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Introduction
With the surge of bioinformatics, complex disease diagnosis and 
prognosis rely more and more on biomedical insights discov-
ered from its molecular signatures.1,2 However, a key challenge 
is to detect molecular signatures of disease from high-dimen-
sional omics data, which are usually characterized with a large 
number of variables and a small number of observations, in an 
accurate and reproducible manner. Various classification algo-
rithms have been proposed or adopted in molecular diagnosis 
of disease in recent studies for this purpose. These algorithms 
include logistic regression, ensemble learning methods, Bayes-
ian methods, neural networks, and kernel learning methods 
such as support vector machines (SVMs).3–8

As a state-of-the-art machine learning algorithm, the 
standard SVM probably is one of the mostly employed meth-
ods in molecular diagnosis of disease for its good scalability 

for high-dimensional data.6,9 However, omics data’s special 
characteristic: ie, small number of samples and large number 
of variables, theoretically will increase the likelihood of an 
SVM classifier’s overfitting in classification and lead to decep-
tive diagnostic results.9–11 Overfitting means that a learning 
machine (classifier) loses its learning generalization capabil-
ity and produces deceptive diagnostic results. It may achieve 
some good diagnostic results on some training data, but it has 
no way to generalize the good diagnostic ability to new test 
data. In other words, diagnostic results are only limited to few 
specific data instead of general data. In fact, it can even be 
trapped in one or a few diagnostic patterns for input data and 
produce totally wrong diagnostic results, because of inappro-
priate parameter setting (eg, kernel choice) in classification.

In fact, SVM overfitting on omics data is of significance 
in bioinformatics research and clinical applications when 
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considering the popularity of SVM in molecular diagnosis of 
disease. On the other hand, it is also essential for kernel-based 
learning theory itself to develop new knowledge and tech-
nologies for omics data. However, there is almost no previous 
research available on this important topic. In fact, it remains 
unknown about the following important questions, ie, “why 
does overfitting happen, and how to conquer it effectively?” As 
such, a serious investigation on SVM overfitting is definitely of 
priority for the sake of robust disease diagnosis. In this work, 
we have investigated SVM overfitting on molecular diagnosis 
of disease using benchmark omics data and presented the fol-
lowing novel findings.

First, contrary to the general assumption that a nonlin-
ear decision boundary is more effective in SVM classification 
than a linear one, we have found that SVM encounters over-
fitting on nonlinear kernels through rigorous kernel analysis. 
In particular, it demonstrates a major-phenotype favor diag-
nostic mechanism on Gaussian kernels under different model 
selections. That is, an SVM classifier can only recognize those 
samples with majority counts in training data. When the 
training data have an equal number of phenotypes, the SVM 
classifier will produce all false diagnostic results under a leave-
one-out cross validation (LOOCV) because of the major- 
phenotype favor diagnostic mechanism.

Second, we have demonstrated that an SVM classifier 
under a linear kernel shows some advantages in diagnosis over 
the nonlinear kernels, and it has less likelihood of encounter-
ing overfitting also. Moreover, we have found that large pair-
wise distances between training samples, which are actually 
caused by molecular signal amplification mechanism in omics 
profiling systems, are responsible for the SVM overfitting on 
Gaussian kernels. We further have illustrated that general fea-
ture selection algorithms actually cannot overcome overfitting 
and contribute to improving diagnostic accuracy effectively.

Third, we have proposed a novel sparse-coding kernel 
approach to conquer SVM overfitting by imposing sparseness 
on training data, by seeking each training sample’s nearest 
non-negative sparse approximation in L1 and L2 norms, before 
a kernel evaluation. Unlike traditional ad-hoc parametric tun-
ing approaches, it not only robustly conquers overfitting in 
SVM diagnosis, but also achieves better diagnostic results in 
comparison with other kernels.

On the other hand, we demonstrate that sparse coding 
would be an effective way to optimize the kernel matrix struc-
ture to enhance a classifier’s learning capability. To the best 
of our knowledge, it is the first rigorous method to overcome 
SVM overfitting and would inspire other following methods 
in data mining and bioinformatics fields. Finally, we have 
proposed a novel biomarker discovery by taking advantage of 
the special “gene switch” mechanism demonstrated by SVM 
overfitting on single genes to seek meaningful biomarkers.

This paper is structured as follows. Section 2 presents 
SVM disease diagnostics and benchmark datasets used in our 
overfitting analysis. Section 3 presents SVM overfitting results 

and rigorous kernel analysis results in disease diagnostics. 
Section 4 proposes our sparse-coding kernel approach to con-
quer SVM overfitting under the Gaussian kernel. Section 5 
proposes our Gene-Switch-Marker (GSM) algorithm by tak-
ing advantage of SVM overfitting on single genes. Finally, we 
discuss the ongoing and future related work and conclude our 
paper in Section 6.

support Vector Machine diagnosis
Support Vector Machine diagnosis starts a set of samples 
drawn from omics data with known class labels, usually con-
trol vs disease, to build a linear decision function to deter-
mine an unknown sample’s type by constructing an optimal 
separating hyperplane geometrically. Given training omics 
data ( , ) ,x y x Ri i i

m
i

n{ } ∈=1  is a sample with n features, a feature 
refers to a gene, peptide, or protein in our context, and its label 
yi ∈ {−1, +1}, where yi = −1 if xi is an observation from a control 
(negative) class; otherwise, yi = +1 if it is from a disease (posi-
tive) class.

An SVM classifier computes an optimal separating 
hyperplane: (w · x) + b = 0 in Rn, to attain the maximum mar-
gin between the two types of training samples. The hyperplane 
normal w and offset vector b are solutions of the following 
optimization problem, provided we assume the training data 
are linearly separable,
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min ( , ) || || , . .
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It is equivalent to solving the following optimization 
problem:

 1 1 1

1

2
max ( ) – ( )

m m m

d i i j i j i j
i i j

L y y x xα α α α
= = =

= ⋅∑ ∑∑  (2)

where αi $ 0, i = 1, 2, …m, the two parameters of the optimal 
separating hyperplane w and b can be calculated by solving 
equation (1)’s stationary conditions w y xi

m
i i i= ∑ =1 α  and KKT 

condition: yi(w · xi + b) − 1 = 0. Finally, the decision function 
determining the class type of an unknown sample x’ is formu-
lated as, f x w x b x x bi

m
i i( ) (( ) )) (( ( ) ).′ = ⋅ ′ + = ∑ ⋅ ′ +=sgn sgn 1 α  

That is, x′ will be diagnosed as a disease sample if w·x′ + b 
. 0 and a control sample otherwise. The training samples xi 
corresponding to αi . 0 are called support vectors, and SVM 
disease diagnosis is totally dependent on the support vectors.

