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Introduction
Metagenomics studies, by sequencing DNA directly from 
environmental samples such as soil, sea water, and the human 
gut, are deepening our insights into the microbial world.1 
However, DNA fragments in a metagenomics project are usu-
ally from multiple genomes and most of the genome sequences 
are unknown. Therefore, one of the major challenges in meta-
genomics analysis is to predict the taxonomic organism of the 
DNA fragments. This process is called taxonomic classifica-
tion or binning.

Existing methods for taxonomic classif ication 
fall into two main categories: similarity-based methods 
and composition-based methods. Similarity-based meth-
ods, such as BLAST,2 CARMA,3 MEGAN,4 TreePhyler,5 

MLTreeMap,6 and MetaDomain,7 can be used to identify 
evolutionary relationships of DNA fragments in compari-
son to a database of reference sequences. But similarity-
based methods usually can only be used to classify the 
DNA fragments from known microorganism genomes, 
and less than 1% of microorganisms have been cultured 
and sequenced.

Composition-based methods group DNA fragments 
by a supervised, semisupervised, or unsupervised method 
using generic features such as their 16S rRNA, GC content, 
and other oligonucleotide frequencies.8 Currently, there are 
several composition-based methods: PhyloPythia,9 Phylo
PythiaS,10 Phymm,11 TACOA,12  S-GSOM,13 NBC,14 
RAIphy,15 KNNLog,16 Taxsom,17 and MetaCluster 3.0.18 
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However, at lower taxonomic levels, such as genus and species 
levels, most of these composition-based methods cannot 
achieve the prediction accuracy required by current highly 
complex metagenomic data. This difficulty is influenced by 
several factors, such as genome length, the incompleteness 
of public sequence databases, the reliability of the genome 
composition vector, the discriminating capability of the clas-
sifier describing the reference genomic data, etc. We observed 
that the existing composition-based classifiers, such as sup-
port vector machines (SVMs),9,10 kernelized nearest neighbor 
(kernelized-NN),12 self-organized mapping (SOM),17 etc., 
cannot describe the genomic data effectively when there are 
outliers in the training genomic data. However, the training 
genomic data (bacterial and archaeal genomes) usually con-
tain a portion of outliers, which come from some sequencing 
errors, phage invasions, highly expressed genes, etc.19–22 The 
outliers, treated as noises, prohibit the development of classi-
fiers with a better accuracy.

Here, we present a method of taxonomic classification of 
metagenomics data based on weighted support vector domain 
description (WSVDD).23 It is an extension of the SVDD model.24 
Compared to the other classification approaches, the SVDD and 
WSVDD models can better describe a set of training data by 
giving up some outliers. However, WSVDD has an improved 
performance over SVDD, achieved by introducing a weighting to 
each data point in the training data. After computing a weighting 
for each data point based on its position distribution in a train-
ing data set, the weighting can be used to measure the degree to 
which the data point is an outlier. Training can then be done with 
the weighted data, using the SVDD model. Lastly, for the train-
ing data set, we can obtain a sphere-shaped data description rely-
ing on only a small number of support vectors (SVs). In this way, 
the WSVDD model can overcome the interference from some 
outliers in training genomic data. Therefore, the classifier has bet-
ter accuracy than SVDD and other supervised classifiers.

The experiments were performed on simulated Sanger 
and 454 reads with different outlier rates, four simulated 
metagenomes, and five real human gut metagenomes. The 
results demonstrate WSVDD can eliminate the interference 
from some outliers for training genomic data and then gener-
ate better gene prediction accuracy.

Methods
WSVDD’s workflow (Fig.  1) consists of three steps: (1) 
calculation of DNA composition features for the training 
genomic sets and test genomic set; (2) obtaining a hyper-
sphere (Oi is the center and ri is the radius) to describe the 
training data from each training class by WSVDD model; 
and (3) estimating the testing genomic set by a decision 
function sign( )2 2|| ( ) ||i i ix o rφ − −  and outputting the tax-
onomic organism. The details of each step are described 
below.

