effect sizes from the unadjusted model. 
However, the areas, A1 and A2, in Figure 4 indicate that the 
effect sizes from the network-adjusted model are greater than 

the maximum in the effect sizes from the unadjusted model. 
Although the effect sizes from the unadjusted model tend to be 
greater than those from the network-adjusted model, several 
genes show evident increases in their effect sizes by adding the 
set of parent genes (located in the regions A1 and A2). Espe-
cially, BAT3 gene showed the sign change in the effect sizes 
from the unadjusted model (0.04) to the network-adjusted 
model (−0.5) with 1,136.57% relative increase in their effect 
sizes by adding the parent genes, BAT2, FLOT1, and NOC2L 
(Table 1). Both BAT3 and BAT2 genes are HLA-B-associated 
transcripts, and the sequences of the two genes were shown to 
be closely linked.22 EEF1A1 gene showed 1,311.37% relative 
increase in the effect sizes from the unadjusted model to the 
network-unadjusted model by adjusting for EEF1A1P9 gene 
(Table 1). The EEF1A1P9 gene is a pseudogene that is a dys-
functional gene with sequence similar to EEF1A1 gene, and 
has lost their protein-coding ability or is no longer expressed.23 
Regulated by the pseudogene EEF1A1P9, EEF1A1 gene has 
a significant effect on the survival times. In summary, the 
top-ranked genes from the network-adjusted model are in the 
areas A1 and A2 in Figure 4, and this indicates that most of 
the top-ranked genes are not found in the unadjusted model.

Prediction performance: We also evaluated the predic-
tion performance of the network-adjusted and unadjusted 
models using Harrell’s concordance indices. The index is a 
rank-correlation measure to evaluate predictive accuracy for 
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Table 1. Top 50 genes (for ccRCC), ranked by the network-adjusted model: effects on survival time measured by the network-adjusted model 
and unadjusted model, relative increase in effect size resulting from the network-adjusted model compared to that from the unadjusted model, 
parent genes, and children genes. The red and green texts in the third and fourth columns indicate negative and positive effects, respectively.

RANK GENE EffECT (a)  
(AdjUSTEd)

EffECT (b)  
(UNAdjUSTEd)

