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Introduction
The concept of the population cancer hazard rates in aging is 
tightly connected with the concept of the age-specific incidence 
rates that are characterized by a number of new cancers of a spe-
cific site/type, occurring within an age-specific group of individ-
uals from a specified population during a distinct time period.1–6 
The population hazard rates in aging, which we will call the pop-
ulation hazard rates (or just population rates), are determined by 
a correction of the age-specific incidence rates on the age, period, 
and cohort (APC) effects (see Refs. 5–7 and below).

Recently,5 a novel concept, the individual hazard rates 
in aging (shortly, individual rates), was introduced. This con-
cept assumes that only a small fraction (pool) of individuals 
in the population is susceptible to cancer, while the rest of 
the population (a large fraction) is resistant to cancer. The 
individual rates characterize the risk of getting cancer for the 

age-specific group of individuals who are susceptible to cancer 
and will get cancer in their lifetime.

The main obstacle to the wide use of the population and 
individual rates in cancer research is the absence of a simple com-
putational approach and a freely available computerized tool for 
their estimation. The present work is aimed at filling this gap.

The APC effects are more typical for adult rather than 
for childhood cancers. This is because the occurrence of adult 
cancers is often associated with lifestyle and environmental 
risk factors, while the occurrence of childhood cancers is often 
linked to genetic abnormalities. Since the adult cancers are 
usually diagnosed at the ages of 20 and older, analysis of the 
occurrence of these cancers is performed using cancer-related 
data on people in that age group.

In cancer epidemiology, the APC effects are often 
estimated in the frame of the log-linear age–period–cohort 
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(LLAPC) model. While using this model, however, the 
identifiability problem arises. To solve this problem, the use 
of additional assumptions or specific estimable functions is 
needed (see Refs. 8–13 and references therein). Recently, in 
Ref. 9, a novel estimable function, called the fitted age-at-onset 
curve, was introduced and used to develop the AgePeriodCo-
hort web tool (http://analysistools.nci.nih.gov/apc/).10

In the present work, we expanded the traditional 
approach,11–13 in which (within a set of the unknown parameters 
required for estimating the APC effects) four redundant 
parameters are equated to zero. In our approach, we set only 
three parameters to zero and determined an optimal value of 
the fourth parameter by an assumption that the effects of the 
adjacent cohorts are close.7 To the best of our knowledge, this is 
the mildest assumption used so far to solve the APC problem.

Based on the approach7 and using a simple regularization 
and anchoring technique, we developed a novel computational 
framework to estimate the APC effects, the population and 
individual hazard rates of cancer development in aging, and 
the overall cumulative hazard rate (or shortly the overall rate). 
In this framework, the population hazard rates are estimated 
by correcting the observed age-specific incidence rates of can-
cer on the APC effects. After that, the overall rate and the 
individual rates are determined.

The proposed computational framework was implemented 
in a new, stand-alone web tool, called CancerHazard@Age. This 
tool is freely available at http://registry.unmc.edu/CHA/.

The performance of CancerHazard@Age was demon-
strated using data on the female lung cancers diagnosed in 
1975–2009 in nine geographic areas within the USA.

Materials and Methods
Mathematical methods. Age-specific incidence rates. The 

age-specific incidence rates can be determined as a ratio of the 
number of cancer cases, Oi,j, divided by the total person-years 
at risk, Pi,j, in equal age intervals. Pi,j is determined as the size 
of a population, Popi,j, multiplied by the width (in years) of the 
time periods of observations, ∆. For better accountability and 
to avoid the use of small decimal numbers, the age-specific 
incidence rates of cancer are expressed as a number of new 
cancer cases per 100,000 person-years in five-year age groups.

