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Introduction
Recently, many high-dimensional datasets have been generated 
in biomedical science, such as microarrays and single nucleo-
tide polymorphism (SNP) databases. In particular, genome-
wide association studies (GWAS), which focus on identifying 
SNPs associated with a disease of interest, have produced 
ultrahigh-dimensional data. For theoretical development, we 
consider data to have high dimensionality if p = O(na) for some 
a0, and to have ultra-high dimensionality if log p = O(na) 
for some a0. When the dimension p is high, we run into 
the often-fatal “curse of dimensionality.” The convergence of 

any estimator to the true value of a smooth function defined 
on a space of high dimension is very slow. Variable selection 
plays an important role in high-dimensional statistical model-
ing and analysis. Computational cost and estimation accuracy 
are the two main concerns for statistical inference from high-
dimensional data.

Many eff icient approaches have been introduced to 
overcome these problems. One is the adoption of multistep 
strategies.1,2 The first stage of this approach reduces the 
dimensionality P for significant predictor selection in 
ultrahigh-dimensional data. This pre-screening stage is 
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used to f ind variables that may only be marginally asso-
ciated with a response variable. This step reduces the 
dimension of the dataset and makes joint analysis possible. 
Therefore, the multistep approach indicates one solution 
for the ultrahigh-dimensional problem. Several predic-
tor selection tools have been developed to implement the 
above idea for ultrahigh-dimensional linear models. Sure 
independence screening (SIS), which is the most widely 
used pre-screening method,3,4 ranks the predictor variables 
using the absolute values of the correlation coefficients as 
a criterion. Another pre-screening method is described in 
Cho et al.1, which uses the pre-screening step to identify 
marginally associated responses, using the P-value as a 
criterion.

We want to know which of the available pre-screening 
methods is better for quantitative traits. Although many 
pre-screening methods are available, we do not know which 
method performs best in predicting a particular quantitative 
phenotype. We can find predictors that are jointly associ-
ated with the response variable among the parameters that 
remain after the pre-screening step. When multiple predic-
tor variables exist for a response variable, joint identification 
becomes a powerful tool.1

One of the traditional approaches for joint identification 
is the multiple linear/logistic regression method. However, 
when we handle high-dimensional data using traditional 
methods, we experience several problems. First, multiple lin-
ear regressions do not work well within high dimensional-
ity, which causes computational complexity. Second, multiple 
linear regression is very sensitive to multicollinearity among 
SNPs. To overcome this problem, various penalization meth-
ods have been proposed, such as the ridge, bridge, least abso-
lute shrinkage and selection operator (lasso), adaptive lasso, 
smoothly clipped absolute deviation (SCAD), and elastic-
net.5–9 These methods can find jointly associated variables in 
high-dimensional data. The elastic-net method uses both the 
ridge and lasso penalties, obtaining the advantages of both 
approaches. The elastic-net method automatically selects sig-
nificant variables, and, thus, efficiently resolves the problem 
caused by multicollinearity. The iterative adaptive lasso (IAL) 
method10 retains the appealing property of rapid computation 
even for ultrahigh-dimensional problems. This method yields 
a sparse solution by setting certain parameters to zero. Pre-
dictor selection is then achieved with the nonzero values.

Many methods have been suggested for pre-screening 
and the variable selection procedure. However, we do not 
know which method performs best for quantitative traits. In 
this paper, we investigate which combination of pre-screening 
method and penalized regression performs best. To compare 
the power of pre-screening methods and penalized regressions, 
we use two GWAS datasets: one from the Korea Association 
Resource (KARE) project and the other from the Age-Related 
Eye Disease Study (AREDS). The adjusted R-square is used as 
a measure of comparison.11

Materials and Methods
Materials. KARE data. The KARE project began 

in 2007.11 Participants in this project were recruited from 
two community-based cohorts: the rural Ansung cohort 
and the urban Ansan cohort in Gyeonggi-do province of 
South Korea. The numbers of people in the Ansung and 
Ansan cohorts are 5,018 and 5,020, respectively. The age 
range is from 40 to 69 years. More than 260 phenotypes 
have been surveyed through physical examinations, epide-
miological surveys, and laboratory tests. We focus on the 
height trait, because height is a highly heritable polygenic 
characteristic.11

The KARE data contain 500,568 SNPs. Before analysis,  
quality control processes are performed following Cho et al.1, 
and missing genotypes are imputed using PLINK software 
and the Japanese in Tokyo (JPT)/Han Chinese in Beijing 
(CHB) reference panel in HapMap.1 After these pro-
cesses, we obtain a dataset with 327,872 SNPs from 8,842 
individuals.