(| | | |)
| |

a b
b
−−

××100
PARENT GENES ChILdREN GENES

1 TAF6 0.67 0.26 155.61% COPS6, CUX1, LRWD1, MOSPD3,  
SNX15, USP21

2 GABBR1 0.64 0.28 124.34% AGPAT4, C2orf63, CACNB1,  
EBF4, ZNF767

3 MFAP4 −0.61 −0.11 449.1% AEBP1, CAPN6, DCN, HSPB6, 
LOC399959, MAPK7, THBS2

4 MARCKSL1 0.6 0.27 123.32% FJX1, FSCN1, GABPB1, ITPKB MDFI, MEX3A, PDE4DIP

5 CAP1 −0.56 −0.17 224.86% ACTR3, EPB41L2, TPM3 CAPZB, ELOVL1

6 MRPS36 −0.56 −0.21 164.93% ATP5H, CDK7, COX7C RUNDC3B

7 IK −0.55 −0.2 173.38% AATF, BRD8, HARS SF3B2, SLC4A1AP, SLU7,  
SUGT1, ZMAT2

8 PLB1 0.54 0.11 373.35% CSF1R, IGSF21 SP110

9 IRF1 −0.54 −0.19 175.37% BATF2, BCL3, C5orf56 TOE1

10 PSMD14 0.53 0.21 151.4% DPP3, OLA1, PSMA5

11 TMED9 −0.52 −0.16 231.64% B4GALT7, FAF2, LMAN2,  
SEC61A1, SIL1

12 FGFR4 0.52 0.05 975.17% C22orf36, LMAN2, PDZK1, SLC16A4

13 UNG 0.52 0.13 287.44% ACACB, ESYT1, FBXO21, GALNT4,  
MRPS23, SNRPF, SPPL3

14 SEMA6B 0.52 0.11 363.7% CCDC85B, DAPK3, VWF UPP1

15 PIGU 0.5 0.2 151.9% ALG8, CSE1L, DYNLRB1, RPN2 TTLL1

16 AZI1 0.5 0.26 94.05% HDGFRP2, LRRC45 MYO18A

17 SLC30A5 −0.5 −0.15 228.9% AGGF1, GFM2, GMCL1, HEXB,  
IPO11, MIER3, NUDT18

UTP15

18 BAT3 −0.5 0.04 1136.57% BAT2, FLOT1, NOC2L BTBD9, RNF5, SKIV2L,  
YIPF3

19 TCF25 −0.49 −0.08 484% COG4, DNAH14, KATNB1,  
KLHDC4, TSC2

20 ADAP2 0.49 0.14 248.51% LCP2 GAL3ST4, LOC93622,  
RNF135, TMEM106A

21 UBE2L3 0.49 0.11 325.61% CRKL, DYNLRB1, FBXO7,  
SNRPD3, TOMM22

22 EEF1A1 −0.48 −0.03 1311.37% EEF1A1P9 GRIPAP1, LOC644936

23 TTC1 −0.47 −0.24 97.07% ATP6V0E1, MRPL22, PFDN1,  
RARS, SLU7

ZMAT2

24 ZSCAN18 0.47 0.03 1319.16% CLDN3, MTMR4, ZNF135, ZNF329,  
ZNF606, ZNF793

25 CCNT2 0.47 0.19 144.82% INO80D, PRPF39, ZDHHC17,  
ZNF518A

PCMTD1, UBXN4, ZNF26

26 FAM72B 0.47 0.24 95.48% BLM, CCNA2, SRGAP2 GSDMB

27 PPFIA4 −0.46 −0.04 1058.85% BNIP3, C1orf113, COL27A1,  
GOLGA8A, PFKFB4

RNF165

28 PSMC3 −0.46 −0.05 791.93% ARFGAP2, MED19, PSMD13

29 BRD2 −0.46 −0.07 533.05% BAT2, NXF1 BTN2A1, C6orf130, DAXX,  
POLR2A, RSRC2

30 LY6H 0.46 0.11 320.29% APOD, CHST1, GPIHBP1, PRND SV2B, UNC5A

31 PCCB 0.46 0.18 162.23% BCAT2, GFM1, MRPL3

32 SEMA3G −0.46 −0.14 236.22% ADAMTS6, GJA5, HSPA12B,  
PRDM16, TACR1, TIMP3

(Continued)
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censored survival outcome and is defined as the proportion of 
all usable patient pairs in which the predictions and outcomes 
are concordant.24 Therefore, the larger index value indicates 
the more accurate model. Figure 5 shows Harrell’s concor-
dance indices of both models for the top 100 genes from the 
network-adjusted model. For most of the top 100 genes, the 
indices for the network-adjusted model are larger than those 
for the unadjusted model. Notably, the SLC30A5 gene shows 
the greatest increase in the indices after adding the parent 
genes, AGGF1, GFM2, GMCL1, HEXB, IPO11, MIER3, 
and NUDT18 (Table 1). We display survival curves for low-
expressed and high-expressed groups for the TAF6 gene (the 
top ranked gene in Table 1) at the median expression levels of 
its parent genes (Fig. 6A).

Effect size estimation of cancer genes: Next, we focused on 
the known cancer genes in the Catalogue of Somatic Muta-
tions in Cancer,25 and found that 415 genes in our gene 
expression dataset are included in that catalog of cancer 
genes. From our ranking of the corresponding 415 effect 
sizes from the network-adjusted model, the top 50 cancer 
genes are displayed in Table 2. We can consider the relative 

increase in effect size resulting from the network-adjusted 
model compared to that from the unadjusted model (listed 
in Table 2) as the efficiency gain when we use the network-
adjusted model as a predictive model. While 2 genes among 
the top 50 genes had losses and 13 genes had no relative 
increase, the remaining 35 genes had gains by adjusting for 
the causal structure. The SEPT6 gene had 5,334.49% gains 
in effect size by adjusting for expressions of parent genes 
FOXP1, GPR146, MCOLN2, and SBK1. The REL gene had 
5,838.95% gains in effect size by adjusting for expressions of 
parent genes ETV3, FAM110C, PAPOLG, and SKIL.

