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Introduction
Pancreatic cancer is a lethal malignancy representing the fourth 
leading cause of cancer-related deaths.1 Despite many thera-
peutic and diagnostic trials, the five-year pancreatic cancer  
survival rate remains at around 5%, largely because of late diag-
nosis, resistance to chemotherapy or radiation therapy, and a 
high recurrence rate even after surgery.1 Therefore, to improve 
the clinical outcome of this disease, it will be necessary to 
develop early detection methods, make precise selection of 
surgical candidates, and use optimal treatment strategies.

Using biomarkers is a potentially effective method for 
diagnosing pancreatic cancer early and thereby improving 
prognosis. However, biomarker screening for early detection 
is currently unavailable. Carbohydrate antigen 19-9 (CA 19-9)  
is the only pancreatic cancer biomarker and has been widely 
used for diagnosis, monitoring of therapeutic response, and 
prognosis; however, it has several limitations when used to 
detect small pancreatic cancer.2 In previous studies, blood 
metabolites were detected as low-mass ions (LMIs) that 
reflect the pathological changes in a cancer; therefore, LMI 
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data obtained by mass spectrometry (MS) has potential as a 
screening tool for early detection of cancer.3–5 Over the last 
decade, researchers have also attempted to use MS data to find 
biomarkers for pancreatic cancer.6–9

In addition to using novel biomarkers, efforts to improve 
clinical outcomes have involved screening for pancreatic can-
cer in high-risk populations. Accordingly, an epidemiological 
study identified patients with new-onset diabetes as having a 
higher risk of pancreatic cancer,10 and this finding was sup-
ported by a meta-analysis that associated diabetes with an 
increased risk of the disease.11 Although questions remain 
about whether diabetes is a risk factor or the result of pan-
creatic cancer, it is evident that diabetes, especially new-onset 
diabetes, is strongly associated with this cancer. In this study, 
we used matrix-assisted laser desorption/ionization-time of 
flight mass spectrometry (MALDI-TOF/MS) with the aim 
of finding new metabolites representing novel serum biomark-
ers that could differentiate between diabetes associated with 
pancreatic cancer and diabetes alone.

Recent developments in proteomics have provided novel 
methods for detecting biomarkers.12,13 A comprehensive review 
of MS data analysis is provided by Hilario et al.14 Briefly,  
a typical cancer-related experiment involving MS requires the 
completion of several preprocesses that are crucial to successful 
analysis of MS data. The final and the most important step is 
the classification of cancer status based on the preprocessed data. 
Ge and Wong6 applied ensemble methods to proteomics data in 
an investigation of pancreatic cancer, and they recommended 
the use of ensemble methods over a single decision tree.

For technical and biological reasons, missing values are 
commonly observed in MS data. The simplest solution to this 
problem is the removal of all variables (m/z values in MS data) 
with missing values. This strategy may not be ideal when the 
number of missing values is high and a significant proportion 
of variables are affected. Very few previous papers address the 
issues of missing values in MS data15; however, a comprehen-
sive overview of imputation methods for missing values can 
be found in the work of Karpievitch et al.16 and its associ-
ated references. These authors state that missing values can be 
categorized into two groups: missing completely at random 
(MCAR) and abundance-dependent missing values. The lat-
ter are related to censoring because of the detection limit of 
the instrument. However, in practice, it is not easy to identify 
the types of missing values, and both types often exist in a 
data set. For MCAR values, a common method is to gener-
ate imputations from the normal distribution with a sample 
mean and variance for each row, but this method often suf-
fers from variance underestimation because the sample vari-
ance calculation does not include missing values. Missing 
values because of censoring cause more complicated issues and 
require advanced imputation techniques. Karpievitch et al.16 
proposed a two-stage method in which they first identified 
the type of missing value and, depending on the type, used 
different imputation techniques.