APC analysis. In the frame of the LLAPC model, the 
APC analysis is performed using the following system of con-
ditional equations:
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where Yi,j is a logarithm of the incidence rate, Ii,j; Oi,j is the 
number of cancer occurrences; and Pi,j is the person-years at 
risk. In the system (1), αi is the age (A) effect; βj is the time-
period (P) effect; γk is the birth cohort (C) effect; and µ is a 
constant, called the intercept.2 The age intervals are indexed as 
(i = 1, …, n); the time-period intervals of cancer occurrences 
are indexed as ( j = 1, …, m); the birth cohort intervals of cancer 
occurrences are indexed as (k = j – 1 + n = 1, …, l); and n, m, 
and l are numbers of the age intervals, time periods, and birth 
cohorts, which are indexed correspondingly. The matrixes, Oi,j 
and Pi,j, are obtained from observations. The APC effects and 
the intercept are estimated by solving the system (1).

In the model used, Yi,j are taken with weights (wi,j), 
which are inversely proportional to their sampling variances, 
SE2(Yi,j). In this case, according to Ref. 7:

 
w O i n j mi j i j, , , ( ,..., ) ( ,..., )= = =1 1  (3)

The problem is to determine from the system of the n × m 
conditional equations (1) with weights (3) the following: (i) 
the n estimates of the A effects, α

i

* ; (ii) the m estimates of the 
P effects, β

j

* ; (iii) the l estimates of the C effects, γ i
* ; and (iv) 

the intercept, µ*. Here and below the asterisks sign, *, desig-
nates estimates.

The system (1) cannot be solved directly by methods of 
multiple linear regressions. This is because the design matrix of 
the system (1) is rank deficient because of a linear interrelation 
of the APC effects. Consequently, the APC effects cannot be 
uniquely and simultaneously estimated (multiple estimators of 
these effects provide similar solutions). In this work, to solve 
this identifiability problem, we used the heuristic approach 
proposed in Ref. 7. We implemented this approach in the 
computational framework, which we used for developing the 
CancerHazard@Age tool (see Results and Discussion).

data preparation. The CancerHazard@Age tool was 
tested using data on the female lung cancers diagnosed in 
1975–2009 in San Francisco-Oakland SMSA, Connecticut, 
Detroit (Metropolitan), Hawaii, Iowa, New Mexico, Seattle 
(Puget Sound), Utah, and Atlanta (Metropolitan) areas. Data 
on lung cancer cases were obtained from the database.14 Data on 
the female populations were obtained from the databases.15,16 
Data on the female lung cancers and on the sizes of the female 
populations were extracted by SEER*Stat 8.1.5 software,17 
and used to create the case and population matrixes utilized 
for testing the CancerHazard@Age tool.

Obtaining data for the case matrix. Initially, from the data-
base,14 we selected and saved a column with 19 numbers of 
histologically confirmed female lung cancers, diagnosed during 
the 1975–1979 time period in 19 age intervals (0, 1–4, 5–9, …; 
80–84, and 85+). Then, we extended this column by splitting 
the number of cases in the 85+ age interval into the number 
of the female lung cancers in the 85–89, 90–94, 95–99, and 
100+ age intervals. To do this, we determined a number of the 
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cancers in the 85–89, 90–94, 95–99, and 100+ age intervals. 
Thus, we obtained a column with the numbers of the histo-
logically confirmed female lung cancers diagnosed in 22 age 
intervals (0, 1–4, 5–9, …, 95–99, and 100+ years) during the 
1975–1979 time period. Analogously, we determined columns 
with 22 numbers of the female lung cancers diagnosed during 
the 1980–1984, …, 2005–2009 time periods.

Overall, we obtained seven columns with 22 numbers of 
the histologically confirmed female cancers diagnosed in 22 
age intervals (0, 1–4, 5–9, …, 95–99, and 100+) and in seven 
time periods (1975–1979, …, 2005–2009). Then, we concate-
nated (joined) these seven columns into one 22 × 7 matrix. 
Finally, we omitted six age intervals (0, 1–4, 5–9, 10–14, 15–19,  
and 100+) in which the numbers of lung cancers were small 
(less than 10). Thus, we truncated the 22 × 7 matrix to the 
16 × 7 matrix, presenting the number of the female lung can-
cers diagnosed in 16 age intervals (20–24, …, 95–99) in seven 
time periods (1975–1979, …, 2005–2009). This truncated 
matrix was used for testing the CancerHazard@Age.