Biological interpretation of the top prognostic cancer genes: 
From the signatures based on the known cancer genes dis-
played in Table 2, we found the ETV5 gene to be the top-
ranked gene and to have parent genes that included the ETV1 
gene. ETV5 and ETV1 are ETS family members, share a 
highly conserved ETS binding domain, and are almost 50% 
identical along the full protein.26 Gene fusions involving the 
ETS family have been identified in a large fraction of pros-
tate cancers.27,28 ETV5 is positively regulated by the Glial cell 
line-derived neurotrophic factor (GDNF) rearranged during 

Table 1. (Continued)

RANK GENE EffECT (a)  
(AdjUSTEd)

EffECT (b)  
(UNAdjUSTEd)

(| | | |)
| |

a b
b
−−

××100
PARENT GENES ChILdREN GENES

33 BNIP3L −0.45 −0.21 117.23% AGPAT5, DPYSL2 CNOT7, FBXO16, PNMA2

34 LOC100270746 0.45 0.2 124.77% C6orf41, FLJ37453 SUN1

35 SAMD11 0.45 0.07 562.48% BMP4, C1QL4, DNAJC6, DNM2,  
HR, ID4, NMUR1

SEPT11, ZNF652

36 HBP1 −0.45 −0.23 96.55% BBS12, C5orf41, C7orf64, CAPZA2,  
NOP2, TBC1D15

37 FAM111B −0.44 −0.15 198.96% AGPAT3, ASF1B, DTL, MLF1IP,  
ZNF367, ZWINT

FEN1

38 YARS 0.44 0.13 236.15% AARS, AK2, C3orf33, GARS,  
IARS, PSMB2, SARS

39 HMCN1 −0.44 −0.15 186.53% ANGPTL2, BCL2L1, DPYSL3,  
FLT1, ITGA8, UNC5C

LRP4, LTBP1, SPIN4

40 STX11 −0.44 −0.13 240.21% CCRL2, CD86, GNA13, SERPINB9

41 CDCA7 0.44 0.3 44.63% ATAD2 DLX4

42 F13A1 0.44 0.17 152.42% CD163L1, FOLR2, IL2RA TMEM163, USP2

43 KPNA2 0.44 0.18 140.25% HN1, LRRC59, NCAPH UBE2G1

44 ETV5 0.44 0.19 124.61% ATXN7L1, C10orf46, CECR6, ETV1,  
KAL1

PSTPIP2, SORBS2,  
USP13, ZSWIM4

45 CREB3L1 0.43 0.24 84.37% ABCA3, CCDC80

46 ZNF576 −0.43 −0.21 102.5% B9D2, C4orf23, CXorf40B, 
HSD17B14, MRPS12, MTMR7

47 SSB 0.43 0.21 99.59% EIF5B, HAT1, METTL5, OLA1,  
PPIG, SMC3

48 KCNN3 −0.43 −0.2 112.87% CHRM3, CPNE5 SEL1L

49 POLR2C −0.42 −0.17 155.22% C16orf63, CIAPIN1, DNAJA2,  
MMP7

SLC7A6OS, TPRG1L

50 SLC7A5 0.42 0.32 33.47% AKR1B1, ARL4C, CADM1, CMIP,  
SLC7A1
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figure 5. For the top 100 genes ranked by the network-adjusted model, concordance indices for the network-adjusted model (red) and the unadjusted 
model (blue).
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figure 6. Survival curves from the fitted network-adjusted Cox-proportional hazards models for top genes at the median expression levels of their parent 
genes. The low-expressed and high-expressed genes indicate the bottom and top 10% of the observed expression levels. (A) TAF6 with parent genes, 
COPS6, CUX1, LRWD1, MOSPD3, SNX15, and USP21 and (b) ETV5 with parent genes, ATXN7L1, C10orf46, CECR6, ETV1, and KAL1.
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Table 2. Top 50 cancer genes (for ccRCC) we identified within the dataset of 415 genes that are also found in COSMIC, ranked by the network-
adjusted model: effects on survival time, from network-adjusted model and unadjusted model; relative increase in effect size resulting from the 
network-adjusted model compared to that from the unadjusted model; parent genes; and children genes. The red and green texts in the third and 
fourth columns indicate negative and positive effects, respectively.