The standard SVM algorithm can be further general-
ized to handle the corresponding nonlinear problems by map-
ping training samples into a higher or infinite-dimensional 
feature space F using a mapping function φ: X → F, and 
constructing an optimal nonlinear decision boundary in F 
to achieve more separation capabilities. Correspondingly, 
the decision function for an unknown sample x′ is updated 
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as f ( ) ( ( ) ( )) ).′ = ∑ ⋅ ′ +=x x x bi
m

i isgn(( 1 α φ φ  Since the inner 
product (φ(xi) · φ(xj)) in F can be evaluated by any kernel (φ(xi) · 
φ(xj)) = k(xi,xj) implicitly in the input space Rn, provided its 
kernel matrix is positive definite, the decision function can be 
evaluated in the input space as f ( ) ( , ) ).′ = ∑ ′ +=x k x x bi

m
i isgn(( 1 α  

In addition to quadratic k(x, x′) = (1 + (xi · x!))2, polynomial:  
k(x, x′) = (1 + (xi · x′))3, and multilayer perceptron: k(x, x′) =  
tanh((xi · x′) – 1) kernels, we mainly employ a Gaussian radial 
basis function (“rbf ”) k(x, x′) = exp(||x – x′||2/2σ2), and a linear 
kernel k(x, x′) = (xi · x′) in our experiments.

Non-separable cases. If the training data are not sepa-
rable, an SVM classifier can separate many but not all sam-
ples by using a soft margin that permits misclassification.6,10 
Mathematically, it is equivalent to adding slack variables ξi and 
a penalty parameter C to equation (1) under L1 or L2 norms. 
For example, the corresponding L1 norm problem minimizes 
1 2
2 1|| || m

i iw c ξ=+ ∑  under the conditions yi(w ⋅ xi + b) − 1.ξi and  
ξi $ 0, where the penalty parameters C imposes weights on 
the slack variables to achieve a strict separation between two 
types of samples.

Model selection. There are quite a few model selection 
methods for SVM diagnosis to minimize the expectation of 
diagnostic errors.6 In this work, we mainly employ different 
cross-validation methods for model selection that include 
LOOCV and k-fold cross validation (k-fold CV), because 
they are widely employed in disease diagnostics. The LOOCV 
removes one sample from the training data and constructs the 
decision function to infer the class type for the removed one. 
The k-fold CV randomly partitions the training data to form 
k disjoint subsets with approximately equal size, removes the 
ith subset from the training data, and employs the remaining 
k − 1 subsets to construct the decision function to infer the 
class types of the samples in the removed subset.

benchmark omics data. Table 1 includes benchmark 
genomics and proteomics data used in our experiment.12–17 
We have three criteria to choose benchmark data. First, 
they are generated from different omics profiling technolo-
gies for well-known cancer disease studies. For example, 
The Ovarian-qaqc data are generated from surface enhanced 
laser desorption and ionization time-of-flight (SELDI-TOF) 
profiling technologies and the Cirrhosis and Colorectal are 
mass spectral from matrix-assisted laser desorption time- 
of-flight (MALDI-TOF) technologies.14–17 Second, they 

contain some widely used omics data in the literature. For 
example, the Medulloblastoma and Breast datasets are widely 
used gene expression data in secondary data analysis.12,18 
Third, the omics data should be processed by different nor-
malization/preprocessing methods.

It is noted that these omics data are not raw data. 
Instead, they are normalized data by using different nor-
malization and preprocessing methods.9,14 For example, 
robust multiarray average (RMA)43 method is employed to 
normalize the Stroma data, which is quite different from 
the normalization methods employed in the Medulloblas-
toma and Breast data.12,18 Moreover, the Ovarian-qaqc and 
Cirrhosis data have been preprocessed by using “lowess” 
and “least-square polynomial” smoothing methods, respec-
tively, in addition to the same baseline correction, AUC 
normalization, and peak alignment processing.9 We have 
not conducted preprocessing for the Colorectal data, and the 
details about its preprocessing can be found in the work of 
Alexandrov et al.16

Analyze sVM overfitting in disease diagnosis
Given an omics dataset with binary labels ( , ) ,x yi i i

m{ } =1
1 1{– , }, ,n

i iy x R∈ + ∈  we define following measures for the 
convenience of SVM overfitting analysis.

1. The majority (minority) type in omics data is the class 
type with more (less) counts among all samples. Let 
m– = |{yi|yi| = –1}|, m+ = |{yi|yi| = +1}|, we define the 
majority/minority type ratios as γmax = max(m–, m+)/m 
and γmin = min(m–, m+)/m, respectively.

2. The pairwise distance between two omics sam-
ples xi and xj is an Euclidean distance defined as: 

2 1 2
1

/|| – || ( ( – ) )m
ij i j k ki kjd x x x x== = ∑ , and data total vari-

ation is defined as 2
1 1 || – || .m m

i j i jx xρ = == ∑ ∑
3. The absolute difference between xi and xj at the kth fea-

ture is a Manhattan distance defined as: δijk = |xki – xkj|, 
k = 1, 2··· n. Correspondingly, the maximum abso-
lute difference (MAD) between xi and xj is defined as 
δij ijk

k
= max ,∆ , which measures the maximum expression 

difference across all features for two samples.

There is a strong need to examine omics data and find 
their latent characteristics for the sake of better understanding 

Table 1. Benchmark omics data.

dATA #fEATURE ThE NUMbER of SAMPLES PLATfoRM

Stroma 18,995 13 inflammatory breast cancer + 34 non-inflammatory breast cancer oligonucleotide

Medulloblastoma 5,893 25 classic + 9 desmoplastic oligonucleotide

Breast 24,188 46 patients with 5-year metastasis + 51 without 5-year metastasis oligonucleotide

Ovarian-qaqc 15,000 95 controls + 121 cancer SELDI-TOF

Cirrhosis 23,846 78 HCC + 51 cirrhosis MALDI-TOF

Colorectal 16,331 48 controls + 64 cancer MALDI-TOF
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SVM overfitting. As such, we have checked the ratio between 
pairwise sample distance and MAD for each omics dataset, 
which answers the following query: “compared with the pair-
wise distance between omics samples xi and xj, how large will 
their MAD be?” Interestingly, we have found that the ratio 
for any omics data is always between 1 and n, where n is 
the total feature number for the omics data. Such a ratio indi-
cates that the pairwise distance can be much larger than cor-
responding MAD because of the large number of variables 
for a given omics data. The following theorem states the result 
about the ratio estimation.

The sample distance and MAd ratio theorem. Given 
an omics data with m observations across n features, ie, X ∈ Rn × m, 
the ratio between the distance of samples xi and xj and their MAD 
satisfies the following inequality when i ≠ j,

 
1 ≤ ≤

d
nij

ijδ
 (3)

Proof. Suppose MAD is achieved at the kth
*  fea-

ture (eg, gene) ie, 
* *

| – |,ij k i k jx xδ =  it is clear that we have 
2 1 2 2 1 2

* * *

/ /(| – | ) ( – ) ) .ij k i k j k k ki kj ijx x x x dδ ≠≤ + ∑ =  On the 
other hand, 2 2 2 2

1 * *
( – ) | – | .n

ij k ki kj k i k j ijd x x n x x nδ== ∑ ≤ =  Com-
bining the two previous equations, we have 1 ≤ ≤

dij

ij
nδ .

