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Introduction
In cancer diagnosis, cancer patients with the same diagnostic 
profile may have different clinical outcomes. The difference 
probably lies in the limitation of the traditional classification 
of tumor types, based mainly on morphology. A reliable and 
precise classification of tumors is essential for successful diag-
nosis.1 Modern sequencing and microarray technology have 
enabled more detailed molecular characterization of cancer 
samples, leading to the discovery of many cancer subtypes. 
Depending on the subtype, different treatments are admin-
istered. In fact, cancer subtype identification has become an 
integral part of personalized medicine.1

Traditionally, the problem of cancer subtype classification 
has been approached in many ways such as multinomial logit 
models,2 Bayesian probit models,3,4 random forest,5 and sup-
port vector machine (SVM).6–9 Other discriminatory methods, 
including linear discriminant analysis (LDA), k-nearest- neighbor 
(kNN) classifier, and classification trees, were also investi-
gated.10 Among these, SVM is a successful procedure applied 
to microarray-based cancer diagnosis problems.2,11  However, 
it suffers from the difficulty to interpret the resulted model as 
well as no direct outcome probability estimates produced.12–14 
 Multinomial logit model, on the other hand, is endowed with 
feature interpretability and probabilistic nature.15
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Classic multinomial logit model works well when the 
number of predictors is small. As the number of predictors 
increases, the generalization power of the model deteriorates 
because of model overfitting. When the number of predictors 
exceeds the number of observations as is commonly seen in 
genomic studies, the method breaks down. To deal with the 
curse of high dimensionality as well as to increase the model 
interpretability, regularized procedures that incorporate a 
sparsity penalty have been proposed.16–20 Among these meth-
ods, group lasso is particularly appropriate for models with 
multiclass responses, in which all the coefficients linked to a 
common predictor form a group and are required to shrink 
to zero simultaneously in order to achieve the selection of 
predictors.16

Although the sparse multinomial logit models are capa-
ble of selecting variables, they cannot efficiently use under-
lying structure information such as a network of regulatory 
relationships between genes or gene-products. Such structure 
information could be obtained by a data-driven approach 
via clustering21 or other similarity-based methods,22,23 or be 
extracted from the external databases accumulated through 
years of biomedical research. Databases such as KEGG, 
Reactome, and MIPS have been developed to organize dif-
ferent types of biological network information. Cancer is a 
complex disease caused by dysregulation of pathways instead 
of a single gene.24–26 Thus, the incorporation of the network 
information can potentially increase the power of identifying 
cancer subtypes.

Networks are often represented as graphs, with each 
vertex indicating a gene or a gene-product and each edge 
indexed by a relationship between two vertices. Incorporation 
of network information has been studied in other regression 
models. A constraint, induced by the Laplacian matrix of the 
graph,27 has been proposed to facilitate the selection of pre-
dictors in ordinary regression settings, enhancing both the 
global smoothness over the network and the interpretability 
of the association between selected genes and responses in the 
context of known biology.

In this paper, we propose a network-constrained sparse 
multinomial logit model for high-dimensional multinomial 
classification, aiming at improving prediction performance by 
utilizing the underlying network prior. The remainder of this 
article is organized as follows. The model is first presented, 
followed by the algorithm to fit the model. We then validate 
our network-constrained model using simulations. Finally, the 
model is applied to a real data set of predicting the subtypes of 
glioblastoma multiforme (GBM).

Multinomial Logit Model and Penalized likelihood 
Approach
For data (yi, xi), i = 1, …, n with n observations and p predic-
tors, yi denotes an observation of the categorical response vari-
able Y ∈ {1, …, k} and xi = (xi1, xi2, …, xip) ∈ Rp indicates an 
observation of a p-dimensional vector of predictors. Assuming 

that yi follows a multinomial distribution, a multinomial logit 
model is built with logit link, which is
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where βr. = (βr1, βr2, …, βrp) and η β βir r r
Tx= + ⋅0 i . We choose 

category k as the reference category by setting βk0 = 0 and 
βk. = 0. Under this choice, the linear predictors ηir, r = 1,…, 
k-1, correspond to the log odds ratio between category r and 
the reference category k.