RANK GENE EffECT (a)  
(AdjUSTEd)

EffECT (b)  
(UNAdjUSTEd)

(| | | |)
| |

a b
b
−−

××100
PARENT GENES ChILdREN GENES

1 ETV5 0.44 0.19 124.61% ATXN7L1, C10orf46, CECR6,  
ETV1, KAL1

PSTPIP2, SORBS2, USP13,  
ZSWIM4

2 CREB3L1 0.43 0.24 84.37% ABCA3, CCDC80

3 GMPS 0.4 0.14 189.76% C10orf32, COPB2 MSH6

4 RBM15 −0.38 −0.21 80.85% DUSP18, EXOC8, HKR1,  
KIAA1958, KLHL36, NUFIP2,  
POLR3F

5 SEPT6 −0.33 −0.01 5334.49% FOXP1, GPR146, MCOLN2,  
SBK1

6 TTL 0.33 0.33 0% PMF1, SLC20A1, TRIM37

7 ARID1A 0.31 0.06 394.12% AHDC1, AKTIP, CHD8, MYCBP2 PRDM2

8 ERCC5 −0.3 −0.1 208.36% BIVM, CDC16, CIR1 TPP2

9 TFG 0.3 0.03 898.03% COPG, LOC100009676,  
TBC1D23

10 FLT3 −0.29 −0.29 0%

11 SLC34A2 0.29 0.12 142.25% CDHR1, CP, GATS, LAMC2,  
LTF, PNMAL1, PROM1

TEX15

12 FAM46C −0.28 −0.21 33.6% ACVR1, BTG2, PIM2 LCA5L, XBP1

13 PER1 0.28 −0.02 1472.16% AMACR, AREG, C1orf156,  
C1orf51, CCR1, ERRFI1, KDM6B,  
KLF9, MEF2D

PPP1R10, TNFRSF21, TSC22D3

14 DDB2 −0.28 −0.15 86.73% BAX FDXR, POLH, SPATA18, XPO7

15 NACA −0.27 0.02 1625.17% CNOT2, EDARADD, NACAP1,  
PFDN5, RPL37, RPL6

PA2G4

16 MLLT10 0.27 0.09 189.01% CCDC7, KLF6, WAC PITRM1, PPP4R1L

17 HMGA1 0.27 0.25 5.41% IGF2BP2, SH3BP1 PAK1, SH3GLB1, SLC35F2

18 TCF12 0.27 0.05 454.28% ACTR5, FAM118B, GOSR2,  
KANK1, LPHN2, NEO1, RAB13,  
RFX7

TFPI, TMOD3

19 RUNX1 0.27 0.27 0% LIMK2

20 CANT1 0.26 0.14 89.94% UBE2Z COL4A3, METTL2A, MOCS2,  
PIGS, SEPT9

21 REL 0.26 0 5838.95% ETV3, FAM110C, PAPOLG, SKIL TNFAIP3

22 ZNF331 −0.26 −0.1 165.74% AVPI1, CREM, NFIL3, NR4A2,  
RAB3A, RNF122, ZNF10

ZNF525

23 JAZF1 0.25 0.08 211.4% ANKH, ANXA6, C7orf31,  
EGFLAM, F11R, ID2, SHOC2

SCN1B

24 ASPSCR1 0.25 0.31 −20.65%

25 PLAG1 0.25 0.25 0% CHCHD7, FGF12, TMOD1

26 NOTCH1 0.24 0.1 150.47% CCDC88C, JAG2 ZMIZ1

27 TAL2 −0.24 −0.3 −21.2% ABCB6, DZIP3 TMEM38B

28 ERCC2 0.24 0.19 29.19% ALDH5A1, AVPR1B, DTNB,  
KPTN, POLD1

29 SMARCA4 0.23 0.23 0% AP3D1

30 DNMT3A 0.23 0.23 0% LRFN4, PIAS3, WHSC1L1

31 HOXA11 0.23 0.13 67.73% HOXD11 HOXC9, NRIP3, TMEM181

32 GNAS 0.22 0.22 0%

(Continued)
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transfection (RET) signaling pathway, which plays a crucial 
role in kidney development.29,30 We display survival curves for 
low-expressed and high-expressed groups for the ETV5 gene 
(the top ranked gene in Table 2) at the median expression lev-
els of its parent genes (Fig. 6B). Also, among the top-ranked 
genes we identified were ARID1A and SMARCA4, which 
were also reported in TCGA Research Network’s analysis of 
ccRCC.3 ARID1A regulates cell cycle progression and pre-
vents genomic instability in human cancer.31 Hoffman et al.32, 
suggested SMARCA4 as a therapeutic target for BRG1- 
mutated cancers, such as lung cancer. The NOTCH1 gene was 
among our top-ranked genes, with parent genes CCDC88C 
and JAG2 and child gene ZMIZ1. NOTCH1 is included in the 