The distance between training samples xi and xj in 
the feature space of a rbf-SVM, which is an SVM classi-
fier under the ‘rbf  ’ kernel, is the entry Kij in the learning 
machine’s kernel matrix K, which can be calculated by plug-
ging xi and xj into the ‘rbf  ’ kernel 2 22–|| – || /( , ) ,x yk x y e σ=  ie, 

2 22exp(– / ).ij ijk d σ=  We have the following estimation about 
Kij by using Theorem 1 result.

corollary 1. Given an omics data with m observations across 
n features, ie, X ∈ Rn × m, then each entry Kij in the SVM kernel 

matrix K under the Gaussian ‘rbf  ’ kernel: 2 22–|| – || /( , ) x yk x y e σ=  
satisfies 2 2 2 22 2minexp(– / ) exp(– / )ij ijn K dδ σ σ≤ ≤ .

According to δ δij ij ijd n≤ ≤  and δij i j ij ijd d2 2 2≤ ≤≠min ,  
it is easy to have d d nij ijmin

2 2 2≤ ≤ δ . Substituting it into  
2 22exp(– / ),ij ijK d σ=  we have 2 22exp(– / ) expij ijn Kδ σ ≤ ≤  

2 22min(– / ).d σ  
It is clear that the upper bound of Kij is determined by dmin, 

the minimum pairwise distance among all training samples, 
and the bandwidth parameter σ, according to Corollary 1.  
Considering the popularity of setting σ = 1 by default in most 
rbf-SVM diagnosis, we treat this case as an important ‘rbf   ’ 
kernel scenario in our overfitting analysis.

Identity or isometric identity kernel matrices. 
Although choosing the ‘rbf   ’ kernel with bandwidth σ = 1 is 
generally recommended in the literature,19,20 we have found 
that the rbf-SVM classifier would inevitably encounter over-
fitting, because of an identity or isometric identity kernel 
matrix. This is because the pairwise sample distances are quite 
large, which will cause their distances in the feature space 
of the ‘rbf  ’ kernel to be zero or approximately zero, that is, 
Kij = ≠exp d i j.ij( /2) 0 for2 ∼

Figure 1 shows the minimum ( ),2dmin  first percentile 
( ),0.01

2d  median ( ),2dmedian  and maximum ( )2dmax  values of the 
pairwise distance squares ( , )2d i jij ≠  for all samples in each 
omics data. It is interesting to see that log > 2,10 0.01

2d  for all 
data, which indicates that the upper bound of Kij will be zero 
or approximately zero for i ≠ j, because of the fact that Kij # 
exp(–102/2) = 9.287 × 10–22.

Thus, the SVM kernel matrices of the omics data under the 
‘rbf  ’ kernel with the bandwidth σ = 1 are identity or isometric 
identity. The zero or approximately zero pairwise sample dis-
tances in the classifier rbf-SVM’s feature space actually force 
the classifier to lose the diagnostic capability to distinguish 
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figure 1. The minimum, first percentile, median, and maximum of dij
2 across different omics data. The minimum pair-sample distances are approximately 102. 

Each dataset is represented by its first letter except the Colorectal dataset, which is represented by “L”.
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any test samples, not to mention its generalization. That is, 
the rbf-SVM classifier loses diagnostic capability because it 
encounters overfitting for input omics data.

Major-phenotype favor diagnosis. According to that the 
rbf-SVM’s kernel matrix is the identity or isometric identity 
matrix, the following SVM overfitting theorem demonstrates 
that overfitting will lead to a major-phenotype favor diagnosis, 
in which the rbf-SVM classifier always diagnoses an unknown 
omics sample as the type of sample with the majority count in 
the training data. If there is no major type in the training data, 
the classifier will fail to conduct any diagnosis.

sVM overfitting theorem. Given an omics training data-
set with binary labels ( , ) , { , }, ,x y y x Ri i i

m
i i

n{ } ∈ + ∈
=1

1 1−  let m– = 
|{yi|yi| = –1}|, m+ = |{yi|yi| = +1}|, an SVM classifier under the 
Gaussian ‘rbf  ’kernel (σ = 1) always predicts x' as the majority type 
in the training data. That is, it has the following decision rule about 
a test omics sample x' ∈ Rn.

 
+( –( ) – )f x sgn m=′ m  (4)

Proof. Let f x k x x bi i( ) ( , ) )′ = ∑ ′ +sgn(( =1i
m α  be the deci-

sion function for an unknown type sample x’, it is clear that 
it will be totally dependent on the offset vector b because of  
k(x’ · xi) = exp(–||x’ – xi||2/2) ~ 0, according to our previous 
results. In fact, the offset term b is determined by the weight 
vector w y xi

m
i i i= ∑ =1 α φ( ), ie, 1

2– ( ( ) ( )),T T
p nb w x w xφ φ= +  

where xp and xn are two support vectors with positive and 
negative labels, respectively, namely,

 1

1

2
– ( ( ) ( ))

m

i i i p i i i n
i

b y k x x y k x xα α
=

= ⋅ + ⋅∑  (5)

Since k(xi · xp) ~ 0 and k(xi · xn) ~ 0 when i ≠ p and i ≠ n, we 
have 1

2– ( – ),p nb α α=  where αp and αn are corresponding alpha 
values. In fact, all α values can be solved by the following equation 
with conditions ∑ =−i

m
i iy1 0α , and 0 # αi , C, i = 1, 2, ··· m,

 1 1 1

1

2
max ( ) – ( )

m m m

d i i j i j i j
i i j

L y y k x xα α α α
= = =

= ⋅∑ ∑∑  (6)

The equation is further reduced as

 
2

1 1

1

2
max ( ) –

m m

d i i
i i

L α α α
= =

= ∑ ∑  (7)

under the same conditions because of k(xi · xi) = 1 and  
k(xi · xj) = 0 for i ≠ j.

It is easy to have 1 2 –
m
mmα α α += = =  and 

1 2

– .m
mmα α α

+
= = =  That is, there are two different alpha 

values for positive and negative samples: –m
mpα =  and αn

m
m= + . 