Considering the approach of Karpievitch et al, which is 
heavily dependent on the classification of missing types, we 
addressed the question of imputing missing values without 
knowing their type. In MS, the majority of missing values 
are usually due to censoring, and so we used a lower value  
(in our case zero) as the mean of the normal distribution 
generating imputations. Furthermore, it is more realistic to 
assume unequal variance at m/z values. Therefore, to estimate 
the variance as a function of an m/z value, we fitted the LOcal 
regrESSion (LOESS) model (a nonparametric regression 
model) to the sample variances. With a relatively low mean 
value and precise variance estimates, our imputation was at 
least comparable to the imputations generated from the nor-
mal distribution with sample mean and variance. In addition 
to using our imputation technique, we handled missing values 
with dichotomization. We also proposed a clinical validation 
method for the biomarkers we found.

We organize the remainder of this article as follows. 
In Section 2, we describe the data set and statistical models, 
focusing on the imputation of missing values. In Section 3, 
we present the analysis of our results and address the vali-
dation of our findings. Finally, in Section 4, we discuss our 
conclusions.

Material and Methods
Patients and samples. Blood samples were collected 

from 53 patients with pancreatic cancer and diabetes, and 
40 patients with pancreatic cancer without diabetes between 
September 2009 and December 2011 at Seoul National 
University Bundang Hospital. For resectable cases, blood 
samples were collected before surgery, 14 days after surgery, 
and then during follow-up meetings with intervals of 3, 6, 
and 12 months. Resected pancreatic cancer patients received 
gemcitabine- or 5-fluorouracil-based chemotherapy as an 
adjuvant treatment during follow-up. Unresectable pancreatic 
cancer patients took medication to relieve their symptoms. 
Blood samples from 25 diabetic patients without pancreatic 
cancer were also collected between December 2009 and July 
2010 at the same hospital. Diabetic patients took various dia-
betic medications, including insulin. The 25 diabetic patients 
were used as the control group, while the 53 patients with both 
pancreatic cancer and diabetes were the case group. We used 
six replicates for each blood serum sample in these two groups, 
and so the total number of spectra used was 468. The patients 
with pancreatic cancer only were used for clinical validation 
by comparing them with the control patients after surgical 
resection. There was no gender difference between the con-
trol and case groups. However, patients with pancreatic cancer 
were significantly older than those without pancreatic cancer 
(70 vs. 57 years). Categorizing by the stage of disease, there 
were 34%, 34%, and 32% of patients in stages II, III, and IV, 
respectively. In patients with pancreatic cancer, preoperative 
jaundice was noted in 8 patients and 23 patients received cura-
tive intent surgery. This study was approved by the human 
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subjects committee of the Seoul National University Bundang 
Hospital, and patients gave their written, informed consent 
to participate in the research. The study followed the ethical 
guidelines of the 1975 Declaration of Helsinki.

data preprocessing. All the serum samples were pro-
cessed using an identical procedure as follows. Approxi-
mately 5–10 mL of blood was obtained from each patient. 
Blood was drawn into serum-separating tubes and centri-
fuged at 2,000 × g for 10 minutes at room temperature. 
The serum was removed and transferred to a capped poly-
propylene tube in aliquots, and the samples were stored at 
−70 °C. Sera (25 µL) were vortexed with 100 µL methanol/
chloroform (2:1, v/v), and then incubated for 10 minutes 
at the room temperature. Subsequently, this mixture was 
centrifuged at 6,000 × g for 10 minutes at 4 °C. The super-
natant was completely dried in a concentrator for 1 hour, 
and then resuspended in 30 µL of 50% acetonitrile/0.1% 
trifluoroacetic acid (TFA) and vortexed for 30 minutes. 
The methanol/chloroform extract was mixed (1:12, v/v) 
with an α-cyano-4-hydroxycinnamic acid solution in 50% 
acetonitrile/0.1% TFA, and 1 µL of the mixture was spot-
ted on the MALDI target for analysis. Our mass spectra 
data represent the average of 20 accumulated spectra. To 
minimize the experimental error, variable factors, including 
focus mass, laser intensity, target plate, and data acquisi-
tion time, were tested. Ideal focus mass and laser intensity 
were fixed at 500 m/z and 5,000 m/z, respectively, and each 
sample was analyzed at least five times using these settings 
and different extractions and data acquisition times.