AREDS data. AREDS is a prospective study of 4,757 
persons to establish the risk factors of both age-related 
macular degeneration (AMD) and cataract.12 The AREDS 
began in 1992. Ages of participants ranged from 55 to 80 
years. Parti cipants have been followed for at least seven 
years. We used body mass index (BMI) as a quantita-
tive trait. The genotype platform of the AREDS data is 
an Illumina 100K GWAS chip. A total of 525 individuals 
were genotyped. Quality control processes were performed 
using the same criteria as with the KARE data. After qual-
ity control, we obtained a dataset with 87,260 SNPs from 
462 individuals.

Methods. We formulate a multistage strategy for identi-
fying the significant parameters among an enormous number 
of explanatory variables. Our strategy consists of three stages. 
At stage 1, we screen out the variables that are weakly cor-
related with the response variable via single-variable associa-
tion tests. We select variables in terms of their P-values or by 
the absolute values of their regression coefficients in single-
variable analysis. At stage 2, we search for multiple-variable 
associations by using penalized multiple regression with the 
elastic-net, ridge, lasso, and IAL methods. At stage 3, using 
the elastic-net and lasso methods, we assess the jointly identi-
fied variables using bootstrap selection stability (BSS), which 
is proposed empirically to assess with what consistency a vari-
able is selected from the bootstrap samples.1 Using the ridge 
and IAL methods, we assess the jointly identified variables by 
using the effect size.

Stage 1. Standardization 
Suppose that yi for i = 1, …, n are the responses for the ith 
individual, and xij for j = 1, …, p are its predictors. We assume 
that the predictors are standardized to have zero mean and 
unit standard deviation in order to maintain generality.

 
E x E xij ij( ) ( )= = = =0 1 1 12and for , ..., ; , ..., . i n j p
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Stage 2. Pre-screening
We use the linear regression model in order to eliminate pre-
dictors that are weakly correlated with the response variable to 
achieve dimensionality reduction.

 
y z xi q iq

q

Q

j ij i= + + +
=

∑γ γ β0
1

ε ,

where ziq represents the adjustment variables for the ith case. All 
variables are ranked in ascending order of P-values or in descending 
order of absolute value of coefficients from single-variable analysis. 
According to the order, the top P variables showing the strongest 
marginal associations with the response variables are selected.

Stage 3. Variable selection
Method 1. Penalized regression. Multiple linear models are 
f itted for the selected top P variables after adjusting for  
the covariates.
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We find the optimal solution by using penalized 
regressions such as the ridge, lasso, and elastic-net. The penal-
ized regressions find the solution as follows:
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The amount of shrinkage is represented by parameter l. 
We can find an optimal l by using tenfold cross-validation, 
which accomplishes mean squared error minimization. Ridge 
regression (a = 0) entails a shrinkage of the least squares esti-
mators.8 The ridge is a biased estimator. Since the ridge reduces 
the variance of the estimators, it reduces the mean square error. 
In cases of high dimensionality, the ridge provides a shrinkage 
factor that does not accomplish variable selection. The lasso 
(a = 1) has an l1-norm penalty function.5 Thus, the lasso pro-
duces coefficients of zero for insignificant variables. The lasso 
thus automatically performs variable selection. The elastic 
net method includes the lasso and ridge regressions. In other 
words, each of them is a special case where a = 1 or a = 0. The 
elastic net thus has the advantages of both the ridge and lasso 
regularizations. Variables showing strong joint association with 
the response variable are automatically selected via the elastic 
net method. Therefore, the elastic net has the ability to perform 
grouped selection of highly correlated variables.