We regularize the multinomial logit model using a 
 penalized likelihood approach, in which one maximizes the 
penalized log-likelihood
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is the ordinary log-likelihood of a multinomial logit model, and 
J (β) is a function penalizing the magnitude of the  parameters 
and regularizing the structure of features. λ, the regulatory 
parameter, controls the strength of the regularization.

Assuming that all predictors are metric and standard-
ized, that is, each predictor has one degree of freedom, and 
the differences in scale will not influence the penalty and, 
thus, the variable selection. In the multinomial logit model, 
we use a vector β.j = (β1j, β2j, …, βk–1j)T of parameters to 
capture the effect of variable xj, so that variable selection 
is achieved only when the k – 1 parameters shrink to zero 
simultaneously. Since the ordinary lasso facilitates only 
parameter selection rather than predictor selection, a group 
lasso penalty is utilized to penalize the parameters at a 
group level, defined as
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where øj is a penalty weight, set as 1 by default. In group 
lasso, all the parameters in a group β.j would shrink to zero 
simultaneously.

In an association study, the graphs or networks 
depicting relationships among predictors are informative, 
 supplementary to numerical data. Consider a network repre-
sented by a weighted graph G = (V, E, W) with the set of verti-
ces V = 1, …, p corresponding to p predictors, the set of edges 
E = {( j, k): j and k are linked}, and the set of weights W = {wjk: 
( j, k) ∈ E}. wjk measures the level of concordance of predic-
tors j and k, with 1 for identity and 0 for complete  difference, 

26 CanCer InformatICs 2014:13(s6)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


 Newtwork-constrained group lasso

if normalized to the scale of [0,1]. We then  construct an 
 adjacency matrix A by
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and a degree matrix D = diag(d1, d2,…,dp), where d wj j k E jk= ∑ ∈( , )  
is defined as the degree of vertex j. The Laplacian matrix associ-
ated with graph G is L = D – A, which is always non-negative 
definite and can be  factorized as L = SST. By simple algebra, 
β βr r
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induces a smooth solution of the vector βr. with respect to the 
labeled weighted graph G.

Typically, the adjacency matrix can be constructed from 
external information using the abovestated method. However, 
several data-driven methods are also applicable.22,23  Adjacency 
coefficients can be defined based on similarity measures such 
as Pearson correlation coefficient, which are transformed 
into adjacency by a monotonically increasing function. The 
most widely used transformation functions include the sig-
num  function, the sigmoid function, and the power function. 
Detailed examples of adjacency measures are provided by 
Huang and Ma.22

To sum up, in our regularized model, the penalized log-
likelihood function is given by
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of which the second term, the sparse penalty, induces model 
sparsity and the third term, the network penalty, imposes 
smoothness over the network. When λ2 = 0, the model reduces 
to the group lasso multinomial logit model. The incorporation 
of this extra tuning parameter expands the parameter search 
space and directs the search to more biological meaningful 
regions.

Like ordinary lasso, group lasso also suffers from an 
issue of estimation bias, which is resulted from the fact that 
all predictors are penalized to the same degree. In order to 
reduce the bias, we use adaptive group lasso, which penalizes 
predictors to different degrees by assigning a weight to each 
 predictor. In our model, the weight is set to be the reciprocal 

of the L2 norm of the fitted coefficients in univariate analysis, 
where we fit the model with each individual predictor only. 
Denoting β⋅ j as the univariate estimate, the group lasso pen-
alty term (3) becomes
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Proximal Gradient Method and Model Fitting
We use the proximal gradient-based FISTA (fast  iterative 
shrinkage-thresholding algorithm) to fit the model.29,30  Consider 
the optimization of the general penalized log- likelihood 
lp (β) = l*(β) – λ1J1(β), composed of a concave and continuously 
differentiable term l*(β), and a convex penalty term J1(β). The 
penalized maximum likelihood (ML) estimator is defined by
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is a smooth function with respect to parameter β.
With a positive step size v, the quadratic approximation29 

of –lp(β) at a given point β0 is
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∇l*(β), the first-order derivative of l*(β), is a (k – 1) × 
(p + 1)-dimensional vector, whose element corresponding to βrj is
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The iterations of proximal gradient methods are defined by
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which consists of a linear approximation of the negative 
modified log-likelihood at the current value ( )ˆ ,tβ  a proximity 
term, and the penalty term.