The raw MS spectra were measured between 9 and 
2,500 Da, and had different lengths, with a mean average length 
of 165,977. Preprocessing plays a crucial role in analyzing MS 
data. Typical data preprocessing steps are as follows:

1. Transformation: Often the increments in m/z values are 
not constant but approximately proportional to the x-axis 
values. A logarithm transformation can be used to cali-
brate the scale of the m/z values.

2. Smoothing and baseline subtraction: Electronic or chem-
ical noise produces background fluctuations. To remove 
these background noises, a nonparametric regression 
method can be used to estimate the background intensity 
values, which are then subtracted from the transformed 
data. After background correction, a smoothing proce-
dure is required to smooth the effect of the isotopic enve-
lope in the data.

3. Normalization: Systematic differences exist in the total 
amount of desorbed and ionized proteins; a normal-
ization procedure is used to appropriately adjust these 
differences.

4. Peak detection: In each spectrum, the peaks that corre-
spond to proteins must be identified.

5. Peak alignment: Owing to chemical and electronic noise, 
the same biological peak (representing a specific molecule) 

may not match in all spectra. Therefore, by aligning the 
peaks of the different spectra, it is possible to appropri-
ately match peaks.

There are several tools available for data preprocess-
ing, but we opted to use the R package MALDIquant.17 
Figure 1 shows the results of the preprocessing steps with a 
raw spectrum.

classifications and missing values. After preprocessing, 
we applied four difference classification methods: Classifica-
tion And Regression Tree (CART), bagging, random forest, 
and lasso.18–21

Using CART, a decision tree method, we first made suc-
cessive splits on the m/z values to divide the feature space into 
separate regions. With each region, we used the most com-
monly occurring class as the prediction. While CART is 
easily understood, it can be unstable and produce an accuracy 
that is not comparable to other classification methods.

Bagging and random forest are ensemble methods that 
combine several algorithms to produce better prediction results 
than can be obtained by using each individual algorithm. 
Bagging draws samples repeatedly from the original training 
data with replacement and following a uniform probability dis-
tribution. Therefore, in these bootstrapped samples, it is possible 
to observe the same data more than once. We obtained predic-
tions by using a decision tree on each bootstrapped sample, and 
then we aggregated these predictions. By using multiple sam-
ples, bagging can reduce the variance of predictions. Random 
forests also use bootstrapped sampled data sets, but only use 
a limited random selection of m predictors (m/z values in our 
study) to build decision trees. By using this method, it is possi-
ble to reduce the correlation between decision trees. In random 
forests, often m p= , where p is the number of predictors.

In our study, another possible approach for making predic-
tions was using logistic regression with m/z values as input and 
disease status as output. However, we could not use traditional 
logistic regression because the number of predictors was greater 
than the sample size. As an alternative, the lasso is a variable 
selection method of (logistic) regression. The lasso shrinks the 
estimated coefficient toward zero using the log-likelihood with 
a penalty function, the sum of the absolute values of the esti-
mated coefficients. By using this penalty term, the lasso can 
produce a sparse model with selected nonzero predictors.

To evaluate each classifier, we randomly split the data 
into a training set (37 cases and 18 controls) and a test set  
(16 cases and 7 controls). We built each classifier based on 
the training set and estimated the prediction error with the 
test set. Among the training data, we found 6,860 missing 
values of intensity, ie, 21.7% of data were missing. Because 
the amount of missing was not negligible, we considered 
imputation for replacing missing values. A simple method 
of imputation would be to replace the missing values with a 
small predefined value, as used in GeneSpring MS software. 
However, using the same value for every imputation would 
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result in a reduction in variance for the peaks with missing 
values. Considering that one of the main goals of preprocess-
ing is to stabilize variance across peaks (because stabilization 
of variance may affect classification if the classifier is sensitive 
to the scale of variances), using the same value for imputation 
may not be the optimal choice.

Therefore, we considered and applied the following 
methods for handling missing values. First, we converted 
the data into a binary structure using PPC (peak prob-
ability contrast).13 The PPC is a procedure that constructs a 
vector of binary features for common peaks in preprocessing. 
Each feature is set to 1 if a peak has a height greater than 
given a threshold. The missing values are to set to zero. 

By using a binary structure, the issue of variance stabilization 
is eliminated.