As such,

 
1 1

2 2 2

––– ( – ) ( – )p n n p
m mb

m
α α α α

+
= = =  (8)

Thus, the decision function f(x’) = sgn(b) for an unknown 
sample x’ is reduced as 2( )

––( ).m m
msgn +=′f x  According to the 

sign function’s definition, the decision function is further sim-
plified as f(x’) = sgn(m+ – m–). Obviously, the class type of 
the sample will be totally determined by the majority type in 
training data. If there is no majority type, ie, m− = m+, the 
learning machine cannot determine the class type of the input 
sample, ie, f(x′) = 0. In this scenario, the SVM classifier can-
not determine the omics sample type any more.

diagnostic measures. It is obvious that the identity or 
isometric identity kernel matrix under the ‘rbf  ’ kernel causes 
the SVM classifier to lose diagnostic capabilities by only diag-
nosing a test sample as the majority type in the training data. 
Before presenting further SVM diagnosis overfitting results 
under LOOCV and k-fold CV model selection, we introduce 
important diagnostic measures: diagnostic accuracy, sensitiv-
ity, and specificity as follows.

Given a classifier, diagnostic accuracy is ratio 
rc = +

+ + +
TP TN

TP FP TN FN , where TP(TN) is the number of positive 
(negative) samples correctly diagnosed, and FP (FN) is the 
number of negative (positive) samples incorrectly diagnosed. 
The sensitivity and specificity are defined as rsen

TP
TP FN= +  and 

rspe
TN

TN FP= + , respectively.
overfitting under model selection. It is noted that the 

SVM overfitting under the Gaussian ‘rbf  ’ kernel (σ = 1) would 
always happen in diagnosis under LOOCV and k-fold CV 
according to the SVM overfitting theorem. An extreme case will 
happen under LOOCV when input data have the same number 
of positive and negative samples. The following balanced data 
overfitting theorem states the extreme case in detail.

balanced data overfitting theorem. Given a bal-
anced omics dataset with binary labels {( , }) ,x yi i i

m
=1

y x Ri i
n∈ − + ∈{ , }, ,1 1 where m– = |{yi|yi| = –1}| = m/2, 

m+ = |{yi|yi| =. +1}| = m/2, an SVM classifier with the 
Gaussian ‘rbf   ’ kernel (σ = 1) under LOOCV has a zero diag-
nostic accuracy.

Proof. It is clear that there are totally m trials of diagnoses 
in LOOCV, each of which has a training dataset consisting of 
m − 1 samples and a test dataset has only one sample.

Suppose the test sample x’ in ith trial (1 # i # m) is posi-
tive (“+1”) and the majority type is “−1” for the training data, 
in which m– = m/2 and m+ = (m − 1)/2. According to the 
SVM overfitting theorem, the decision function outputs “−1”: 
f(x’) = sgn(m+ − m−) = −1, ie, it is misdiagnosed as a negative 
sample. Similarly, the test sample will be diagnosed as posi-
tive if it is a negative sample. Finally, all test samples will be 
misdiagnosed as its opposite types and the classifier has a zero 
diagnostic accuracy.

A real extreme case example. To further demonstrate 
this balanced data overfitting theorem, we include a CNS 
(central nervous system) dataset with 10 Medulloblastoma and 
10 Malignant glioma samples, which are labeled “−1” and “+1”, 
respectively, in our experiment, and employ the rbf-SVM clas-
sifier (σ = 1) to conduct diagnosis for this data under LOOCV. 
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We have found that all samples in this data are misdiagnosed 
as their “opposite” types each time consistently. We have the 
following interesting results.

First, the bias term b in the decision function f(x’) = sgn(b) 
only takes two values: b = 0.0526 (1/19) in the first 10 trials 
and b = −0.0526 (−1/19) in the last 10 trials, respectively. They 
indicate that each test sample of the first and last 10 trials is 
diagnosed as “+1” and “−1”, respectively, though they are actu-
ally labeled as “−1” and “+1” correspondingly.

Second, all the training samples are support vectors in 
each trial instead of a few of them as we usually expect for an 
SVM classification. That is, there are 10 positive samples and 
9 negative samples in the training data, we have corresponding 
α values solved from α α α αp = = = = =1 2 10

9
19 0 4737 . ,

α α α αn = = = = =11 12 19
10
19 0 5263 . . Thus, b = = −0 0526 10

19
9

19.  
and the decision function for each test sample is f(x’) = sgn 
(10 − 9) = +1, that is all the negative samples are misdiagnosed 
as positive samples because the majority type is “+1” in the train-
ing data. Similarly b = − = −0 0526 9

19
10
19. , f(x′) = sgn(b) = sgn 

(9 − 10) = −1; where αn = 9
19 and α p = 10

19 , and all the positive sam-
ples are misdiagnosed as negative samples in the last 10 trials.

Figure 2 shows the values of b and the α values in the first 
10 trials and last 10 trials from left to right, respectively. Fur-
thermore, we have the following more general results about 
SVM diagnosis under model selections. We skip their proof 
for the convenience of concise description.

sVM overfitting under model selection theorem. Given 
an omics dataset with binary labels {( , }) , { , },x y yi i i

m
i= ∈ − +1 1 1  xi 

∈ Rn, let m− = |{yi|yi| = −1}|, m+ = |{yi|yi| = +1}|, an SVM classi-
fier with the Gaussian ‘rbf  ’ kernel (σ = 1) under LOOCV and 
k-fold CV has the following diagnostic results.

1. The expected diagnostic accuracy E(rc) will be exactly 
the majority type ratio γmax in the input data, where the 
expected sensitivity E(rsen) and specificity E(rspe) are 100% 
and 0%, respectively, or vice versa under LOOCV.

2. The expected diagnostic accuracy E(rc) will approximate 
or equal the majority type ratio γmax in the input data, 

where the expected sensitivity E(rsen) and specificity 
E(rspe) are approximately 100% and 0%, respectively, or 
vice versa under k-fold CV.
sVM overfitting under 50% holdout cross-validation 

(HocV). Although we only focus on k-fold CV and LOOCV 
in our model selection, it does not mean that our overfitting 
results would not apply to other model selection cases. Here we 
illustrate overfitting under a new model selection method: 50% 
holdout cross-validation (HOCV), where 1,000 trials of train-
ing and test data are randomly generated for each dataset. The 
final diagnostic performance is evaluated by using the expecta-
tion of the three statistics in the 1,000 trials of diagnoses.

Table 2 shows the expected diagnostic accuracies E(rc), 
sensitivities E(rsen), specificities E(rspe), and their standard 
deviations: std(rc), std(rsen), and std(rspe) of an SVM learning 
machine with a standard Gaussian kernel (‘rbf  ’) for Medullo-
blastoma and Ovarian-qaqc data. As a representative among 
our six omics datasets, the former is a gene expression dataset 
with 34 samples across 5,893 genes and the latter is a pro-
teomics dataset with 216 samples across 15,000 m/z ratios.

Because, for each trial, the SVM classifier can only recog-
nize the majority type and the data partition is based on 50% 
HOCV, the expected diagnostic accuracy E(rc) will approxi-
mate the majority type ratio γmax, in addition to the fact that 
E(rsen) and E(rspe) will be complementary to each other in 
diagnosis. For example, E(rc) = 0.72988 and E(rc) = 0.550880 
approximates the majority type ratio: 25/34 (0.7353) of the 
Medulloblastoma data and the majority type ratio: 121/216 
(0.5602) of the Ovarian-qaqc data, respectively. Clearly, the 
overfitting can be detected by the complementary of average 
sensitivities and specificities easily. It is noted that similar 
results can be observed for other datasets also.