Obtaining data for the population matrix. Using the data-
base,15 we created columns with 19 numbers showing the female 
populations in 19 age intervals (0, 1–4, 5–9, …, 80–84, and 85+ 
years) in the 1975–1979 time period. We also created analogous 
columns showing the female populations in the 1980–1984, 
1985–1989, 1990–1994, and 1995–1999 time periods. Using 
the database,16 we created columns showing the female popula-
tions in 22 age intervals (0, 1–4, 5–9, …, 95–99, and 100+ years) 
in the 2000–2004 and the 2005–2009 time periods.

To estimate the sizes of the female populations in the 
85–89, 90–94, 95–99, and 100+ age intervals in the first five time 
periods considered (ie, 1975–1979, …, 1995–1999), we propor-
tionally split the sizes of the female populations in the 85+ age 
interval based on the female populations in the 85–89, 90–94, 
95–99, and 100+ age intervals. The proportions were estimated 
from the female populations observed within 2000–2009 in the 
85–89, 90–94, 95–99, and 100+ age intervals. Thus, for all seven 
time periods, we obtained seven columns with the female popu-
lations in 22 age intervals (0, 1–4, 5–9, …, 95–99, and 100+).

Finally, we concatenated the obtained columns into one 
22 × 7 matrix. This matrix presents the female populations 
in 22 age intervals (0–4, 5–9, …, 95–99, 100+) for the con-
secutive seven five-year time periods (1975–1979, 1980–1984, 
1985–1989, 1990–1994, 1995–1999, 2000–2004, and 2005–
2009). Finally, by omitting the female populations in six age 
intervals (0, 1–4, 5–9, 10–14, 15–19, and 100+), we truncated 
the obtained 22 × 7 population matrix to the 16 × 7 matrix. 
This was done to have the same dimensions for the case and 
population matrices.

results and discussion
computational framework. We developed a three-

step computational framework to estimate the population 
and individual hazard rates. In the first step, the APC effects 
and the intercept were estimated. In the second step, using 

these estimates, the population hazard rates were determined. 
Finally, in the third step, from the determined population haz-
ard rates, the individual hazard rates were estimated. A more 
detailed description of this framework is presented below.

Step 1. To determine the APC effects, the follow-
ing anchoring procedure is performed. Three parameters 
(α β γi j k0 0 0

0 0 0= = =, , ) are set to zero. The proposed 
framework offers two possible ways of choosing the i0, j0, and 
k0 indexes to anchor the A, P, and C effects, correspondingly.

One way, which we called manual anchoring, is in using 
the appropriate, up-front given integer numbers as the i0 and 
j0 indexes. These numbers can be taken from the following 
two sets of numbers: {1, …, n} and {3, …, m}, where n is the 
number of the considered age intervals and m is the number of 
the time periods. The k0 index is determined as k0 = j0 – i0 + n. 
The choice of these indexes depends on the used observed data 
and on how the APC effects (to be determined) will be further 
used.

The other way, which we called an automatic anchoring, 
is to algorithmically determine the i0, j0, and k0 indexes. This 
determination starts with choosing the j0 index that presents 
a median time period. Specifically, when the number of time 
periods, m, is odd, the central index is used as the anchor 
period index, j0. When m is even, the upper of the two median 
indexes is used as j0. After getting j0, the index, i0, for which 
the corresponding equation in system (1) for the given j0 has a 
maximum weight (ie, Oi j0 0, max= ) is chosen as the anchor age 
index. Finally, k0 is determined as k0 = j0 – i0 + n.