Calculation of DNA composition features vector. We 
computed the composition features vector of the DNA frag-
ment for the training genomic sets and the test sets using the 
frequencies of the corresponding k-mer and its reverse comple-
ment k-mer. Here, we set k  =  5, because all organelles have 
remarkably stable 5-mer frequency distributions.25

WSVDD model. Calculating the weighting. Each train-
ing class X can be described as: X x x xN= { }1 2, , ,… , where 
x x x x Ri i i iM

M= ( ) ∈1 2, , ,…  is the features vector of the i-th 
DNA fragment in the class X. Figure 2A shows some original 
training data. To compute the weighting, we first computed a 
kernel distance vector 1 = = …| , ,ld d l N .
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Figure 1. The workflow of WSVDD.
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Supplementary file 1 provides the proof of (1), where ||.||2 
denotes the L2–norm of Euclidean space. In order to obtain 
better data description, the original training data are mapped 
from the input space into a higher dimensional feature space 
via a mapping function φ(⋅). By using the mapping function 
φ(⋅), the training data can be more compact and distinguish-
able in the feature space. The inner product of two vectors in 
the feature space can be calculated by using the kernel func-
tion as ( ) ( ) ( )φ φ=, ,i j i jK x x x x .26 For class X, the mean 

of all feature vectors 1
1

/ N x j
j

N
( ) ( )

=
∑φ  plays the role of the core 

in the kernel space, which is illustrated in Figure  2B. The 

weighting wi , ∀ =i N1, ,…  is computed as:
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The weighting wi is designed to be inversely propor-
tional to the distance between the corresponding feature and 
the mean of feature and normalized to the interval [0, 1]. 
Figure 2B shows the concept of weighting. In this weight-
ing definition, wi is used to determine the probability that 
the training data are outliers in the taxonomic class X. In 
kernel space, the farther away one feature vector φ(xi) from 
the core is, the smaller the corresponding weighting wi is, 
and the more likely it is that the data point should be taken 
as an outlier.

Weighted support vector domain description. To obtain the 
smallest hyper-sphere that encloses most of the data points 
in a class X, we need to solve the optimization problem as 
follows:
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where o∗ is center, r is radius, the trade-off parameter C gives 
the trade-off between the volume of the hyper-sphere and 

the accuracy of data description, ξi $ 0 is a slack variable. In 
equation (3), the smaller the wi is, the larger the likelihood that 
the corresponding data point xi is an outlier. Solving equation 
(3) (Supplementary file 1 shows how to solve equation (3) in 
detail.), we obtained the dual problem of (3) as:
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Figure  2C shows the center o∗ and some SVs that 
can be obtained through solving the dual problem. The 
hyper-sphere S o rX ( , )∗ , whose contours enclose most of 
the data points in the kernel space, is defined as: ∗( , )X o rS
= − ≤ ={ }∗x x o r i Ni i| φ( ) , , ,...,2 2

11 2 , where N1 is the 
number of data points inside the hyper-sphere, and N N1 < . 
Figure 2D illustrates the hyper-sphere of the class X, where 
the radius r ean x o x SVsi i= − ∈{ }m φ( ) * | .

To get the best model, Gaussian kernel function 
K x x x x sG i j i j( , ) ( ( ) / )= − −exp 2 2  was used in our experiments. 
Supplementary file 1 shows how to estimate the most suitable 
trade-off parameter C and kernel parameter s in detail. The 
WSVDD’s computational complexity analysis and algorithm 
analysis are also provided in Supplementary file 1.

Decision function. For each inputted testing DNA frag-
ment, we computed its composition vector x. Then we used 
the following function to decide whether the input vector x 
belongs to i-th class:

	
F x sign x o ri i i( ) ( )= − −



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∗φ
2

2

	 (5)

For all taxonomic classes, if only one F xi ( ) < 1 (that is, 
only one class accepts the inputted vector), then the vector x 
belongs to the class. If more than two F xi ( ) < 1 (that is, more 
than two classes accept the inputted vector), then the vector x 

belongs to the min ( ) *φ x o ri i− −





2
2  class. If all F xi ( ) = 1 (in 

other words, if all classifiers reject the input vector), then the 
vector x cannot be classified, and the input vector is defined 
as unclassified.