The biological root of sVM overfitting. The mathe-
matical reason for the SVM overfitting under the Gaussian 
‘rbf  ’ kernel (σ = 1) lies in the fact that the pairwise distances 
between omics samples are large or even huge. The ‘rbf  ’ kernel 
k(x, y) = exp(−||x − y||2/2) maps it to zero or a tiny value approxi-
mate to zero in the feature space. Finally, a corresponding 
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figure 2. the offset b values (1/19 and −1/19) in all the 20 trials of SVM diagnoses and corresponding alpha values (αp and αn) in the first and last 10 trials. 
All test samples are misdiagnosed as their “opposite types” in each trial, where all training samples are support vectors and diagnostic results only rely on 
the majority type in the training data.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Overcome support vector machine diagnosis overfitting

151CanCer InformatICs 2014:13(s1)

identity or isometric identity kernel matrix will be generated, 
which forces the linear machine to lose its diagnostic capabil-
ity by demonstrating the major-phenotype favor mechanism 
in such a situation.

In fact, the large or even huge pairwise sample distances 
in each omics dataset are actually rooted in the molecular sig-
nal amplification mechanism in omics profiling, where dif-
ferent techniques are employed in various profiling platforms 
to amplify expression signals for the sake of phenotype or 
genotype identification at a molecular level.21,22 For example, 
like RNA-Seq, gene expression profiling technologies usu-
ally employ quantitative real-time PCR or similar approaches 
to amplify the expression signals over each probe to increase 
the sensitivity in the phenotype or genotype identifica-
tion.23,24 The PCR amplification makes it possible to distin-
guish disease signatures at a molecular level, but it directly 
contributes to increasing the pairwise distances between two 
samples also. Similarly, there is the amplification of the ion-
ized molecule signals in mass spectral proteomic profiling to 
get high-resolution protein expression values at a molecular 
level.25 As such, the SVM overfitting under the Gaussian ‘rbf  ’ 
kernel (σ = 1) would be inevitable to some degree if no special 
action is taken to overcome it.

can feature selection avoid such overfitting?. A tradi-
tional misconception believes that such an SVM overfitting 
in disease diagnosis could be avoided by conducting feature 
selection, because it would produce a “more meaningful” low-
dimensional omics dataset than the original one. However, we 
have found that the low-dimensional dataset is actually unable 
to avoid the SVM overfitting. This is mainly because the pair-
wise sample distances after feature selection are still quite large 
or even huge, which causes the corresponding pairwise dis-
tances in the rbf-kernel space to be zero or approximately zero.

To demonstrate this, we employ Bayesian t-test to sim-
ulate a generic feature selection algorithm to obtain low-
dimensional datasets for each omics data before a rbf-SVM 

classifier diagnosis (σ = 1).26 In fact, we select the top 100, 
200, 500, 1,000, and 2,000 differentially expressed features 
(genes/peptides) ranked by the Bayesian t-test for each omics 
data. Then, we conduct the rbf-SVM classifier diagnosis for 
each low-dimensional dataset under the LOOCV and five-
fold CV. Interestingly, we have found that they all encounter 
overfitting and the SVM classifier diagnoses all test samples 
as the majority type of the training data.

Table 3 illustrates the SVM diagnosis results obtained by 
using the top 200 features selected by Bayesian t-test for each 
data under the five-fold CV. It is clear that the SVM classi-
fier demonstrates overfitting by achieving a deceptive diag-
nostic accuracy for each data, because the accuracy is actually 
the majority type ratio of the original data. For example, the 
average diagnostic accuracies for Stroma and Colorectal data 
are 72.56% and 57.15%, respectively, which reach or approxi-
mate their corresponding majority type ratios 0 7234 34

47. =  and 
0 5714 64

112. .=
In fact, we have found that even single genes encoun-

ter overfitting under LOOCV, that is, an SVM classifier can 
only recognize the majority type in diagnosis when input 
data consist of only a single gene. For example, 17 genes 
among 200 top-ranked genes by Bayesian t-test from the 
Stroma data encounter overfitting under the rbf-SVM classi-
fier under LOOCV. The single gene overfitting case actually 
demonstrates that general feature selection may not avoid such 
an overfitting because they may not be able to decrease the 
built-in large pairwise sample distance though they can lower 
the input data dimensionality.

conquer sVM overfitting
A traditional way to overcome overfitting is to tune the band-
width parameter σ in the ‘rbf  ’ kernel directly to avoid an iden-
tity or isometric identity kernel matrix. However, there is no 
robust rule available to guide how to choose the bandwidth 
value appropriately.6,10,11 In fact, a small σ value cannot avoid 

Table 2. sVm diagnostics with an “rbf” kernel (1,000 trials of 50% HOCV).

dATASET E(rc) ± std(rc) E(rsen) ± std(rsen) E(rspe) ± std(rspe)

Medulloblastoma 0.729882 ± 0.084460 0.002000 ± 0.044699 0.998000 ± 0.044699

Ovarian-qaqc 0.550880 ± 0.046736 0.036000 ± 0.186383 0.964000 ± 0.186383
 

Table 3. SVM overfitting under Bayesian t-test under five-fold CV.

dATA ACCURACY (%) SENSITIvITY (%) SPECIfICITY (%)

Stroma 72.56 ± 3.63 100.0 ± 0.0 00.00 ± 0.0

Medulloblastoma 73.81 ± 5.32 00.00 ± 0.0 100.0 ± 0.0

Breast 52.58 ± 1.77 100.0 ± 0.0 00.00 ± 0.0

Ovarian-qaqc 56.01 ± 0.45 00.00 ± 0.0 100.0 ± 0.0

Cirrhosis 52.00 ± 0.75 00.00 ± 0.0 100.0 ± 0.0

Colorectal 57.15 ± 1.94 00.00 ± 0.0 100.0 ± 0.0
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the identity or isometric identity kernel matrix issue. a large σ 
value will cause the kernel matrix to be a uniform matrix with 
only entries 1, which leads to an under-fitting problem where 
an SVM classifier has a low detection capability.

Furthermore, we have found that such an ad-hoc para-
meter tuning may avoid overfitting sometimes at the cost 
of low diagnostic accuracies. For example, we set σ2  as the 
total variation and average total variation of the training data, 
respectively, and find that such an approach may not lead to 
a real improvement in disease diagnosis by overcoming over-
fitting generically, though they may contribute to some slight 
improvements for some individual data.