By setting α β γi j k0 0 0
0 0 0= = =, , , the identifiabil-

ity problem is reduced to the problem of determining one 
redundant parameter called the identification parameter.7 In 
the proposed framework, the P effect, β j0 1− , designated by 
δ δ β( )= −j0 1 , is used as the identification parameter. By vary-
ing δ, a family of estimates of the APC effects is obtained. To 
get an optimal value of the identification parameter, a heu-
ristic assumption that the effects of the adjacent cohorts are 
close is used. By this assumption, the optimal value of δ is 
numerically determined by minimizing (with respect to δ) the 
weighted average of the squared differences between the esti-
mates of the adjacent C effects, ( )* *γ γk k+ −1

2. This optimization 
problem is formulated as follows7:
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where the weights, Wk, are reciprocals of the variances of 
the differences between estimates of the adjacent C effects, 
( )* *γ γk k+ −1 . In the proposed framework, the optimal value of 
δ that gives the best solution of the system (1) is obtained by 
varying δ within the interval, [−0.5, 0.5], with the step equal 
to 0.001. This solution provides a unique set of estimates of the 
A, P, and C effects, α β γ

i j k
* * *, , , and the estimates of the inter-

cept, µ*, as well as the estimates of their standard errors, SE*.
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Step 2. The estimates of the population rates, hU i,
* , and 

their standard errors, SE*
,

*( )hU i , in the successive age intervals 
i (i = 1, …, n) are determined by α µ α

i i
* * * *, , ( )SE , and SE*(µ*), 

estimated on the previous step, as follows7:

 
h i nU i i,

* * *exp( ) ( ,..., )= + =µ α 1  (5)

and

 
SE SE SE*

,
*

,
* * * * *( ) [ ( ) ( )] ( ,..., )2 2 2 2 1h h i nU i U i i= + =µ α  (6)

Step 3. The estimates of the individual rates, hi
*, and their stan-

dard errors, SE( )*hi , are obtained by formulas (34)–(39) in Ref. 5.
web-based computing tool, CancerHazard@Age. The 

proposed computational framework was incorporated into a 
computing tool, called the CancerHazard@Age, which is aimed 
at estimating the overall hazard rate, and the population and 
individual hazard rates of a specific cancer site/type. The tool 
is a two-tier web application. The business logic of this tool 
primarily lies within Java classes. The graphical user interface 
of the CancerHazard@Age is implemented as JavaServer Pages 
(JSP). The JAMA library (developed by the MathWorks and 
the National Institute of Standards and Technology) is used to 
perform the calculations, and the JFreeChart library (devel-
oped by the Object Refinery Limited) is utilized to build 
graphs. The input and output pages of the CancerHazard@Age 
tool are shown in Figures 1 and 2, correspondingly.

Input data. To work with the CancerHazard@Age, values of 
the following variables have to be input: Title, Start Age, Start 
Year, and Time Interval. In addition, when the manual anchor-
ing is used, two other variables, Period Index and Age Index, have 
to be input. Note, when automatic anchoring is used, the tool 
calculates the Period Index and the Age Index automatically; thus, 
input of these two variables is not needed. Finally, two matrixes, 
the Cases and the Populations, saved as a comma-separated-value 
or a tab-separated-value file, have to be uploaded. The meaning 
of the input data is explained below.

Title describes the computing work to be executed (for 
instance, hazard rates of female lung cancers diagnosed in 
1975–2005).

Start Age represents the youngest age (in years) of the first 
age interval (for instance, 20 for the first age interval, 20–24).

Start Year represents the first year of the first time period 
(for instance, 1975 for the first time period, 1975–1979).

Time Interval represents the width (∆) (in years) of the 
time-period intervals (for instance, 5). Note, the width of the 
time-period intervals and the width of the age intervals must 
be equal.

Period Index represents the index ( j0) of the anchored 
time period. This index can be a number taken from the set 
of integer numbers, {3, …, m}, where m is the number of the 
considered time periods. Note, when the automatic anchoring 
is used, this variable is calculated automatically.