Method 2. IAL. The IAL method is a two-stage proce-
dure.10 At the first stage, single-variable analysis is imple-
mented to rank the magnitude of the marginal linear regression 

estimators. At the second stage, a weighted least-squares-type 
objective function is used to approximate a potential function. 
This allows us to further define a penalized weighted least 
square (PWLS) model for moderate-scale selection.

Step 1. Let 0 1, , ,{ | }jjj pβ= > = …M . We need first to 
predetermine a sparsity parameter size d. It is recommended 
to take d=n/(logn). For each variable, the single-variable asso-
ciation with phenotype is examined using linear  regression. 
The jth predictor is ˆ

jβ M. The predictors are ranked in 
 descending order of values. From the first predictor to the k1 
th are considered as the set A1, where k d1 2 3= [ ]/ . This value 
of k1 is recommended in order to guarantee at least two itera-
tions. Variables of set A1 fit joint linear regression. The predic-
tor is ˆ

jβ M . We then employ the PWLS procedure:
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to select a subset 
1

M  of A1.

Step 2. For every 
1 11{ , , } \ ,j p∈ = ……M MC  estimate 

ˆ
jβ  as follows:

 
1

0 1( )( ) ) .i i ij j iy X Xβ β β ε= + + +∑ n

i=1
M

M

After ordering 1
ˆ{| |: }C

j jβ ∈M , pick up a set A2 of indi-
ces of size 2 1| |k d= − M .

Step 3. Apply the PWLS procedure at 1 2{ , }AM . The 
nonzero elements of the variable yield a new significant 
index 2M .

Step 4. Iterate steps 2–3 until 1| | | | | |.l l ld or −≥ =M M M

Step 5. Finally, we obtain both the predictor set M and the 
estimated parameter vector. The magnitudes of the absolute 
values of the marginal linear regression estimators can preserve 
the nonsparse information of the joint regression model. This 
procedure contains the sure screening property.3 This large-
scale screening method can be regarded as an extension of the 
SIS procedure.4 It retains the appealing property that it can 
be rapidly computed even for ultrahigh-dimensional problems. 
PWLS yields a sparse solution by setting some parameters to 
zero. Thereafter, predictor selection is achieved with the non-
zero values. The adaptive lasso method can also reduce bias.

Stage 4. Ordering
After selecting the significant predictor variables, we rank them 
in order of importance. For the elastic-net and lasso methods, 
we use BSS. Joint selection of SNPs via the elastic-net method is 
performed for the bootstrap samples. Bootstrapping is a resam-
pling technique: a bootstrapping sample is a random sample with 
replacements from the original dataset. The bootstrap sample 
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size is equal to the original dataset size. B bootstrap samples are 
generated. BSS is defined for the ith variables as follows.

 

BSS
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BSS signifies how many times each selected predictor 
variable is replicated in B bootstrap datasets. SNPs are ranked 
in descending order of BSS.

For the ridge and IAL methods, the selected significant 
predictor variables are ranked in descending order of effect size.

results
Pre-screening. KARE data. At this step, we use the lin-

ear regression model in order to perform single SNP analy-
sis for 327,872 SNPs. This linear regression model includes 
adjustment variables such as gender, age, and recruitment area 
(rural Ansung and urban Ansan).

 height SEX AGE AREA SNPi i i i j ij i= + + + + +γ γ γ γ β ε0 1 2 3 ,

where i = 1, 2, …, 8,842 denotes the individuals and j = 1, 2, …, 
327,872 represents the SNPs. All SNPs are ranked in ascending 
order of P-values or in descending order of the absolute values 
of the coefficients from single-variable analysis. We use the top 
1,000 ranked SNPs for each criterion, namely, the P-values and 
the absolute values of coefficients. We compare the minor allele 
frequency (MAF) and the number of missing values of the 
selected SNPs for each criterion. For the P-value criterion, the 
number of rare variants whose MAF values are less than 0.05 is 

87. For the absolute values of coefficients criterion, the number 
of rare variants is 991 (Fig. 1). We observe that the common 
variants tend to have large numbers of missing values.