A B C D

Figure 2. Illustration of the WSVDD model. 
Notes: (A) The original training data. (B) The weighted training data. The core is shown as a triangle, and the size of each data point is marked according 
to its weighting. (C) WSVDD model is trained on the weighted training data. Some points on the line are the SVs, where +is the center. (D) The hyper-
sphere SX (o*,r) is obtained.
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Measuring the classification accuracy. To evaluate the 
performance of the classifier, we computed the sensitivity, 
specificity, and harmonic mean for each class. These measures 
have been commonly used to evaluate the performance of 
methods designed to classify metagenomic fragments,9–14,19 as 
they can capture important relationships among the number 
of true-positive (TPi), false-positive (FPi), false-negative 
(FNi), and unclassified (Ui) assignments within each taxo-
nomic class i.

The total number of the inputted query DNA fragments 
from class i can be denoted as: Z TP FN Ui i i i= + + . The sensi-
tivity (Sni) is the proportion of the fragments from class i cor-
rectly assigned to class i: Sn TP Zi i i= / . The specificity Spi is the 
proportion of the fragments assigned to class i that are correctly 
assigned: Sp TP TP FPi i i i= +/( ). Because a robust classifier 
should have high sensitivity and specificity, we combined sensi-
tivity and specificity in a harmonic mean to evaluate the robust-
ness of class i: ( ) /( )harmonic mean Sn Sp Sn Spi i i i i= × × +2 .

Here, we report the average of sensitivity, specific-
ity, and harmonic mean over all classes at a respective taxo-
nomic level.

Results
We performed three experiments to evaluate our method. 
Firstly, we performed experiments to predict the unknown 
organisms of simulated metagenomes and compared 
our results with three other methods, PhyloPythiaS,10 
Phymm,11 and TACOA,12 at the lower taxonomic level. 
Then, we used WSVDD’s training models to analyze 
the microbial diversity of f ive real human gut metage-
nomes. Lastly, we evaluated the effectiveness of outliers 
on WSVDD and other classif iers. In all experiments, the 
testing sequences and training sequences were generated 
by read simulation software MetaSim.27

Training genomes and test genomes. The training 
genomes and test genomes were downloaded from the US 
National Center for Biotechnology Information (NCBI) in 
September 2011. Taxonomic information for each genome 
was obtained from the NCBI taxonomy database. To evalu-
ate the performance of the classifier, we built a set comprising 

genomes only from genera represented by at least two distinctly 
named species. This filtered data set consists of 556 genomes 
from 297 species, 50 genera. The 50 distinct genera include 45 
bacterial genera and 5 archaeal genera. Supplementary file 2 
provides some detailed information of the 556 genomes.

Simulated metagenome experiment at the genus and 
species levels. Because classification at lower taxonomic level 
is the most difficult task in metagenomic classification, we 
only performed some experiments to predict the organisms of 
the simulated metagenomic fragments at the genus and spe-
cies levels.

In real practice, the taxonomic organism of meta
genomic fragments must be predicted when the fragments 
are from genomes that are not yet represented in the public 
genome databases. To simulate this, we designed a hold-out 
experiment to predict the unknown taxonomic organisms of 
the query DNA fragments. For example, when performing 
hold-out experiments at the genus (species) level, all training 
genomes from the species (bacterial strain) being evaluated 
were removed. However, if the given species (bacterial strain) 
represented the only species (bacterial strain) within its genus 
(species), then query fragments from this species (bacterial 
strain) were removed from the test sets. That is, if a taxonomic 
organism belongs to the testing sets, then it certainly does not 
belong to the training sets. 