First, we set λ1 = 0, and based on the standard formula 
for the iterates of gradient methods for smooth optimization, 
the unpenalized estimator β ( )t +1  has an explicit form

 
  β β υ β( ) ( ) ( )* ( ).t t tl+ = + ∇1
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Then we move back to the optimization problem with 
an active penalty. Via Lagrange duality, equation (7) can be 
equivalently expressed by

 
β β

β
= −

∈
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C

where C = {β ∈ Rd|J1(β) # k  (λ1)} is the constraint region corre-
sponding to J1(β) and k  (λ1) is a tuning parameter that is linked 
to λ1 by a one-to-one mapping. Given a search point u ∈ Rd, the 
so-called proximal operator associated with J1(β) is defined as
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which is the projection of u onto region C. Then the  proximal 
gradient iterates defined in equation (8) can be equally 
expressed by the projection
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Next, consider the proximal operator (9). Owing to the 
block-separability of this specific penalty, the proximal opera-
tor can be written as
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With (u)+ = max (u, 0), the explicit solution to the  proximal 
operator (10) can be derived from the Karush–Kuhn–Tucker 
conditions:
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To summarize, the basic idea of proximal gradient meth-
ods is as follows: First, remove the L1 penalty of the objective 

function (6) and then optimize the smooth part by taking a 
step toward its ML estimator via first-order methods, which 
creates a search point. Second, project this search point onto 
the constraint region C in order to account for the non-smooth 
penalty term. To accelerate the convergence rate, we extrapo-
late the current and the previous iterations with the help of 
deliberately chosen acceleration factors at,20
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The extrapolate point ( )ˆ ,tα  instead of the current iter-
ate ( )ˆ ,tβ  is used as a starting point to generate a search point, 
which is then projected on the penalty region.

To select the tuning parameters λ1 and λ2, we use cross-
validation, where we divide the data set into training and test 
data sets. The model is trained on the training data set, and 
prediction error is then assessed on the test data set. We search 
on a grid of λ1, λ2 values and choose the value of λ1, λ2 that 
minimizes the cross-validated errors. The prediction error is 
measured with the Brier score, a measurement of the accuracy 
of probabilistic predictions defined as the Euclidean distance 
between sample response and its estimated probabilities.

simulation
The purpose of the simulation is to show that the structure-
constrained model dominates the alternative models that do 
not use such prior information in terms of parameter estima-
tion and prediction. For each scenario presented, we simulate 
a training set and an independent test set both with 200 sam-
ples. We first select the optimal tuning parameters through a 
five-fold cross-validation on the training set. With the selected 
tuning parameters, a final model is built on the whole train-
ing set and then tested on the test set. For each setting, we 
run 50 simulations and calculate several criteria to evaluate the 
performance of the proposed model.

simulation settings
We consider a small model and a large model. Each model has 
four response categories. First of all, we construct a predic-
tor matrix. The numbers of total predictors are 20 for small 
and 200 for large models, and the numbers of relevant ones 
are 4 and 10, respectively. The predictors are continuous and 
 follow a multivariate normal distribution with mean 0 and the 
p × p correlation matrix
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where ρ = 0.5.
Second, we simulate the network structure of predictors. 

We divide the predictors into a few subsets (subnetworks). In 
the small model, 20 predictors are divided into 5 subnetworks 
evenly, and the 4 relevant predictors constitute the first sub-
network. In the large model, 200 predictors are divided into 
20 subnetworks evenly, and the 10 relevant predictors form the 
first subnetwork. Ideally, we assume full connection within 
each subnetwork and no connection between them; that is, 
the corresponding adjacency matrix is a block diagonal matrix, 
with the main diagonal blocks being all-ones square matri-
ces and the off-diagonal blocks zero matrices. This scenario 
is labeled as ideal network. We then construct the coefficient 
matrix, a 3 × p matrix whose rows are indexed by all but the 
reference categories of the response and columns are indexed 
by predictors. The columns corresponding to the irrelevant 
predictors are filled with zeros. For the relevant columns, there 
are three settings of the coefficients: identical, similar, and ran-
dom. The first setting requires equal coefficients in each cat-
egory for relevant predictors. In the case of similar coefficients, 
entries in each category share the same sign but have different 
values, indicating that all the relevant predictors impact the 
response in the same direction but with different magnitudes. 
Their absolute values are independently drawn from the set 
{0.05, 0.10, …, 0.50}, and the sign for each category is random. 
Random coefficients are independently drawn from the set 
{–0.50, –0.45, …, –0.05, 0.05, …, 0.50}. In this case, the prior 
structure information is not useful, since we assume that the 
coefficients within each subnetwork should be at least similar. 
This scenario serves as an example of model misspecification.