Although we use imputation processes, there are still 
missing values. Therefore, individuals having at least one miss-
ing value are eliminated. When data include individuals who 
have at least one missing value, penalized regressions such as 
the elastic-net and adaptive lasso cannot be performed. After 
the elimination process is performed, the number of remaining 
individuals is 4,183 for the P-value criterion and 7,496 for the 
absolute values of coefficients criterion. The number of overlap-
ping individuals is 3,740. We use these overlapping individu-
als to compare each combination method. However, too many 
individuals have been lost. In order to reduce the loss of data, 
we eliminated SNPs with more than 30 missing values. The 
number of remaining SNPs is then 944 for the P-value criterion 
and 984 for the absolute values of coefficients criterion. After 
the elimination process, the remaining number of individuals is 
7,481 for the P-value criterion and 8,164 for the absolute values 
of coefficients criterion. The number of overlapping individuals 
is 7,061. Henceforth, we shall use these individuals.

AREDS data. For the AREDS data, we use the linear 
regression model in order to perform single SNP analysis 
for 87,260 SNPs on the AREDs data. The model is given as 
follows:

 bmi SEX SNPi i j ij i= + + +γ γ β ε0 1 ,

where i = 1, 2, …, 461 are the individuals and j = 1, 2, …, 87,260 
are the SNPs. All SNPs are ranked in ascending order of P- values 
or in descending order of the absolute values of the coefficients 
from single-variable analysis. We use the top 1,000 ranked SNPs 
via the P-values and absolute values of coefficients.
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figure 1. Number of missing data in the top 1,000 variables for each filtering method. The X-axis shows the MAFs of each SNP and the Y-axis shows the 
number of missing data for each SNP. The left figure shows the case where the SNPs are filtered out by P-values. In this case, the MAFs of the SNPs are 
uniformly distributed. The right figure shows the case where the SNPs are filtered by the absolute values of coefficients. In this case, mainly rare variants 
are chosen.
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Variable selection. KARE data. We fit the multiple lin-
ear regression model to select the top 944 jointly associated 
SNPs for the P-value criterion and the top 984 SNPs for the 
absolute values of coefficients criterion.

 

height SEX AGE AREA

SNP

i i i i

j ij i
j

p

= + + +

+ +
=

∑

γ γ γ γ

β ε

0 1 2 3

1

All tuning parameters are determined by 10-fold cross-
validation, which minimizes the mean squared error.

We can make eight combinations: (P-value + elastic-net), 
(P-value + lasso), (P-value + ridge), (P-value + IAL), (abso-
lute values of coefficients + elastic-net), (absolute values of 
coefficients + lasso), (absolute values of coefficients + ridge), 
and (absolute values of coefficients + IAL). The combination 
method identifies 524, 504, 944, 471, 549, 548, 984, and 530 
SNPs for these eight combinations, respectively, as putative 
height-related genetic variants. Then, for the elastic regulariza-
tion and lasso methods, we generate 1,000 bootstrapped sets. 
The same fixed value of l is used for the generated bootstrapped 
datasets. We can then determine the BSS value of each SNP. 
The SNPs are ranked in descending order of BSS. The ridge 

Table 1. Top 10 SNPs in each method after coefficient filtering of KARE data by effect size for each method.