Notch signaling network, which is crucial to the control of the 
fate of a cell and its development processes through local cellu-
lar interactions.33 Sjölund et al.34, and Ai et al.35, reported that 
NOTCH1 expression was significantly elevated in mRNA and 
protein levels in ccRCC tumors, compared to matched non-
tumor tissues. Interestingly, the NOTCH1 gene was selected by 
our model after adjusting for one of the parent genes, the JAG2 
gene, which is a NOTCH ligand. Rakowski et al.36, observed 
that the gene ZMIZ1, which is regulated by NOTCH1 in our 

estimated causal network, is coactivated with NOTCH1 in 
leukemia.

discussion
In this paper, we propose methods to select gene signatures 
based on a causal network learning. The causal network pro-
vides modules for each gene that consists of the gene and 
its parent genes. Rather than treating the modules together 
for gene signature discovery, we refine the estimation of the 
effects of each gene by adjusting for the parent genes. We 
applied this method to determine gene signatures at the 
gene expression level that correlate with patient survival 
time based on our analysis of TCGA ccRCC tumor samples. 
We extensively analyzed RNA sequencing data, including 
14,567 genes, which represent 480 TCGA ccRCC tumor 
samples, to determine the whole genome causal structure, 
adjusted for batch effects. Then we assessed the effect sizes 
of all genes and adjusted for the estimated causal structure 
and clinical covariates of patient age and tumor stage, grade, 
and meta stasis status. As gene signatures, we found ETV5, 
adjusted by ETV1, and NOTCH1, adjusted by JAG2. The 
signatures also involve the genes ARID1A and SMARCA4, 

Table 2. (Continued)

RANK GENE EffECT (a)  
(AdjUSTEd)

EffECT (b)  
(UNAdjUSTEd)

(| | | |)
| |

a b
b
−−

××100
PARENT GENES ChILdREN GENES

33 CHEK2 0.22 0.22 0% HSCB

34 HLF −0.21 −0.21 0%

35 GNAQ −0.21 −0.13 63.63% BRD3 ITGAE, NFIB, PLAA

36 ETV6 0.21 0.21 0% PHF21A, STAT3, UBE2V1,  
UBXN8

37 SET 0.21 0.03 700.92% ACACB, ANP32B, ARPC5L,  
BRD3, GLE1, ODF2, PPP6C,  
PSIP1, PSMB7

STRBP

38 KIF5B 0.21 0.06 238.41% ARHGAP21, CCNY, PRPF40A,  
WAPAL

PTPN11, RNF6

39 TRRAP 0.21 0.21 0% HUWE1

40 CDKN2C 0.21 0.1 105.25% BEND7, C6orf138, CASZ1,  
CCND1, CDK6

DHCR7, FAF1, SH3BP5L,  
SLC35B2

41 VHL 0.21 0.18 19.27% COX4I2, SETD5

42 RPL22 −0.21 −0.09 125.72% EIF3L, RPL11 TOMM20, UBE4B

43 CHN1 0.21 0.21 0% ABCG1

44 STAT3 0.21 0.07 199.6% BRI3, ETV6, OSMR, SLC25A36

45 CDK4 0.21 0.21 0% DVL2, SLC11A2

46 CD274 −0.2 −0.18 11.56% C9orf46, PDCD1LG2 CRABP2, MXD1, WARS

47 KTN1 −0.2 0.04 379.07% C14orf33, HSP90AA1, SDCCAG1, 
TAX1BP1

LARP7

48 CYLD −0.2 −0.13 58.08% NOD2 OGG1

49 BRD3 0.2 0.04 339.88% BAT2L1, PHF2, ZFAND2A GNAQ, SET

50 TRIM33 0.2 0.03 574.82% AHCYL1, FAM126B, HIPK1, LPP, 
THOC2
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which were found by the TCGA Research Network’s study 
of ccRCC.3