We also applied imputation by adding random noise. 
We generated random noise from the normal distribution 
with a mean of zero and variance σ2, and imputed the abso-
lute values of this noise. Here σ2 is the variance of intensity, 
and to estimate σ2, we proposed two nonparametric meth-
ods, (i) LOESS and (ii) MAD (median absolute deviation) 
estimator, in wavelet regression. The LOESS is a nonpara-
metric regression method that fits a simple linear model to 
localized subsets of the data in order to construct a nonlinear 
model. To estimate σ2 with the LOESS, we first calculated 
sample variances for each peak and fitted the LOESS to these 

0 500 1000 1500 2000 2500

0
20

00
0

40
00

0
60

00
0

80
00

0

Raw spectra

/home/admin/CloudStation/............/............... ....../........./analysis/PC txt/PC000003A/PC000003A1.txt

Mass

In
te

n
si

ty

0 500 1000 1500 2000 2500

0
2

4
6

8
10

Log transformation

/home/admin/CloudStation/............/............... ....../........./analysis/PC txt/PC000003A/PC000003A1.txt

Mass

In
te

n
si

ty

0 500 1000 1500 2000 2500

0
2

4
6

8
10

Smoothing

/home/admin/CloudStation/............/............... ....../........./analysis/PC txt/PC000003A/PC000003A1.txt

Mass

In
te

n
si

ty

0 500 1000 1500 2000 2500

0
2

4
6

8
10

Baseline estimation

/home/admin/CloudStation/............/............... ....../........./analysis/PC txt/PC000003A/PC000003A1.txt

Mass

In
te

n
si

ty

0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Baseline subtraction

/home/admin/CloudStation/............/............... ....../........./analysis/PC txt/PC000003A/PC000003A1.txt

Mass

In
te

n
si

ty

0 500 1000 1500 2000 2500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Normalization

/home/admin/CloudStation/............/............... ....../........./analysis/PC txt/PC000003A/PC000003A1.txt

Mass

In
te

n
si

ty

0 500 1000 1500 2000 2500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

/home/admin/CloudStation/............/............... ....../........./analysis/PC txt/PC000003A/PC000003A1.txt

Mass

In
te

n
si

ty

Peak detection (redline) and noise estimation (blueline)

A B

C D

E F

G

figure 1. Preprocessing.

48 CanCer InformatICs 2014:13(s7)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Pancreatic cancer biomarker detection

variances. Figure 2 gives the variance estimates obtained by 
using LOESS. For MAD, we fitted a wavelet regression 
model to the spectra and computed a robust standard devia-
tion estimator.22

clinical validation. To validate the selection of bio-
markers, we applied two different approaches. First, we tested 
whether the intensity of the selected metabolites in pancreatic 
cancer patients with diabetes was reduced after surgical resec-
tion to the intensity level observed in patients with diabetes 
only. If the metabolites that we found were true biomarkers, 
we would expect that the intensity level between two groups 
would be similar after a certain period. Second, we investi-
gated whether specific metabolites were related to diabetes by 
comparing post-surgery results obtained from patients with 
pancreatic cancer only with results obtained from patients with 
diabetes only. For both tests, we used two-sample t-tests and 
computed the distances between the comparable groups over 
time to identify the elapsed time, from surgery to recovery, at 
which the selected metabolites were statistically significant. 

results
Preprocessing. Having randomly split the 78 samples 

(53 cases and 25 controls) into training (55 samples: 37 cases 
and 18 controls) and test sets (23 samples: 16 cases and 7 con-
trols) as described above, we used MALDIquant to preprocess 
each sample (six replicates per sample = 468 raw spectra). We 
log-transformed the intensities and conducted smoothing and 
baseline subtraction using SNIP (statistics-sensitive non-linear  
iterative peak-clipping).23 For normalization, we used TIC 
(total ion current).24 To identify peaks, we found the sites (m/z 
values) where intensity was more than twice the size of the 
noise estimate. Once peaks were identified, they were aligned 
by using the self-calibrated warping (SCW) algorithm.25 