At the genus and species levels, we created three train-
ing models using DNA fragments of length 450, 1,000, and 
3,000 bp, respectively. Approximately 3,000 randomly sam-
pled DNA fragments were used to train each taxonomic class. 
More than 150,000 DNA fragments were used to train each 
model. We also constructed three independent test sets with 
DNA fragments of length 450, 1,000, and 3,000 bp. The test 
sets (simulated metagenomes) were constructed by randomly 
sampling fragments from each genome with the probability of 
drawing a fragment from a set proportional to its length. The 
test sets contained 246,519 and 653,319 fragments when per-
forming the hold-out experiment at the genus and species lev-
els, respectively. The results for all different fragment lengths 
are reported in Figure 3A and B. Supplementary file 3 pro-
vides some detailed information of the experimental results.

0%
450 1000 3000

20%

40%

60%

80%

100%A B

0%
450

Harmonic meanSpecificitySensitivity

1000 3000

20%

40%

60%

80%

100%

Figure 3. Bars depict the average classification sensitivity, specificity, and harmonic mean for each fragment length at the genus and species levels.
Notes: (A) Results at the genus level. (B) Results at the species level.
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Figure 3A shows that at the genus level, the lengths of 
the DNA fragments ranged from 450 to 3,000 bp, the sensi-
tivity could be increased from 64.18% to 79.2%, the specificity 
ranged from 86.17% to 92.76%, and the harmonic mean could 
be increased from 73.16% to 85.24%. Figure 3B shows, at the 
species level, that when the lengths of the DNA fragments 
varied from 450 to 3,000  bp, the sensitivity increased effi-
ciently from 53.9% to 71.58%, the specificity ranged from 
79.35% to 87.7%, and the harmonic mean could be increased 
efficiently from 64.26% to 78.82%.

Comparing Figure 3A with Figure 3B, a general trend 
was that the average classification of sensitivity, specificity, 
and harmonic mean at the genus level was higher than that at 
species level. The sensitivity, specificity, and harmonic mean 
were improved when classifying longer DNA fragments.

Comparison with other methods on common data 
set. Here we have compared our identification performance 
with other three methods, PhyloPythiaS,10 Phymm,11 and 
TACOA,12 on the same test sets (simulated metagenomes) at 
the genus level. The methods can be used to identify variable-
length DNA fragments based on dinucleotide frequency vec-
tors.8 PhyloPythiaS10 is made by SVMs algorithm. Results 
for PhyloPythiaS were obtained by using the software at 
http://binning.bioinf.mpi-inf.mpg.de/download/.10 Phymm11 
is designed based on the theory of interpolated Markov mod-
els. Results for Phymm were obtained by using the software at 
http://www.cbcb.umd.edu/software/phymm/.11 TACOA12 is 
designed by the theory of kernelized-NN. We reprogrammed 
for TACOA, with the same training genomes and 5-mer 

frequency vectors. The TACOA’s kernel parameters were 
chosen by cross-validation to yield the optimal specificity over 
all classes at each taxonomic level.

In order to perform a fair comparison between different 
methods, we picked out 30 distinct bacterial genera as test 
sets, because PhyloPythiaS,10 Phymm,11 and TACOA12 con-
tained the source genomes of the 30 bacterial genera within 
their training set. Supplementary file 4 provides some detailed 
information of the 30 distinct bacterial genera. Then, we con-
structed three independent test sets by randomly sampling 
fragments of size 450, 1,000, and 3,000 bp from the 30 bac-
terial genera. The test set comprised 167,724 fragments. We 
compared the classification performance by testing the same 
test sets on PhyloPythiaS,10 Phymm,11 TACOA,12 and our 
WSVDD method. The results obtained from each method are 
shown in Figure 4 and Supplementary file 4.