To further study the effects of structure misspecifica-
tion, we also test our models in cases of incorrect networks 
and overlapping networks. In incorrect network setting, the 
large and small adjacency coefficients are randomly drawn 
from (0.4, 1) and from (0, 0.6) instead of being constant 1 
and 0. In the overlapping scenario, each pair of neighboring 
subnetworks shares three common predictors.

Based on the multinomial logistic model, the actual 
probabilities can be derived and the class label is then ran-
domly drawn from a multinomial distribution for each obser-
vation. In addition, the intercept is set to zero for the sake of a 
relatively balanced design.

simulation results
To see the improved performance of using prior structure 
information in terms of parameter estimation and predic-
tion accuracy, we compare the variants of the proposed model, 
network-constrained multinomial logit model with group lasso 
penalty (NGL-MLM) and the one with adaptive group lasso 
penalty (NGL-MLMa), to two traditional multinomial logit 
models with lasso (L-MLM) and group lasso (GL-MLM), 
respectively, implemented in the package of glmnet in R.16 
To measure the estimation accuracy, the mean-squared error 
(MSE) between true parameter values and the estimated ones 

is used. In addition, the performance of prediction on test data 
is evaluated with Brier score, the Euclidean distance between 
sample response and the estimated probabilities, and prediction 
accuracy, the proportion of correctly predicted class labels.

We first simulate ideal network structure; that is, all the 
relevant variables come from a fully connected subnetwork. 
Figure 1 shows the estimation performance of various models. 
As expected, the structure information improves estimation 
significantly, especially for large models, which is particularly 
relevant for real applications. The estimation of the adaptive 
method (NGL-MLMa) outperforms others substantially. In 
case of random coefficients, where prior network does not pro-
vide any useful information, the proposed model is comparable 
to models without using the network information (L-MLM, 
GL-MLM), and sometimes even better. Figure 2 shows that 
the prediction accuracy is also higher for the proposed model 
in almost all scenarios. When Brier score is used (Fig. 3), 
a similar trend follows: the network-constrained model always 
performs better when we simulate ideal and similar coeffi-
cients, and is comparable to traditional models without using 
structure information in case of random coefficients.

To investigate the impact of structure misspecification, 
we investigate the scenarios of incorrect network and over-
lapping network. We simulate a medium-sized data set with 
100 predictors, 10 being relevant. Each subnetwork consists 
of 10 predictors. For the incorrect network setting, the 10 
relevant predictors come from the first subnetwork. For the 
overlapping network setting, the 10 relevant predictors come 
from two subnetworks. The performance of our models is still 
satisfactory because of the flexible tuning parameter on the 
structure-constraint term (Fig. 4). In particular, the predic-
tion accuracy of NGL-MLM is comparable to that of GL-
MLM in both situations, whereas, in terms of parameter 
estimation and Brier score, the structure-constrained models 
NGL-MLM and NGL-MLMa outperform the other two.

In summary, our structure-constrained multinomial logit 
model has better performance in terms of parameter estima-
tion and prediction when the prior network knowledge is at 
least partially correct, and the performance is comparable to 
traditional models when the network knowledge is incorrect. 
This is because the GL-MLM is a special case of NGL-MLM 
with λ2 = 0. Cross-validation tends to select λ2 = 0 when the 
prior assumption is not correct.

Application to the GbM data set
One important application of our method is cancer subtype 
prediction and relevant subnetwork identification on large-
scale gene expression data. We apply all four candidate meth-
ods, L-MLM, GL-MLM, NGL-MLM, and NGL-MLMa, 
to a large-scale TCGA (the cancer genome atlas) GBM sub-
type prediction problem, which contains the expression data of 
11,861 genes across 202 samples and four categories, with 40, 
46, 58, and 58 samples in each category. The network was built 
from a variety of sources, including Reactome, KEGG, as well 
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as the inferred gene-interactions from protein  interactions, 
gene co-expressions, protein domain interactions, and text-
mined interactions. The outcome is one of the four subtypes 
of GBM.31 The data set, the network information, as well as 
the subtype information were downloaded from http://bioen-
compbio.bioen.illinois.edu/NCIS/.