Age Index represents the index (i0) of the anchored age 
interval. This index can be a number taken from the set of 
integer numbers, {1, …, n}, where n is the number of the con-
sidered age intervals. Note, this variable is calculated auto-
matically when the automatic anchoring is used.

Cases represents the n × m matrix (Oi,j ) with the numbers 
of the cancers of a specific site/type diagnosed in n successive 
age intervals (rows) and in m successive time periods (columns). 
For instance, this matrix can be obtained by copping the raw 
data from Table 1, while excluding the age index and the age 
interval columns, as well as all the headers.

Populations presents the n × m matrix (PoPi,j ) with the 
corresponding populations from which the cancer cases were 
diagnosed. For instance, this matrix can be obtained by cop-
ping the raw data from Table 2, while excluding the age index 
and the age interval columns, as well as all the headers.

Output data. The CancerHazard@Age outputs the fol-
lowing data: (i) Intercept, (ii) Overall Rate, (iii) Age Effects, 
(iv) Period Effects, (v) Cohort Effects, (vi) Population Rates, and 
(vii) Individual Rates. The results of the calculation can be 
presented in graphical and tabular forms by checking the cor-
responding checkboxes. The numbers shown on a screen are 
rounded to four digits after the decimal point. Values, smaller 
than 0.0001, are shown as ,0.0001. Results can be opened 
in Microsoft Excel by clicking the Open in Excel Button. In 
Excel, the numbers are shown without rounding. The mean-
ing of the output data is explained below.

Intercept shows a constant µ (and its standard error) esti-
mated by solving the system (1).

Overall Rate shows the estimate of the overall population 
hazard rate, H UO

*  (and its standard error).
Age Effects show the estimates of the age effects (and 

their standard errors). The age effects are presented as graphs 
(age effects vs. age at diagnosis) and as the corresponding 
tables.

Period Effects show the estimates of the time-period 
effects (and their standard errors). The time-period effects are 
presented as graphs (period effects vs. year of diagnosis) and as 
the corresponding tables.

figure 1. screen shot of the input page. the page shows values of the 
input data described in section utility of the CancerHazard@Age.
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Cohort Effects show the estimates of the birth cohort 
effects (and their standard errors). The birth cohort effects are 
presented as graphs (cohort effects vs. birth date at diagnosis) 
and as the corresponding tables. Note, the birth date at 
diagnosis is referred to by the mid-year of the birth of the 
cohort.

Population Rates show the estimates of the population 
cancer hazard rates (and their standard errors). The popula-
tion rates are presented as graphs (population rates vs. age at 
diagnosis) and as the corresponding tables.

Individual Rates show the estimates of the individual 
cancer hazard rates (and their standard errors). The individual 
rates are presented as graphs (individual rates vs. age at diag-
nosis) and as the corresponding tables.

Utility of the CancerHazard@Age. To demonstrate 
the utility of the CancerHazard@Age, we used data on the 
female lung cancers diagnosed in 1975–2009 in nine geo-
graphic areas within the USA. In the computing experi-
ment performed, the manual anchoring and the following 

values of the variables (shown in parentheses and in 
italics) were used: Start Age (20), Start Year (1975), Period 
Index (4), Age Index (10), and Time Interval (5). Two 
additional matrixes (Cases and Populations) were uploaded. 
These matrices (with the numbers of cancer cases and 
sizes of population, which were determined as described 
in Materials and Methods) are shown in Tables 1 and 2, 
correspondingly.

Using these input data and the uploaded files, the 
CancerHazard@Age determined a unique solution for the 
system (1). This solution is presented by values of the fol-
lowing variables and the corresponding standard errors 
(SE): (i) the constant µ (the intercept); (ii) age (A) effects; 
(iii) period (P) effects; (iv) cohort (C) effects; (v) overall rate; 
(vi) population rates; and (vii) individual rates. Specifically, 
the estimated value of the intercept was −7.9572 with the 
SE of 0.0159. The obtained estimates of the A, P, and C 
effects (and their SE) are shown in Tables 3–5, correspond-
ingly. The estimated value (given in units of the number of 
cancer cases per 100,000 person-years) of the overall rate was 
1363.434 with the SE of 17.607. The obtained estimates of 
the population and individual rates (and their SE) are shown 
in Tables 6 and 7, correspondingly.