WSVDD and Phymm showed higher prediction sen-
sitivities than PhyloPythiaS and TACOA. When the read 
lengths ranged from 450 to 3,000  bp, the average sensitiv-
ity of WSVDD and Phymm increased from 67.02% to 80% 
and from 59.92% to 78.81%, respectively. At the same time, 
WSVDD achieved quite competitive average specificity com-
pared with the other three methods. When the read lengths 
ranged from 450 to 3,000 bp, the average specificity increased 
from 86.65% to 93.04% for WSVDD, from 64.49% to 79.18% 
for Phymm, from 86.47% to 95.89% for PhyloPythiaS, and 
from 92.37% to 97.58% for TACOA.

To estimate robustness, sensitivity and specificity were 
combined in a harmonic mean. WSVDD achieved the best 
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Figure 4. Bars depict the average classification. 
Notes: (A) sensitivity, (B) specificity, and (C) harmonic mean, for variable fragment lengths at different methods.
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harmonic mean, which increased from 75.58% to 86.03% 
when the read lengths increased from 450 to 3,000  bp. 
PhyloPythiaS and Phymm achieved quite similar harmonic 
means. The harmonic mean ranged from 65.59% to 83.33% 
for PhyloPythiaS and from 62.12% to 79% for Phymm. The 
lowest harmonic mean was produced by TACOA for all 
variable-length reads. In general, WSVDD has an improved 
prediction performance.

Application to real metagenomes. To evaluate the per-
formance of WSVDD on real metagenomic data sets, we used 
WSVDD’s training models (1,000 bp, genus level) to analyze 
the microbial diversity of gut metagenome28 derived from 
fecal samples of 124 European individuals. Since the data set 
contains different samples with read lengths varying from 44 
to 75 bp, the short Illumina reads have been assembled into 
longer DNA fragments (~1,600 bp) using the SOAPdenovo 
tool.29 We downloaded five samples’ reads, from 57 Denmark 
adults, at http://gutmeta.genomics.org.cn/.28 The descriptions 
of the samples are given in Table 1. The results obtained by 
WSVDD are shown in Table 2.

At the genus level, WSVDD has identified five main 
bacterial genera to be differentially abundant: Bacteroides 
(Bacteroidetes), Bifidobacterium (Actinobacteria), Clostridium 
(Firmicutes), Escherichia (Proteobacteria), and Streptococ-
cus (Firmicutes) from the human gut metagenomic data set. 
WSVDD labeled more than 16% of the reads as Clostridium, 
making it the biggest group, while WSVDD assigned about 
13% of the reads to Bacteroides and Streptococcus, making 

them the second biggest groups. The method also generated 
different taxonomic distributions of other groups of organisms. 
For instance, WSVDD assigned about 5% of the reads to Bifi-
dobacterium and Escherichia. As expected, Firmicutes and 
Bacteroidetes had the highest abundance, about 29% and 14%, 
respectively.28 About 3% of the reads had been assigned to other 
genera. The results demonstrate that it is difficult to access the 
real accuracy, since no reference data set can be obtained for 
most of the species in the real data set. Therefore, we can see that 
about 41% of the reads could not be assigned by WSVDD.

The effect of outliers on WSVDD and other classifiers. 
In practice, each bacterial genome has ~13% abnormal fragments 
on average, which come from sequencing errors, phage invasions, 
and some highly expressed genes, etc.19–22 The abnormal frag-
ments are not expected to be binned correctly with the rest of their 
host genome, and they can adversely affect the performance of a 
classifier. To test the gene prediction performance of WSVDD 
under the outliers, we simulated Sanger reads (1,000 bp) and 454 
reads (450 bp) from 30 bacterial genera (Supplementary file 4), 
respectively.

Every category of read was divided into three subsets. We 
selected two subsets as the training set, the rest of the subset as 
the testing set. A percentage of outliers were artificially added 
to the training sets using read simulation software MetaSim 
with characteristic noise patterns.27 In the article, the outlier 
rates were 0%, 1%, 3%, and 10% for Sanger and 454 reads.

After preparing the eight types of training set with differ-
ent outlier rates, we used the raw test set and the corresponding 
noisy training set to evaluate WSVDD’s performance com-
pared with four other classifiers: SVDD (Support Vector Data 
Description),24,30 SVMs,30 Kernelized-NN12 and SOM.17,31 
The classifiers’ parameters were found by cross-validation to 
identify the best harmonic mean of each method.32 The results 
are provided in Figure 5.