To merge the spectra produced by the six replicates of each 
sample, we used a minimum intrasample percentage of pres-
ence of 50%. The number of peaks ranged from 1,894 to 2,184, 
while the mean average length of raw spectra was 165,977. To 
extract peaks from each group (case and control), we used a 
minimum intersample percentage of presence of 50%. As a 
result, we produced an intensity matrix with 574 peaks.

classification. After preprocessing, we found that more 
than 20% of intensity values were missing. Thus, we used the 
three methods discussed above to handle missing values, and 
then we applied four classification methods. We repeated all 
procedures 100 times, beginning with the random splitting of 
test and training data sets, and computed prediction error rates 
each time. Figure 2 shows the LOESS fit of σ. The results are 
summarized in Table 1.

Bagging and random forest (ensemble methods) outper-
formed the lasso, and these methods were more successful 
when PPC was used to handle missing values. This is likely 
due to the binary structure of PPC as both bagging and ran-
dom forest are based on binary decision trees. We found that 
using PPC also reduced standard errors. Comparing the two 
imputation methods, the LOESS method was slightly better 
than wavelet regression in terms of the prediction error and 
standard error for each classifier. The improved performance 
of LOESS could be due to the fact that it estimated σ2 directly 
and provided a slightly different σ2 for each peak. Boxplots of 
prediction errors for each classifier are given in Figure 3. As 
expected, CART was unstable and had the highest prediction 
error. By using median comparisons, we determined that the 
other three classification methods performed at similar levels.

In order to summarize the accuracy of each method, we 
present receiver operating characteristic (ROC) curves for 
each imputation method and for each of the four classifiers 
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(Fig. 4). These ROC curves are based on 100 randomly split 
test and train sets.

In addition to the ROC curves, we use the AUC (area 
under the curve) to investigate the performance of each 
method. Figure 5 shows boxplots of AUC obtained for each 
classifier with the different imputation methods. The results 
are also based on 100 randomly split test and train data sets.

Because bagging and random forest with PPC outper-
formed other methods when handling missing values (Table 1), 
we primarily focused on the classification results obtained using 
these methods. Accordingly, we found that the following were 
common candidates for biomarkers: m/z 175.0852, 287.0996, 
402.1181, 1,020.5152, 1,206.5410, 1,207.5488, 1,208.5621, 
1,465.6118, 1,466.6155, 1,467.5927, and 1,468.6177. To vali-
date the significance of these candidates, we plotted the raw 
spectra for the given m/z values for pancreatic cancer patients 
with diabetes and patients with diabetes only. Differences in 
intensities were observed at m/z 1,465 1,468, 1,206 1,208, 
and 1,020. Figure 6 shows the difference of intensities at m/z 
1,465 and 1,206.

To select biomarkers, we computed variable importance 
measures by calculating the mean decrease in prediction 
accuracy in bagging and random forest, and then selected 
the top 10 as candidates for biomarkers. For the lasso, the 
selected variables in the final model were considered as can-
didates. Based on the common candidates from each of the 
classifiers, we identified five m/z sites as potential candidates 
for biomarkers. Because some of these sites were too close 

together to be considered as separate sites and a protein can 
be distributed in the range of several m/z values, we appro-
priately merged these five sites into three m/z sites (namely 
1,465, 1,206, and 1,020).

Among these three mass ions, 1,465 m/z was identified 
as a fibrinogen alpha chain by using MALDI-MS/MS analy-
sis and a Swiss-Prot database search. However, we failed to 
identify the other two mass ions (1,206 and 1,020 m/z).

clinical validation. Among patients with pancreatic 
cancer, 33 opted to have curative surgery. If the biomarkers 
we found are not solely related to diabetes, but are instead 
true biomarkers for pancreatic cancer, the prognosis after 
the surgery should be similar to that of the control group 
with diabetes only. Additionally, we compared the control 
group with patients only suffering from pancreatic cancer 
(no diabetes) after they had undergone surgery in order to 
identify metabolites that are solely related to pancreatic 
cancer. Thus, we collected 35 samples from 14 pancreatic 
cancer patients with diabetes and 30 samples from 19 pan-
creatic cancer-only patients for analysis. We compared the 
pancreatic cancer with diabetes and diabetes-only groups 
using a two-sample t-test. At each time t, we used the 
blood samples obtained after time t to compute test statis-
tics. Results are presented in Table 2, where n represents 
the sample size of the pancreatic cancer patients with dia-
betes after time t.