For the female lung cancers, Figure 3 shows how the age 
(A) effects depend on the age at diagnosis. The values of these 
effects and their SE are presented in Table 3. Figure 3 and 
Table 3 show that up to the age of 70, the age effects increase 
with the increase in the age at diagnosis, reach the maximum 
at the age interval of 70–74, and fall at older ages.

Figure 4 shows how the period (P) effects depend on the 
period of diagnosis. The values of these effects and their SE 

figure 2. screen shot of the output page. additional graphs and tables 
are displayed when the corresponding check boxes are checked.

Table 1. Distribution of the female lung cancers (Oi,j) diagnosed in seven time periods.

AgE numbER of CAnCERS in THE TimE pERiodS (j = 1, …, 7)

indEx inTERvAl 1975–79 1980–84 1985–89 1990–94 1995–99 2000–04 2005–09

1 20–24 9 9 14 13 18 11 14

2 25–29 28 23 28 28 19 22 26

3 30–34 64 55 65 84 64 64 74

4 35–39 165 183 181 197 244 167 135

5 40–44 421 450 450 469 467 571 396

6 45–49 839 808 886 969 1004 1099 1179

7 50–54 1348 1568 1475 1594 1659 1730 1919

8 55–59 1839 2285 2426 2349 2382 2659 2551

9 60–64 1995 2760 3342 3286 3145 3250 3535

10 65–69 1735 2858 3607 4320 4307 3755 4030

11 70–74 1320 2208 3239 4054 4594 4373 4189

12 75–79 796 1380 2264 3074 3715 4054 4120

13 80–84 393 689 1087 1560 2147 2580 3106

14 85–89 163 266 403 543 792 1008 1382

15 90–94 28 74 108 135 172 224 322

16 95–99 7 16 26 17 19 35 45
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Table 2. Distribution of the female populations (Popi,j) in seven time periods.

AgE populATionS in THE TimE pERiod inTERvAlS (j = 1, …, 7)

indEx inTERvAl 1975–79 1980–84 1985–89 1990–94 1995–99 2000–04 2005–09

1 20–24 4818118 5022802 4633214 4337370 4200331 4589554 4704432

2 25–29 4576150 5099197 5270726 4983957 4839239 4632896 4934900

3 30–34 3921551 4719961 5219021 5504044 5294338 5050167 4759552

4 35–39 3090013 3819857 4653743 5269860 5596083 5262558 5063586

5 40–44 2734976 3067061 3871091 4758729 5291060 5514007 5228291

6 45–49 2802539 2667562 3017532 3773293 4657456 5181428 5434556

7 50–54 2937860 2740573 2608849 2964492 3777547 4614727 5098668

8 55–59 2714232 2794993 2603976 2518057 2861670 3612048 4483859

9 60–64 2304858 2521021 2591301 2475818 2401406 2690294 3444829

10 65–69 1951631 2177955 2371890 2434845 2307710 2228174 2540365

11 70–74 1550264 1748745 1935514 2114640 2183559 2091997 2053318

12 75–79 1172607 1333155 1509433 1689485 1870856 1930891 1837533

13 80–84 823674 898818 1023052 1174386 1336730 1486723 1566215

14 85–89 393639 497110 576938 674730 792002 886959 1009229

15 90–94 177610 224296 260315 304438 357351 401343 454218

16 95–99 52358 66121 76739 89746 105344 115935 136277
 

Table 3. estimates of the age effects.