The main challenge of our analysis was to construct a 
whole genome causal structure from tens of thousands of genes. 
A standard approach is to screen genes by the strength of the 
association between gene expression and patient survival time 
in advance of assembling a network. Instead of prescreening 
the genes, we started with a completely connected graph and 
screened the edges to obtain a causal structure for all the genes. 
Our approach uses the PC algorithm, which thins the edges 
in the completely connected graph by edgewise partial cor-
relations given all possible subsets of all other vertices. How-
ever, because the computational time of the PC algorithm is 
inefficient when working with large numbers of vertices and a 
P-value cutoff of 0 , α , 1,17 we added a GGM estimation 
step to the middle of the PC algorithm. The GGM estima-
tion step involves removing the edges by using penalized full-
order partial correlations obtained from p separate penalized 
regressions. Those penalized regressions form a sparse GGM 
(0.027% of all possible edges in our data analysis), and we fur-
ther assessed the lower order partial correlations for the edges 
in the GGM. Using several meaningful graphs, a correlation 
graph, a GGM, and a skeleton (as described in Fig. 1), we 
successfully obtained a causal structure from a whole genome 
gene expression dataset of gene expressions.

When the normalized read counts follow non-Gaussian 
distribution, we can still use the similar framework to estimate 
the causal structure. A recent paper, Loh and Bühlmann,37 
proved that the inverse covariance matrix reflects the moral 
graph of a DAG when data are generated from a linear, pos-
sibly non-Gaussian structural equation model (SEM) under a 
faithfulness (every conditional independence relations true in 
the joint distribution are entailed by Markov property applied 
to the underlying DAG) assumption. However, we need to be 
more careful to choose the detailed method in each step. In 
Step 1 of estimating the moral graph (instead of GGM), we 
can recover the edge set of the moral graph by using node-wise 
regressions with Lasso.18 Then our algorithm uses a series of 
partial correlation testings that rely on Gaussian assumption. 
Instead of the edgewise test, Loh and Bühlmann37 suggested to 
use nonparametric score-based search among DAGs that are 
consistent with the moral graph. However, the identifiability 
of a DAG using their score-based algorithm relies on strong 
assumption on error (error covariances are specified up to a 
constant multiple). Moreover, the efficiency of their dynamic 
programing to select an optimal DAG relies heavily on the 
structure of GGM. To overcome these limitations, a modified 
framework of PC algorithm still seems to be plausible, espe-
cially for the dimensionality of the most genome-wide data. 
As an alternative to the partial correlation tests, we may use 
kernel-based conditional independence test,38 which has been 
applied in causal discovery. The extension of our method to 
relax the Gaussian assumption will be our future research.

The computation efficiency of the causal structure esti-
mation mostly relies on the estimation of GGM. In our appli-
cation data example where P = 14,576 and n = 480, on average 
a penalized regression took seven minutes (2.00 GHz proces-
sor and 128 GB RAM running on Linux using 64 bit R3.0.1), 
including the tuning parameter search across 100(λ) × 10(τ) 
two-dimensional grids with median 4,967 covariates. The 
algorithms we described in this paper to estimate correlation 
graph, GGM, and skeleton, although computationally expen-
sive, can be parallelized by vertices. We are currently develop-
ing freely available software for this method. As future work, 
we will apply this method to other genomic, epigenetic, and 
proteomic platforms, eg, protein expression data, microRNA 
expression data, and DNA methylation data.
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supplement data
Appendix includes the details of the causal structure estima-
tion results using the TCGA ccRCC data.

Appendix Figure 1. Histograms of the degrees of all 
genes for graphs estimated from Step 1 and Step 2.

Appendix Figure 2. Histogram of the degrees of all 
genes for the skeleton estimates and frequencies of the degree 
change from GGM to skeleton estimates.
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