At week 1, there were significant differences between the 
two groups. However, as time progressed, these differences 

Table 1. Prediction error for each method. standard errors are given in parenthesis.

METhoD PPC LoESS WAvELET

Cart
Bagging
random forest
Lasso

0.1339 (0.0828)
0.0735 (0.0520)
0.0757 (0.0537)
0.1004 (0.0592)

0.1365 (0.0757)
0.0839 (0.0593)
0.0839 (0.0616)
0.0826 (0.0667)

0.1326 (0.0743)
0.0939 (0.0673)
0.0917 (0.0702)
0.0865 (0.0638)
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figure 6. Intensities of biomarkers between control and case.
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using three different linkage methods (single, complete, and 
average) in hierarchical cluster analyses. Figure 7 shows how 
the patterns of distances changed over time. For all three link-
age methods, as time progressed, the distance between dia-
betes only and pancreatic cancer with diabetes was apparently 
smaller than the distance between diabetes only and pancre-
atic cancer without diabetes.

discussion
In this paper, we analyzed MS data to find biomarkers for 
pancreatic cancer. From a methodological standpoint, we 
proposed three methods for handling missing values in MS 
data, and we compared their performance when they were 
combined with popular classification methods. We found 
that PPC worked best when we used tree-based classification 
methods. We also suggested a clinical validation method for 
biomarker identification. We identified three metabolites as 
possible biomarkers. Of these, m/z 1,020 apparently discrimi-
nated patients with pancreatic cancer and diabetes from those 
with diabetes only.

Table 2. Differences in the potential biomarkers in patients with 
pancreatic cancer and diabetes vs. those with diabetes only: P-value 
and sample size over time (week).

WEEk m/z1465* m/z1206* m/z1020* n

1 0.000 0.000 0.000 14

2 0.000 0.000 0.000 13

3 0.001 0.000 0.093 9

4–13 0.001 0.000 0.086 9

14–6 0.002 0.000 0.123 9

17 0.003 0.000 0.142 8

18 0.013 0.002 0.261 7

19–20 0.046 0.007 0.253 6

21 0.054 0.013 0.268 6

22–30 0.071 0.023 0.218 6

31 0.096 0.073 0.271 6

32 + 0.114 0.089 0.274 6
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figure 7. Distances between pancreatic cancer with diabetes and without diabetes groups with 3 different linkage methods. 

Table 3. Differences in the potential biomarkers in patients with 
pancreatic cancer without diabetes vs. those with diabetes only: 
P-value and sample size over time (week).

TIME m/z1465* m/z1206* m/z1020* n

1 0.000 0.000 0.005 18

2 0.000 0.000 0.010 16

3 0.000 0.000 0.466 10

4–5 0.000 0.000 0.831 10

6–10 0.000 0.001 0.762 9

11–17 0.000 0.002 0.576 8

18 0.001 0.003 0.537 8

19–30 0.002 0.010 0.469 7

31 0.008 0.030 0.413 6

32 + 0.017 0.043 0.723 5

 

apparently diminished. At m/z 1,465, the difference was no 
longer statistically significant after 21 weeks, while it took 31 
and 3 weeks for the loss of statistical significance in m/z 1,206 
and 1,020, respectively.

We also compared the pancreatic cancer-only patients 
with the diabetes-only controls. Table 3 summarizes the 
result.

Similar to results shown in Table 2, the difference 
between the two groups became statistically nonsignificant 
after three weeks at m/z 1,020. However, in contrast, differ-
ences at m/z 1,465 and 1,206 remained statistically significant 
throughout the examination period up to 32 weeks. This could 
be explained if the metabolites at m/z 1,465 and 1,206 were 
related to diabetes as well as pancreatic cancer.

We considered the dissimilarity between the two groups 
for each hypothesis given above, with the aim of validating 
our results. We used distances between the two groups (clus-
ters) to assess their dissimilarity, and these were computed 
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