As such, we propose a sparse-coding kernel technique to 
conquer the SVM overfitting in order to achieve a good diag-
nostic accuracy for each data. A sparse-coding kernel aims at 
lowering both pairwise distances and data variations of train-
ing data in a kernel function by using sparse-coding tech-
niques. In particular, the sparse coding in our context refers 
to representing each omics sample by “coding” it in a sparse 
way, where most of its entries take values zero or close to zero, 
whereas only a few entries take non-zero values. Obviously, 
such a sparse-coding technique imposes a data localization 
mechanism on input omics data such that each sample is only 
represented by a few non-zero components. Thus, it is quite 
clear that pairwise sample distances of the training data will 
decrease significantly under such a sparse representation, and 
the corresponding kernel matrix will no longer be the iden-
tity or isometric identity matrix. Instead, they will be more 
sensitive to distinguish the signatures of diseases represented 
by those omics samples under the sparse representation 
mechanism.

sparse kernels. A sparse kernel k(x, y) = k(fs(x), fs(y)) first 
employs a sparse-coding function fs(.) to map an input sample 
to its nearest non-negative vector under a sparse-coding mea-
sure δs, such that they have the same L1 and L2 norms. That 
is, fs(x): x → xs $ 0, and fy(y): y → ys $ 0, where ||x||1 = ||xs||1, 
and ||x||2 = ||xs||2; ||y||1 = ||ys||1, and ||y||2 = ||ys||2 respectively. 
Then, the corresponding nearest non-negative vectors xs and 
ys are evaluated by a kernel function, which can be any kernel 
functions theoretically. In our experiment, however, we only 
focus on the ‘rbf  ’ kernel with σ = 1 for the sake of overcoming 
overfitting.

sparseness and sparse coding. The sparseness (measure) 
of an omics sample (vector) u is defined as a ratio between 0 
and 1 as follows.

 

2 1 2
1 1

1

/( | |) /( ) )
( )

n n
i i i i

s
n u u

u
n

δ = =− ∑ ∑
=

−
 (9)

A large sparseness indicates that the vector has a few 
number of positive entries. The two extreme cases δs(u) = 1 
and δs(u) = 0 refer to that there is only one entry and all entries 
are equal in the vector, respectively. The sparse coding of the 
omics sample u seeks the closest non-negative vector υ $ 0 in 

the same dimensional space on behalf of L1 and L2 norms such 
that the υ has a specified sparseness value.

In fact, the omics sample u is normalized by its L2 norm 
such that it has a unit L2 norm: ∑ ==i

n
iu1
2 1 for the conve-

nience of implementations. It is equivalent to calculating 
the non-negative intersection point between a hyperplane 

1 11 : | |n n
i i i iu s= =π ∑ = ∑  and a hypersphere 2

2 1 1: n
i is=π ∑ =  such 

that the non-negative vector s has the specified sparseness: 
δ s

n s
ns i

n
i( ) .)= −∑

−
=1

1  This optimization problem can be solved in 
real-time by traditional approaches27 or by a simple but effi-
cient method presented in Ref. 28.

Figure 3 illustrates the sparse coding for an inflammatory 
breast cancer (IBC) sample and a non-inflammatory breast 
cancer (non-IBC) sample in the Stroma data with sparseness 
0.3 and 0.5. It is clear that relatively large amounts of zeros are 
introduced in the vector with an increase in sparseness, and 
the pairwise distances of the nearest non-negative vectors will 
be much smaller than those of their corresponding original 
samples.

We formulate a sparse kernel (“sparse-kernel ”) by applying 
our sparse-coding techniques to the “rbf ” kernel and compare 
its performance in SVM diagnosis with the other kernels such 
as linear (“linear”), quadratic (“quad ”), polynomial (“poly”), 
multilayer perceptron kernels (“mlp”), and an rbf kernel with 
adjusted sigma (“rbf-sigma”). It is noted that the bandwidth of 
the “rbf-sigma” kernel is set as the total variation of all training 
data: σ = ∑ ∑ −= =i

m
j

m
i jx x1 1

2   each time.
Figure 4 illustrates the average SVM diagnosis accuracy, 

sensitivity, specificity, and positive prediction ratio for the 
“sparse-kernel ” and other five kernels. It is interesting to find 
that SVM diagnosis with a sparse kernel not only success-
fully overcomes overfitting, but also achieves almost best per-
formance among all kernels stably, though the linear kernel 
achieves the same level of performance on the Cirrhosis and 
Medulloblastoma data. Moreover, it seems that such a “sparse-
kernel ” SVM brings a lower standard deviation value than that 
with the linear-SVM under the same-level performance sce-
narios. For example, both of them achieve 94.02% diagnostic 
accuracy, but the sparse kernel has only 1.43% standard devia-
tion compared with the 2.69% of the linear kernel.

In particular, we have found that the linear kernel actu-
ally encounters or at least moves closer to overfitting on the 
Stroma data, where it achieves 91.43% sensitivity but only 
40% specificity, but the sparse kernel overcomes overfitting 
completely with 87.67% sensitivity and 78.24% specificity. As 
such, we say that the sparse kernel demonstrates an obvious 
advantage than the linear kernel in overcoming overfitting, in 
addition to its prediction capability.

In addition, we have found that the sparseness value dem-
onstrates interesting impacts on the SVM diagnosis. It seems 
that any too low (eg, ,0.2) or too high sparseness values (eg, 
0.8) will not stably enhance SVM diagnosis for all data sets 
but will only avoid overfitting. We uniformly set sparseness 
δs(u) = 0.35 for all datasets except the Stroma data (δs(u) = 0.42) 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Overcome support vector machine diagnosis overfitting

153CanCer InformatICs 2014:13(s1)

0 0
0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04

5,000

10,000

5,000

10,000

0
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025

0

500

500

1,000

1,000
an IBC sample a non-IBC sample

1,500

2,000

0

500

1,000

1,500

2,000

0 5 10

Sparseness=0.3

Sparseness=0.5 Sparseness=0.5

Sparseness=0.3

15
0

500

1,000

0 5 10 15

figure 3. The sparse coding of an inflammatory breast cancer (IBC) and a non-inflammatory breast cancer (non-IBC) sample in the Stroma data, each of 
which has 18,895 genes, under 0.3 and 0.5 sparseness.
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to demonstrate the effectiveness of sparse kernels, though 
adaptively selecting sparseness values can result in better per-
formance for each data.

Figure 5 illustrates the kernel matrices’ contour plots 
under the sparse kernel for the six omics datasets, where all 
samples in each dataset are viewed as the training data in the 
SVM diagnosis for the convenience of analysis. It is obvious 
that our sparse coding successfully avoids the original identity 
or isometric identity kernel matrices associated with the ‘rbf  ’ 
kernel with bandwidth σ = 1, and causes each kernel matrix to 
be a meaningful kernel matrix. Moreover, it is interesting to 
see that most of the kernel matrices have entry values spanning 
more layers in the contour plot, which contributes to enhanc-
ing the SVM classifier’s diagnostic power. Instead, the kernel 
matrices, whose entry values have relatively small ranges, may 
lead to a low diagnostic performance. For example, the kernel 
matrix of the Breast data has most entries on or close to the 
surface z = 0.6, which corresponds to the lowest diagnostic 
accuracies among the six datasets.