Since the number of genes in the GBM data set is much 
larger than the number of samples, which may lead to compu-
tation instability, we carry out gene screening before analysis. 
Starting with 11,861 genes, we screen genes based on the prior 
weights resulting from the NCIS algorithm,31 by including 

the 599 most highly weighted genes. To construct the network 
smoother for model building, we tailor the original network 
subject to the remaining 599 genes. Then the Laplacian matrix 
is constructed based on the tailored subnetwork.

To compare the prediction performance of the four 
methods, 202 samples are randomly divided into two subsets, 
a training set of 150 samples and a test set of 52 samples. The 
random division is kept only when test samples have good 
representation of each category (15–35% for each category). 
Otherwise, we discard that division. Feature selection and 
parameter estimation in model building are completed strictly 
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figure 1. MSE of parameter estimation under ideal structure information for small and large models with ideal, similar, and random coefficients.
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on the training set, and then the fitted models are tested on the 
test set. In practice, 50 valid divisions are obtained, and model 
building and testing are carried out on all pairs of data sets to 
assess variability, the results being summarized in Table 1.

The tuning parameter of the network-constraint controls 
the impact of the prior structure knowledge on model build-
ing. The network information will have no effect if the tun-
ing parameter is set to zero. Among the 50 models built by 
NGL-MLM, the network tuning parameter is chosen as zero 
in 28 models, whereas NGL-MLM is reduced to GL-MLM 

in this specific case. In contrast, 48 NGL-MLMa models 
choose non-zero tuning parameter for the network- constraint, 
which indicates that the structure knowledge is useful for pre-
diction, explaining the higher prediction accuracy rate for 
NGL-MLMa.

Next, we apply NGL-MLMa, the best model in both 
simulation and the application to GBM subtype analysis, on 
the whole sample set of GBM gene expression data and inves-
tigate the selected subnetwork. It selects 35 predictors, among 
which 21 are non-singletons and form a subnetwork, shown in 
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figure 4. Comparison of four candidate methods under incorrect network and overlapping network in terms of mse, accuracy rate, and Brier score.
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Figure 5. The selected genes make great biological sense. For 
example, the most connected gene AKT1 plays an important 
role in the pathogenicity of GBM. AKT1 is a downstream ser-
ine/threonine kinase in the RTK/PTEN/PI3K pathway, and 
large-scale genomic analysis of GBM has demonstrated that 
this pathway is mutated in many but not all GBMs.32 Therefore, 
the AKT1 can be potentially used to define GBM subtypes.

conclusion and discussion
Cancer subtype prediction is of critical importance in the 
understanding, diagnosis, and treatment of cancer. We intro-
duced a classification model on the basis of multinomial logit 
regression to identify cancer subtypes from high-throughput 
gene expression data. The model incorporates a group lasso 
penalty and a network-constraint. The group lasso penalizes 
the coefficients linked to a common predictor at a group level 
so that it facilitates variable selection by shrinking all  elements 
within a group to zero simultaneously. In addition, the network- 
constraint improves the smoothness of coefficients with 
respect to the prior structure information and results in more 
interpretable identification of genes and subnetworks.

The proposed model and its adaptive extension are com-
pared to lasso and group lasso multinomial logit models with 
no network-constraint involved. From the results of simula-
tion and the application to GBM gene expression data, we 
find that the proposed model is superior given correct prior 
network information and is comparable to traditional models 
given incorrect network information.

A key challenge to the future study is to correctly specify 
the networks. In the application to real data, we may include 
too many misspecified edges on the network because of 
incomplete knowledge of pathways. One possible solution is to 
use problem-specific network for a particular type of cancer, 
rather than using a general molecular interaction network.

The proposed method can be extended by using a non-
convex sparsity penalty to reduce estimation bias. SCAD 
(smoothly clipped absolute deviation) and MCP (minimax 
concave penalty) are two potential candidates.33–35 The appli-
cations of the method also go beyond the cancer subtype pre-
diction. For example, it can also be used to predict the disease 
subtype based on the human microbiome data, where the phy-
logeny structure can be efficiently used.28,36,37
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