RS NUMBER ChR PoS ALLELE1 ALLELE2 GENE INCLUdEd IN ToP 10 REPoRTEd

rs41338750 4 6346712 a G PPP2r2C Lasso, elastic-net

rs344584 19 6604018 G C Lasso, elastic-net

rs7460090 8 57194163 t C Lasso, elastic-net

rs17535067 1 108074954 G a Lasso, elastic-net

rs17328296 5 93956986 a G ANKRD32 Lasso

rs10979023 9 110477887 G a Lasso, elastic-net

rs3755652 3 27472936 C t SLC4A7 Lasso, ridge

rs792965 5 172275263 G a erGIC1 Lasso

rs953759 13 88484867 t a Lasso

rs330972 11 39170787 a G Lasso

rs10948187 6 44921320 C t SUPT3H elastic-net *

rs3799977 6 44837356 t G SUPT3H elastic-net *

rs2643626 12 56726518 G a Pan2 elastic-net, ridge

rs12663931 6 82301126 t C elastic-net

rs2292239 12 56482180 t G erBB3 elastic-net

rs7773193 6 28611334 C t IAL

rs7954185 12 94096173 a t CRADD IAL *

rs7969076 12 94096042 t C CRADD IAL *

rs13078798 3 27445971 G a SLC4 A7 IAL

rs2394119 6 28627517 t a IAL

rs7761914 6 28642509 G a IAL

rs6456829 6 28654152 C G IAL, ridge

rs1440744 8 57457322 G C LINC00968 IAL, ridge

rs4871557 8 125871112 t C IAL

rs4412192 6 26290377 G a IAL

rs206313 3 162491873 G a ridge

rs2610021 8 57479553 G C ridge

rs7674423 4 6312004 G t ridge

rs11171806 12 56733531 G a stat2 ridge

rs9262494 6 30986504 C t MUC22 ridge

rs6925972 6 28601934 a t ridge
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method cannot perform variable selection, as it selects all the 
SNPs. Therefore, BSS is meaningless in the ridge approach. For 
the ridge and adaptive lasso methods, the SNPs are ranked in 
descending order of effect size.

Table 1 shows the results of filtering SNPs with abso-
lute value of coefficients in single variant analysis. Table 1 
summarizes the list of SNPs that have the top 10 absolute 
values of coefficients in each penalized method. Among these 
SNPs, rs10948187, rs3799977, rs7954185, and rs7969076 
were reported in other studies.13,14 Table 2 shows the results 
of  filtering SNPs with P-values in single variant analysis. It 
 summarizes the list of SNPs that have the top 10 absolute 
 values of coefficients in each penalized method.

AREDS data. We fit the multiple linear regression model 
to select the top 1,000 jointly associated SNPs for the P-value 
criterion and the top 1,000 SNPs for the absolute values of 
coefficients criterion.

 
bmi SEX SNPi i j ij i

j

p

= + + +
=

∑γ γ β ε0 1
1

All tuning parameters are determined by 10-fold cross-
validation, which minimizes the mean squared error. The 
combination method identifies 493, 460, 1000, 559, 485, 442, 
1000, and 534 SNPs for the eight combinations, respectively, 
as putative BMI-related genetic variants.

Table 2. Top 10 SNPs in each method after P-value filtering of KARE data.

RS NUMBER ChR PoS ALLELE1 ALLELE2 GENE INCLUdEd IN ToP 10 REPoRTEd

rs17530546 2 42000661 t C Lasso, elastic-net

rs540270 13 27112888 C t Lasso, elastic-net

rs17527383 18 10085363 C t Lasso, elastic-net

rs8061362 16 68008679 G a DPEP3 Lasso, elastic-net

rs1322545 9 101642931 a G Lasso, elastic-net

rs10493974 1 102296144 t G OLFM3 Lasso, elastic-net

rs41338750 4 6346712 a G PPP2r2C Lasso, elastic-net

rs2143795 6 103810408 C t Lasso, elastic-net

rs11890449 2 234199401 C t sCarna6 Lasso, elastic-net

rs11089728 22 35492313 C t Lasso

rs2359104 1 34982227 G t elastic-net, ridge

rs34422081 4 101942847 t C PPP3Ca IAL, ridge

rs41498549 4 101942806 t C PPP3Ca IAL

rs7658531 4 6312175 t C IAL

rs17328637 5 93959165 G a ANKRD32 IAL

rs7676014 4 6312079 C G IAL

rs4394651 1 159534446 C G IAL, ridge

rs4458523 4 6289986 t G Wfs1 IAL

rs2808636 1 159566647 C t IAL, ridge

rs1890207 20 22514828 t G IAL, ridge

rs1046314 4 6303955 G a Wfs1 IAL

rs6786503 3 73793932 t a ridge

rs9314935 13 29685729 a G MTUS2 ridge

rs1890207 20 22514828 t G ridge

rs4394651 1 159534446 C G ridge

rs9291619 4 14008860 G a ridge

rs2808636 1 159566647 C t ridge

rs2359104 1 34982227 G t ridge

rs7981556 13 29692759 t C MTUS2 ridge

rs199757 6 25981648 a G TRIM38 ridge
 

60 CanCer InformatICs 2014:13(s7)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Screening and variable selection in GWAS

Table 3. Top 10 SNPs in each method after coefficient filtering of AREDS data.