indEx AgE EffECT SE

1 20–24 −5.3048 0.2302

2 25–29 −4.7774 0.1731

3 30–34 −3.9045 0.1298

4 35–39 −2.9566 0.1003

5 40–44 −2.1033 0.0798

6 45–49 −1.4166 0.0630

7 50–54 −0.9195 0.0476

8 55–59 −0.5268 0.0331

9 60–64 −0.2268 0.0204

10 65–69 0.0 0.0

11 70–74 0.1198 0.0202

12 75–79 0.1132 0.0327

13 80–84 −0.0420 0.0472

14 85–89 −0.3647 0.0637

15 90–94 −0.9084 0.0880

16 95–99 −1.3928 0.1524

Table 4. estimates of the period effects.

indEx pERiod EffECT SE

1 1975–79 −0.4038 0.0406

2 1980–84 −0.2044 0.0266

3 1985–89 −0.0770 0.0

4 1990–94 0.0 0.0

5 1995–99 0.0507 0.0246

6 2000–04 0.0850 0.0382

7 2005–09 0.1528 0.0524

are presented in Table 4. As can be seen from Figure 4 and 
Table 4, the trend of the P effects continuously increases when 
the period (date) of the cancer diagnosis increases.

Figure 5 shows the birth cohort (C) effects vs. the year 
of the cohort birth. The values of these effects and their SE 
are presented in Table 5. A mid-year birth of the cohort 
considered at the date of diagnosis is considered as the 
year of the cohort birth. Figure 5 and Table 5 show that 
the trend of the C effects, referred to by 1880, 1985, …, 

and 1920, increases with an increase in the mid-year of the 
cohort birth; reaches a maximum for the cohort referred to 
by 1925; falls for the cohorts referred to by 1930, 1935, …, 
1960; and almost flattens for the cohorts referred to by 1965, 
1970, …, 1985.

Figure 6 shows the population rates vs. age at diag-
nosis. The estimates of these rates and their SE are presented 
in Table 6. These estimates are given in units of the num-
ber of cancer cases per 100,000 person-years. Figure 6 and 
Table 6 suggest that the trend of the population rates increases 
up to the age of 70, reaches a maximum at the 70–74 age inter-
val, and falls at older ages.

Figure 7 shows the individual rates vs. age at diagnosis. The 
estimates of these rates and their standard errors are presented 
in Table 7. These estimates are given in units of the number 
of cancer cases per 100,000 person-years. (It should be noted 
that the point presenting the individual rates in the 95–99 age 
interval is not shown in Figure 7. The individual rates are inac-
curately estimated in that age interval because of the fact that 
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Table 5. estimates of the cohort effects.

indEx CoHoRT EffECT SE

1 1880 −0.7756 0.5975

2 1885 −0.8357 0.2620

3 1890 −0.5907 0.1407

4 1895 −0.7178 0.1038

5 1900 −0.5850 0.0807

6 1905 −0.4195 0.0629

7 1910 −0.2370 0.0473

8 1915 −0.0891 0.0332

9 1920 −0.0405 0.0207

10 1925 0.0 0.0

11 1930 −0.0150 0.0207

12 1935 −0.1137 0.0333

13 1940 −0.2483 0.0472

14 1945 −0.4662 0.0617

15 1950 −0.7366 0.0771

16 1955 −0.8050 0.0930

17 1960 −0.8204 0.1102

18 1965 −1.1568 0.1346

19 1970 −1.2870 0.1712

20 1975 −0.9857 0.2164

21 1980 −1.2386 0.3166

22 1985 −1.2252 0.4783
 

Table 6. estimates of the population rates.

indEx AgE RATE SE

1 20–24 0.1739 0.0401

2 25–29 0.2947 0.0512

3 30–34 0.7056 0.0923

4 35–39 1.8206 0.1848

5 40–44 4.2734 0.3479

6 45–49 8.4922 0.5522

7 50–54 13.9604 0.7017

8 55–59 20.6740 0.7604

9 60–64 27.9058 0.7225

10 65–69 35.0128 0.5599

11 70–74 39.4679 1.0154

12 75–79 39.2109 1.4290

13 80–84 33.5718 1.6742

14 85–89 24.3108 1.5976

15 90–94 14.1160 1.2623

16 95–99 8.6961 1.3322

Table 7. estimates of the individual rates.