The reason why the SVM overfitting is conquered by the 
sparse kernel lies in the fact that our sparse coding decreases 
the pairwise distances in each kernel matrix and optimizes 
it to be a more meaningful representative structure because 

of the data localization mechanism brought by the sparse-
coding kernels. Figure 6 illustrates the minimum ( ),dmin

2  
first percentile 2

0.01( ),d  median ( ),dmedian
2  and maximum 

( )dmax
2  values of the pairwise distance squares d ij

2 in the ker-
nel matrices of the “sparse-kernel ” SVM classifier for all 
samples in each omics dataset. Compared with the fact that 
the original pairwise distance square minimum values dmin

2  
are in the order of 102 under the original ‘rbf  ’ kernel, the 
values are in a much smaller interval under the sparse ker-
nel for all data, ie, 10 103 079699 2 0 157466− −≤ ≤. . .dmin  It means 
corresponding minimum non-diagonal entries will be between 
exp(−10−0.157466/2) = 0.7061 and exp(−10−3.079699/2) = 0.9996, 
for i ≠ j. In other words, the kernel matrices under the sparse 
kernel are representative and meaningful instead of the origi-
nal identity or isometric identity matrices.

Moreover, we have examined the eigenvalues of the 
“sparse-kernel ” matrices and found that all their eigenvalues are 
not only different, but also demonstrate quite large sensitivity 
degrees from tiny to large values (please see the lower plot in 
Fig. 6), by comparison with the original all “1” eigenvalues 
from the ‘rbf  ’ kernel matrices. Although some eigenvalues can 
be relatively small for each kernel matrix, all the kernel matri-
ces are positive definite full-rank matrices. Interestingly, the 

20

40

10
20

30
40

0.9

0.92

0.94

0.96

0.98

Stroma

10
20

30

10

20

30

0.75

0.8

0.85

0.9

0.95

Medulloblastoma

20
40

60
80

20
40

60
80

0.5

0.6

0.7

0.8

0.9

breast

50
100

150
200

50
100

150
200
0.8

0.85

0.9

0.95

Ovarian

50
100

150

50

100

150

0.7

0.8

0.9

Cirrhosis

20
40

60
80

100

20
40

60
80

100

0.7

0.75

0.8

0.85

0.9

0.95

Colorectal
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kernel matrices with eigenvalues spanning relatively a small 
value interval indicate low diagnosis accuracy. For example, 
the eigenvalues of the kernel matrix of the Breast data are in 
the interval [0.2202, 56.02], the smallest interval compared 
with those of the others. Its corresponding SVM diagnosis 
accuracy is the lowest among those of the six datasets, which 
is obviously consistent with our previous results obtained by 
their kernel matrix contour analysis.

seeking biomarkers Through overfitting
As we have pointed out before, a single gene can still encoun-
ter overfitting by only recognizing its majority type samples 
in the SVM diagnostics under LOOCV. It will be more 
desirable to investigate such an interesting fitting by seeking 
its biological meaning and possible applications in cancer bio-
marker discovery. Such a single gene overfitting mechanism 
actually indicates a gene switch mechanism from a diagnos-
tic viewpoint. That is, an individual gene loses its diagnostic 
ability when it encounters overfitting under a classifier (eg, 
SVM). In other words, as a switch, the gene turns off itself 
and fails to provide any useful diagnostic information. To 
some degree, such a gene switch can be viewed as a special 
case in the well-known silencing of gene expression in oligo-
nucleotides,29 where some genes encounter a gene silencing 

status and their expressions are meaningless for a classifier 
under a cross-validation.

However, such a gene switch mechanism provides us an 
option to seek meaningful biomarkers with better discrimi-
native capabilities by only searching for those genes whose 
switches are “on” in diagnostics. In other words, biomarker 
search domains are limited to those genes whose switches turn 
on to conduct more targeted search and improve the biomark-
ers’ detection power in diagnosis. As such, we propose a novel 
biomarker discovery algorithm: GSM by taking advantage of 
such a special gene switch property demonstrated by the single 
gene overfitting. The GSM algorithm is described as follows.

Algorithm: GsM biomarker discovery algorithm. 
Input:

 1. An omics dataset with m samples across n genes: X ∈ Rn × m

 2. N: the number of gene candidates to be selected in the 
Bayesian t-test filtering

output:
A biomarker set G gk

M
k= =U 1  with the largest diagnostic 

accuracy

 1. Bayesian t-test filtering
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 a.  Score each gene in X by the Bayesian t-test
 b.   Select N genes with the smallest Bayesian factors to set Sb, such 

that |Sb| = max(n × 0.01, N)

2. PCA-ranking for each gene

 a.   Compute the principal component (PC) matrix for input 
data: U ← pca(X)

 b.   Project X X Xn T= − 1 1 1
 
( )  to U: P ← X*U, where 


1 ∈ℜn 

is a υector with all “1”s
 c.   Calculate the PCA-ranking score τ = ∑ =i

n
iP1
2 for each gene 

(Pi is the ith row of P).

3. Biomarkers greedy capturing

 1.   Initialize a biomarker set: G ← Ø
 2.   Conduct disease diagnosis with each gene in Sb with an rbf-

SVM under LOOCV
 3.    Add all overfitting genes in set Sf and update Sb ← Sb – Sf
 4.    Add the gene g1 with the highest accuracy and smallest τ value 

to G: G ← {g1}, Sb ← Sb – {g2}
 5.    Add the gene g2 with the smallest τ value such that the 

rbf-SVM reaches its maximum accuracy under G ∪ {g1},  
G ← G ∪ {g1}, Sb ← Sb – {g2}

 6.   Proceeding like this until the rbf-SVM’s accuracy stops 
increasing under G

 7.    Return G

We have applied our GSM algorithm to the Stroma data, 
where N = 200 genes with the smallest Bayes factors are selected 
under the Bayesian filtering. We have found that 17 genes among 
them actually encounter overfitting, that is, their rbf-SVM 
diagnostic accuracy under LOOCV is always the majority ratio 
of this dataset: 0.7234 (34/47). Table 4 lists the PCA-ranking 
scores and Bayes factors of the overfitting genes, which turn off 
themselves in diagnosis under the rbf-SVM classifier.

Our GSM algorithm has identified four biomarkers 
and the final rbf-SVM diagnostic accuracy reaches 97.87% 
(sensitivity 92.31% and specificity 100%) under LOOCV. 
Table 5 illustrates its PCA-ranking scores,44 Bayes factors, 
and individual SVM diagnostic accuracy. It is noted that the 
PCA-ranking score indicates a gene’s dysregulation degree: 
the smaller, the more regulated. Our GSM algorithm always 
picks the gene with the smallest PCA-ranking score to the 
biomarker set G among several gene candidates, each of which 
has the same diagnostic accuracy by combining with the genes 
in the current biomarker set G.