RS NUMBER ChR PoS ALLELE1 ALLELE2 GENE INCLUdEd IN ToP 10 REPoRTEd

rs214531 6 18290122 t a Lasso, elastic-net, IAL, ridge

rs10501623 11 86291625 t G me3 Lasso, elastic-net

rs10513842 3 189552478 C G tP63 Lasso, elastic-net, IAL, ridge

rs10499156 6 129688123 G a LAMA2 Lasso, elastic-net, IAL, ridge

rs9291876 5 66471420 t a Lasso, elastic-net, IAL, ridge

rs1040535 6 22647683 G a Lasso

rs10487745 7 122634409 G t tas2r16 Lasso, elastic-net, IAL

rs10499520 7 21031746 t C Lasso, elastic-net

rs2341825 7 132094453 C a PLXNA4 Lasso, elastic-net

rs10519877 4 148122660 G a Lasso

rs10516605 4 115797475 t C NDST4 Elastic-net, IAL

rs1428186 5 38209532 C a Elastic-net, IAL

rs10501623 11 86291625 t G me3 IAL

rs7916322 10 64612824 G a IAL

rs952930 1 74183266 a G IAL

rs982067 4 19364716 C G ridge

rs10507076 12 97043549 t C ridge

rs7653030 3 8873953 G a ridge

rs10495828 2 34955423 t C ridge

rs12081 15 40618613 G C ridge

rs9297091 6 18767825 C t ridge
 

Table 4. Top 10 SNPs in each method after P-value filtering of AREDS data.

RS NUMBER ChR PoS ALLELE1 ALLELE2 GENE INCLUdEd IN ToP 10 REPoRTEd

rs10493273 chr1 60430348 t C Lasso, elastic-net, IAL, ridge

rs10493424 chr1 67957208 G C Lasso, elastic-net, IAL

rs1407508 chr9 101644538 t C Lasso, elastic-net, IAL, ridge

rs2364922 chr2 84539921 G t Lasso, elastic-net, IAL

rs10509345 chr10 75361303 t C Lasso, elastic-net

rs10497376 chr2 172495027 t C Lasso, elastic-net, IAL

rs10499171 chr6 130302794 C a Lasso, elastic-net, IAL

rs7024617 chr9 102139440 C t nama Lasso, elastic-net, IAL, ridge

rs9288172 chr2 191250278 t C Lasso, elastic-net

rs10486965 chr7 82150331 a G Lasso, elastic-net

rs7791296 chr7 54220890 G t IAL

rs7179842 chr15 88135030 a G IAL

rs10499171 chr6 130302794 C a IAL

rs10506150 chr12 40666760 a t LRRK2 IAL

rs982067 chr4 19364716 C G ridge

rs10507076 chr12 97043549 t C ridge

rs7653030 chr3 8873953 G a ridge

rs12081 chr15 40618613 G C ridge

rs1922128 chr10 53347934 a G PrKG1 ridge

rs10496550 chr2 119349987 a G ridge

rs10499520 chr7 21031746 t C ridge
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figure 2. Comparison of adjusted R-squares when the SNPs are filtered out by P-values in KARE data analysis. The X-axis represents the number of 
SNPs and the Y-axis the adjusted R-squares. The SNPs are ranked by BSS for the elastic-net and lasso methods, while the SNPs are ranked by effect 
size for the IAL and ridge methods.
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figure 3. Comparison of adjusted R-squares when SNPs are filtered out by effect size in KARE data analysis. The X-axis represents the number of SNPs 
and the Y-axis the adjusted R-squares. The SNPs are ranked by BSS for the elastic-net and lasso methods, while the SNPs are ranked by effect size for 
the IAL and ridge methods.