indEx AgE RATE SE

1 20–24 0.0001 ,0.0001

2 25–29 0.0002 ,0.0001

3 30–34 0.0005 ,0.0001

4 35–39 0.0013 0.0001

5 40–44 0.0032 0.0003

6 45–49 0.0065 0.0004

7 50–54 0.0112 0.0006

8 55–59 0.0178 0.0007

9 60–64 0.0268 0.0008

10 65–69 0.0396 0.0010

11 70–74 0.0565 0.0020

12 75–79 0.0782 0.0037

13 80–84 0.1051 0.0067

14 85–89 0.1390 0.0121

15 90–94 0.1792 0.0232

16 95–99 0.4000 0.0867
 

a very small number of women susceptible to lung cancer are 
alive at the ages of 95 and older.) Figure 7 and Table 7 suggest 
that the trend of the individual rates increases, with an increase 
in the age at diagnosis.

Main distinguishable features of the CancerHazard@
Age. Conceptually, the CancerHazard@Age tool presented in 
this work is closely related to the AgePeriodCohort tool that 
was recently published in Ref. 10. Both tools use the past 
and current history of cancer incidences collected during 
a long time period in the surveillance databases to perform 
the APC analysis. These tools also share the main limitations 
of the descriptive analysis; however, the CancerHazard@Age 
tool and the AgePeriodCohort tool use different mathematical 
approaches and different assumptions. The ability of further 
use of the results obtained by these tools depends on the com-
petency of the assumptions used for solving the identifiably 
problem. Specifically, the goodness of estimable parameters 
and functions determined by the AgePeriodCohort tool depends 
on the competency of several null hypotheses (see Table 2 in 
Ref. 10). Analogously, the goodness of a solution provided by 
the CancerHazard@Age tool depends on the fact that the effects 
of the adjacent cohorts on cancer hazard in aging are close.7 
Such an assumption, however, appears to be a mild constrain in 
comparison with constrains (null hypotheses) used in Ref. 10. 
For a given set of input data, the validity of using the LLAPC 
model for the APC analysis by the CancerHazard@Age tool 
can be checked by using several plots7: (i) the normal prob-
ability plot of the standardized residuals, (ii) the residuals vs. 
the modeled values plot, and (iii) the observed vs. the modeled 
values plot.

The CancerHazard@Age tool uses the estimated APC 
effects for calculating the overall cancer hazard rate, as well 
as the population and individual cancer hazard rates. The 
concept of the overall hazard rate extends the concept of 
the age-adjusted incidence rate, commonly used in cancer 
epidemiology. A distinguished feature of the overall rate is 
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in accounting for the APC effects. Analogously, the concept 
of the population cancer hazard rates extends the concepts of 
the cross-sectional (period-specific) and longitudinal (cohort-
specific) age-specific incidence rates. The CancerHazard@Age 
also implements the novel concept of the individual hazard 
rates recently introduced in Ref. 6.

The population and individual cancer hazard rates can 
be further analyzed by methods of statistical modeling (such 
as proportional hazards, confounding factors, interaction, and 
effect modification). The overall cancer hazard rate and the pop-
ulation and individual cancer hazard rates determined by the 

CancerHazard@Age can be used for purposes of descriptive and 
interferential statistics. Mathematical modeling of the popula-
tion and individual hazard rates can shed light on the intrinsic 
propensity of cancer development in distinct organ sites. Analy-
sis of the temporal trends of the APC effects, determined by 
this tool, can be used for projecting future cancer burden.
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figure 7. female lung cancer occurrence: individual hazard rates vs. age 
at diagnosis. filled circles present the individual hazard rates for mid-
points of the age intervals at which the cancer diagnosis was performed. 
Bars show the 95% CI of the individual hazard rates. the rates and their 
CI are given in units of the number of cancer cases per 100,000 person-
years. the solid line shows the trend of the individual hazard rates.
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