In addition to its excellent diagnostic accuracy, we have 
found that the biomarkers identified are quite meaningful 
and closely related to breast cancer. For example, the first 
biomarker is gene USP46, which is a broadly expressed 
gene reported to be a gene associated with breast cancer and 
glioblastomas.30 The second biomarker is FOSL2, which is 
one of four members in the FOSL gene family. It is responsible 

for encoding leucine zipper proteins, which dimerize with 
proteins of the JUN family and form the transcription fac-
tor complex AP−1.31 As a regulator in cell proliferation, 
differentiation, and transformation, recent studies have 
showed that it is one of the important genes associated with 
breast cancer, by being involved in the regulation of breast 
cancer invasion and metastasis.32 The third biomarker is gene 
RPL5, which encodes a ribosomal protein that catalyzes 
protein synthesis. It was reported to be associated with bio-
synthesis and energy utilization, which is a cellular function 
associated with the pathogenesis of breast cancer.33 In addi-
tion, it connects to breast cancer by lowering MDM2, a major 
regulator of p53 levels that prevents p53 ubiquitination and 
increases its transcriptional activity.34 The fourth biomarker 
KIF1C is reported to be involved in podosome regulation and 
is associated with HPV-tumors.35 It is interesting to see that 
such biomarker discovery result brings us a new biomarker 
KIF1C and three known biomarkers: USP46, FOSL2, and 
RPL5 compared with our previous MICA-based biomarker 
discovery.9 On the other hand, it demonstrates that the first 
three genes are repeatable biomarkers captured by different 
methods.

Table 4. The 17 overfitting genes of the top 200 selected genes.

gENE-NAME PCA-RANkINg bAYES fACToRS

CCNT2 0.4913 0.0904

RWDD3 8.4614 0.1134

USP2 7.0963 0.1380

APPBP2 33.4301 0.1475

CCPG1 5.9958 0.2206

NAB2 1.8507 0.2275

HUS1 32.8207 0.2517

SH3TC1 1.5249 0.2817

MOCS2 5.5084 0.2953

TM9SF3 10.7518 0.3062

UBE2J1 1.5724 0.4996

VPS53 8.2941 0.5198

KBTBD4 11.2837 0.5219

DLG1 0.5650 0.5310

GTF2H4 18.0115 0.5655

TRMT1 1.3772 0.5927

 

Table 5. Biomarkers identified by GSM for the Stroma data.

gENE PCA-RANkINg bAYES fACToRS SvM-ACCURACY

USP46 6.6276 0.0093 0.8936

FOSL2 0.3481 0.0418 0.8085

RPL5 2.6423 0.5056 0.5957

KIF1C 0.7895 0.0073 0.7872
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In addition, we have applied the proposed GSM method 
to the Medulloblastoma data and identified two important 
biomarkers, where 9 genes among the 100 top-ranked genes 
in the set Sb are overfitting genes (please see Table 6). The 
first biomarker is NDP, a gene related to Norrie disease that 
is reported to be a rare genetic disorder characterized by 
bilateral congenital blindness caused by a vascularized mass 
behind each lens caused by pseudoglioma. Such a finding 
not only strongly suggests that the medulloblastoma disease 
would have some very similar phenotypes to glioma, but also 
indicates that there are some genes related to both cancers. 
Interestingly, medulloblastoma was considered as a type of 
glioma disease in the past36; The second biomarker is RPL21, 
a gene encoding ribosomal proteins and has multiple processed 
pseudogenes dispersed through the genome. It was reported 
to be one of the biomarkers related to brain and other CNS 
cancer diseases.36,37 In particular, the total rbf-SVM accuracy 
of the two biomarkers is 97.06% with 100.0% specificity and 
88.89% sensitivity under LOOCV.

discussion and conclusion
In this study, we rigorously investigated the SVM overfitting 
problem in molecular diagnosis of disease and proposed a novel 
sparse kernel approach to conquer the overfitting. Our over-
fitting analysis unveils the special characteristics of the SVM 
overfitting on omics data through kernel analysis, which is 
essential to avoid deceptive diagnostic results and improve can-
cer molecular pattern discovery efficiency. As the first rigorous 
method proposed to conquer overfitting, our novel sparse ker-
nel method is not only an alternative way to achieve a good dis-
ease diagnostic performance, but also a novel way to optimize 
kernel matrix structures in kernel-based learning. Thus, it will 
have a positive impact on data mining and bioinformatics.

It is noted that our sparse kernel method still needs to be 
further polished to improve its completeness and efficiency. 
For example, current sparseness degree selection is totally an 
empirical way instead of an optimal one. Although it is natu-
ral for us to choose a large sparseness degree for input data 
with a high dimensionality, it is still unknown how to adap-
tively select it for each omics training data in a data-driven 
approach. However, we are employing entropy theory to seek 
an optimal sparseness selection in our ongoing work.38 More-
over, we are applying different feature-selection techniques to 
our sparse kernel method to filter redundant features so that 
the SVM classifier’s kernel matrix structures can be further 
optimized in a low-dimensional input space.

Theoretically, the proposed sparse kernel method is a 
kernel optimization method to conquer an SVM classifier’s 
overfitting on gene expression and proteomics data, in addi-
tion to enhancing the learning machine’s prediction capability. 
We are interested in exploring its potential in multiple ker-
nel learning and investigating its application on other omics 
data such as RNA-Seq and TCGA data.39,46 Furthermore, 
our current overfitting analysis is only limited to binary-class 
diagnosis (disease vs control). However, multi-class diagno-
sis can be more general in determining different cancer sub-
types from a clinical viewpoint. Thus, we are also interested in 
extending our current results to multi-class disease diagnosis 
by decomposing it to different binary-class cases through the 
“one-against-one” model.40,45

Although we analyze the SVM overfitting under the 
k-fold CV, LOOCV, and 50% HOCV, we have not con-
ducted similar overfitting analysis for the widely used inde-
pendent test set cross-validation. However, because of the 
lack of mature mathematical models and the ad-hoc training 
data selection, it would be hard to conduct a robust overfit-
ting analysis. However, it does not mean that a similar over-
fitting problem would not happen in the situation. In fact, 
most investigators might neglect the occurrence of overfitting 
because of kernel parameter tuning and ad-hoc training/test 
data selection. In our future work, we plan to develop a novel 
mathematical model to investigate SVM diagnostic overfit-
ting under the independent test set approach. In addition, we 
plan to examine systematically the relationships between the 
gene switch mechanism demonstrated by the SVM overfitting 
on individual genes and gene silencing, and seek their applica-
tions in reproducible biomarker discovery and consistent phe-
notype discrimination.41,42
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