Table 3 shows the results of filtering SNPs with absolute 
values of coefficients in single variant analysis. Table 3 
summarizes the list of SNPs that have the top 10 absolute 
values of coefficients in each penalized method. Table 4 shows 
the results of filtering SNPs with P-values in single variant 
analysis. It summarizes the list of SNPs that have the top 10 
absolute values of coefficients in each penalized method.

comparative study. We calculated the adjusted R-squares 
for the selected SNPs to investigate which combination of pre-
screening method and penalized regression performs best for 
predicting quantitative traits. SNPs are ranked by BSS for the 
elastic-net and the lasso methods, while SNPs are ranked by 
effect size for the IAL and ridge methods.

KARE data. Figures 2–4 show the results of KARE 
data analysis. Figure 2 shows the adjusted R-square with the 
number of SNPs when SNPs are filtered by P-values. There is 
a tendency for the adjusted R-square to increase as the number 
of SNPs increases. The increase rate of the ridge method is 
slower than that of the IAL, lasso, and elastic-net methods. 
The adjusted R-squares all converge to 0.75 except for the ridge 
method. The IAL method shows the fastest increase rate.

Figure 3 shows the adjusted R-square with the number 
of SNPs when the SNPs are filtered by the absolute values of 
coefficients. There is a tendency for the adjusted R-square to 
increase as the number of SNPs increases. The increase rate 
of the ridge method is slower than that of other penalized 
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figure 4. Comparison of adjusted R-squares when SNPs are filtered out by P-value in KARE data analysis. The SNPs are ranked by effect size for each 
method.

regression methods. The adjusted R-squares all converge to 
0.71 except for the ridge method. The IAL, lasso, and elastic-
net methods show very similar increase rates.

Figures 2 and 3 show the consistent results that (1) the 
P-value criterion tends to select better SNPs to predict the 
traits than the absolute values of coefficients criterion and (2) 
the ridge method performs worse in variable selection than 
other penalized regression methods.

Note that Figures 2 and 3 compare four penalized regression 
methods for a given pre-screening criterion. Among the IAL, 
lasso, and elastic-net methods, only the IAL method ranks SNPs 
by effect size. We wonder whether this difference among these 
three methods may be because of a different ordering of SNPs. 
Thus, instead of using BSS for the lasso and elastic–net methods, 
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figure 5. Comparison of adjusted R-squares when the SNPs are filtered out by P-values in AREDS data analysis. The X-axis represents the number of 
SNPs and the Y-axis the adjusted R-squares. The SNPs are ranked by effect size for each method.

we use the same ordering of SNPs by effect size. Figure 4 shows 
the adjusted R-square with the number of SNPs when SNPs are 
filtered by the absolute values of the coefficients and ordered by 
effect size. Interestingly, the elastic-net, lasso, and IAL meth-
ods produce almost identical results. Thus, Figure 4 suggests that 
effect size is a better SNP ordering measure than BSS.

AREDS data. Figures 5 and 6 show the results of AREDS 
data analysis. These figures show very consistent results with 
those of KARE. Figure 5 shows the adjusted R-square with 
the number of SNPs when SNPs are filtered by P-values and 
ordered by effect sizes. There is a tendency for the adjusted 
R-square to increase as the number of SNPs increases. The 
increase rate of the ridge method is slower than that of the 
IAL, lasso, and elastic-net methods. The IAL, lasso, and elastic-
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net methods show very similar increase rates. Figure 6 shows 
the adjusted R-square with the number of SNPs when the 
SNPs are filtered by the absolute values of coefficients ordered 
by effect sizes. There is a tendency for the adjusted R-square to 
increase as the number of SNPs increases. The increase rate of 
the ridge method is slower than that of other penalized regres-
sion methods.

conclusion
Recently, many high-dimensional datasets have been gen-
erated in biomedical science, such as microarrays and SNP 
 databases. Multistep strategies have been introduced to 
analyze these data. The first stage is pre-screening, in which 
the marginally associated response variables are identified, 
using various criteria. The second stage is variable selection. 
Various penalization methods have been proposed to ana-
lyze high-dimensional data. These include the ridge, bridge, 
least absolute shrinkage and selection operator (lasso), adap-
tive lasso, SCAD, and elastic-net methods. However, we 
do not know which method performs best for quantitative 
traits. Using an adjusted R-square as a measure of compari-
son, our study shows that for quantitative traits, the P-value 
criterion selects better variables to predict the trait than the 
absolute values of coefficients criterion. We conclude that 
the elastic-net, lasso, and IAL methods have almost the 
same performance, while the ridge method performs worst 
in variable selection.