We can see a decrease of sensitivity, specificity, and har-
monic mean for all classifiers on simulated Sanger and 454 
reads with increasing outlier rates (Fig.  5). Generally, on 
Sanger reads, the sensitivity, specificity, and harmonic mean 
of all methods decrease very slowly (~2%) when the outlier 
rates increase from 0% to 3%. However, when the outlier rate 
increases from 3% to 10%, SVDD, Kernelized-NN, SOM, 
and SVMs decrease drastically in sensitivity (~9%), specificity 
(~7%), and harmonic mean (~7.8%). WSVDD decreases the 
most slowly, only 4.3% for sensitivity, 3.8% for specificity, and 
3.9% for harmonic mean.

On simulated 454 reads, the sensitivity, specificity, and 
harmonic mean of all methods decrease faster than Sanger 
reads for different outlier rates. For SVDD, Kernelized-NN, 
SOM, and SVMs, drops in sensitivity of ~13.5%, specificity 
of ~10.6%, and harmonic mean of ~12.5% are observed when 
the outlier rate increases from 0% to 3%. In reads with an 
outlier rate of 10%, there is a further decrease in sensitivity of 
~15.7%, specificity of ~13%, and harmonic mean of ~14.7% for 
the methods. Also here, WSVDD showed a smaller decrease, 

Table 1. Summary of human gut metagenomic data sets.

Sample ID Gender Total 
length
(Mb)

No. of 
reads

Average 
length 
of reads 
(bp)

MH0001 female 19.69 14,301 1,618

MH0002 female 88.77 65,392 1,680

MH0003 male 119.59 68,658 2,640

MH0004 male 31.92 23,793 1,681

MH0005 male 19.62 14,339 1,684

Table 2. The results of WSVDD on the real human gut 
metagenomes.

Abundance (%) MH0001 MH0002 MH0003 MH0004 MH0005

Bacteroides 12.92 14.45 15.89 13.94 13.33

Bifidobacterium 4.86 5.78 6.32 5.65 4.81

Clostridium 16.57 16.06 17.15 17.16 16.03

Escherichia 5.3 5.6 5.48 4.87 5.88

Streptococcus 13.03 11.86 13.72 13.03 13.47

Unclassified rate 43.75 41.75 38.51 42.29 43.08

Others 3.57 4.5 2.93 3.06 3.4
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only 4.8% for sensitivity, 4.6% for specificity, and 4.7% 
for harmonic mean from outlier-free reads to reads with 3% 
outliers. When the outlier rates increased to 10%, WSVDD 
showed a decrease in sensitivity of ~7.8%, specificity of ~7%, 
and harmonic mean of ~7.2%. These results indicate that 
WSVDD improves the classifier’s robustness.

Conclusion and Discussion
In the article, we predict unknown organisms of metagenomic 
data using WSVDD classifier, which can eliminate the inter-
ference from some outliers for the training genomic data and 
then generate a more accurate data domain description for 
each taxonomic class. The experimental results demonstrate 
that the classifier has an improved prediction performance.

There are several opportunities for further develop-
ment. For one, WSVDD mainly works on DNA fragments 
with length at least 450 bp, while the current high-through-
put sequencing technology produces fragments with lengths 

varying from 50 bp to 500 bp. Further research is required to 
combine an effective similarity-based method for assigning 
short fragments of metagenomic data directly and accurately. 
In addition, many sequence fragments in a metagenome may 
originate from species belonging to an entirely new (hitherto 
unknown) phylum or class. We are planning to develop an 
algorithm to deduce the appropriate taxonomic level automati-
cally for the new genome fragments.
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Figure 5. The average sensitivity, specificity, and harmonic mean on. 
Notes: (A) simulated Sanger reads (1000 bp) and (B) simulated 454 reads (450 bp) with variable outlier rates.
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