In this study, we use only quantitative traits. However, 
a similar study could be easily conducted using binary traits 
such as diabetes and high blood pressure.

Because of gaps in the data, we unavoidably eliminate 
SNPs and individuals who have at least one missing value. 
This loss of information may reduce the accuracy of the study. 

We need to improve this accuracy by trialing appropriate 
imputation methods using simulated datasets.

Acknowledgement
The AREDS data used for the analyses described in this 
manuscript were obtained from the AREDS database, con-
trolled through the database of Genotypes and Phenotypes 
(dbGaP) accession number phs000001.v2.p1.

Author contributions
Conceived and designed the experiments: TP, SH. Analyzed 
the data: SH, YK. Wrote the first draft of the manuscript: 
TP, SH. Contributed to the writing of the manuscript: TP, 
SH, YK. Agree with manuscript results and conclusions: 
TP, SH, YK. All authors reviewed and approved of the final 
manuscript.

references
 1. Cho S, Kim K, Kim YJ, et al. Joint identification of multiple genetic variants via 

elastic-net variable selection in a genome-wide association analysis. Ann of Hum 
Genet. 2010;74:416–28.

 2. Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analy-
sis by lasso penalized logistic regression. Bioinformatics. 2009;25:714–21.

 3. Fan J, Lv JC. Sure independence screening for ultrahigh dimensional feature 
space. J Roy Stat Soc B. 2008;70:849–911.

 4. Fan J, Song R. Sure independence screening in generalized linear models with 
NP-dimensionality. Ann Stat. 2010;38:3567–604.

 5. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc B 
Met. 1996;58:267–88.

 6. Zou H, Hastie T. Regularization and variable selection via the elastic net. J Roy 
Stat Soc B Met. 2005;67:301–20.

 7. Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle 
properties. J Am Stat Assoc. 2001;96:1348–60.

 8. Le Cessi S, Van Houwelingen JC. Ridge estimators in logistic regression. Ann 
Appl Stat. 1992;41:191–201.

 9. Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc. 2006;101:1418–29.
 10. Wei S, Joseph GI, Zou H. Genomewide multiple-loci mapping in experimen-

tal crosses by iterative adaptive penalized regression. Genetics. 2010;185(1): 
349–59.

0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

100 200

Number of SNPs

A
d

ju
st

ed
 R

-s
q

u
ar

e

300 400

Adaptive-lasso
Elastic-net
Lasso
Ridge

figure 6. Comparison of adjusted R-squares when SNPs are filtered out by effect size in AREDS data analysis. The X-axis represents the number of 
SNPs and the Y-axis the adjusted R-squares. The SNPs are ranked by effect size for each method.

64 CanCer InformatICs 2014:13(s7)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Screening and variable selection in GWAS

 11. Cho Y, Go M, Kim Y, et al. A large-scale genome-wide association study of 
Asian populations uncovers genetic factors influencing eight quantitative traits. 
Nat Genet. 2009;41:527–34.

 12. The Age-Related Eye Disease Study Research Group. The age-related eye dis-
ease study (AREDS): design implications AREDS report no. 1. Control Clin 
Trials. 1999;20(6):573–600.

 13. Berndt SI, Gustafsson S, Mägi R, et al. Genome-wide meta-analysis identifies 
11 new loci for anthropometric traits and provides insights into genetic architec-
ture. Nat Genet. 2013;45(5):501–12.

 14. Gudbjartsson DF, Walters GB, Thorleifsson G, et al. Many sequence variants 
affecting diversity of adult human height. Nat Gent. 2008;40(5):609–15.

CanCer InformatICs 2014:13(s7) 65

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

