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Introduction
In recent years, significant advances in both the genotyping 
and computing fields have enabled us to perform large-scale 
genome-wide association studies (GWAS).1,2 GWAS have 
demonstrated enormous potential in identifying genetic vari-
ants for common complex diseases.

In GWAS, regression analysis, including both logistic 
regression for binary phenotypes and linear regression for 
quantitative phenotypes, has been one of the most powerful 
methods to detect associations between genetic variants and 
target phenotypes. It has successfully identified novel genetic 
variants, such as single nucleotide polymorphism (SNP), for 
many complex diseases, including type 2 diabetes,3–5 bipolar 
disorder,6,7 and various cancers.8–10

However, these applications are mainly limited to the 
investigation of association between a single variant and 
target phenotype, not that between multiple variants and a 
target phenotype. Note that the association tests are usually 
performed by fitting a linear or logistic regression model. 
Although the regression analysis requires inversion and 
multiplication of matrices with high computational com-
plexity, the computational burden is not so tremendous for 
the single variant analysis. However, in the case of gene–
gene interaction (GGI) analysis in an exhaustive manner, 
the tremendous computational burden renders regression 
analysis infeasible, because the number of possible tests 
is extremely large, say p chosen as 2. Here p denotes the 
number of SNPs. Furthering this burden is the fact that 
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parameter estimation in logistic regression usually relies 
on iterative algorithms such as Newton–Raphson (NR), 
expectation-maximization (EM), or scoring algorithms. 
Owing to the computational burden caused by the enor-
mous number of tests, there have been limited applications 
of regression analysis to multiple SNPs including GGI 
analysis of large-scale GWAS data.

In order to overcome this computational burden and 
identify GGIs within feasible computational time, many 
approaches have been suggested. They can be classified into 
two main approaches. One is to reduce the number of pos-
sible tests using a variable selection method, and the other is 
to develop an accelerated algorithm. Variable selection is most 
commonly used. For example, sure independence screening 
(SIS) is the most popular variable selection strategy.11 Ueki and 
Tamiya proposed an algorithm to identify GGI with SIS vari-
able selection strategy.12 By selecting the variables in the most 
parsimonious way, it was shown to be possible to identify more 
GGIs than other competing methods. However, the variable 
selection approach still has a chance to miss the true GGI if 
the variable screened out has a true interaction with the other 
variable. By motivating from this issue, many researchers 
have focused on the identification of GGI in an exhaustive 
manner with a high speed. For example, Wan et al proposed 
BOolean Operation-based Screening and Testing (BOOST) 
method13 in order to make the identification of two-way GGI 
possible by using the Boolean operation method. However, 
since this method is based on the fast calculation via Bool-
ean operation, GGIs that cannot be represented via the result 
of their XOR bitwise manipulation are difficult for BOOST 
to detect. Alternatively, Kwon et al proposed cuGWAM14 in 
order to make the identification of N-way GGI possible via 
a high-throughput graphics processing unit (GPU) for mul-
tifactor dimensionality reduction15 analysis. However, since 
cuGWAM is based on several accuracy measures that can 
be obtained from two-by-two contingency tables, it is not 
straightforward to obtain a statistical P-value unless a permu-
tation scheme is applied.

Although BOOST and cuGWAM are very powerful 
methods for GGI analysis, they are not as flexible as regres-
sion analysis in dealing with individual covariates; however, 
regression-based GGI analysis has not been successfully 
performed because of the computational burden described 
earlier. Thus, an acceleration of regression-based GGI analy-
sis is required in order to make an exhaustive investigation 
computationally feasible. In this work, we thus develop a 
new regression-based toolkit, CARAT-GxG, which dra-
matically accelerates the performance of regression analysis 
of GGI. CARAT-GxG can find an association between a 
phenotype and single SNP or between several phenotypes 
and two SNPs with interaction, while adjusting for covari-
ates. CARAT-GxG uses logistic regression for binary phe-
notype and linear regression for quantitative phenotype. By 
substantially accelerating the speed of regression-based GGI 

analysis using GPU, we achieved an exhaustive investiga-
tion of GGI from GWAS dataset within a couple of weeks, 
which was not possible in the traditional analyses. Further-
more, CARAT-GxG can be accelerated by CUDA (com-
pute unified device architecture) using a high-throughput 
GPU and can be applied to GPU computing systems via 
TORQUE Resource Manager (http://www.adaptivecom-
puting.com/products/open-source/torque/), the GPU com-
puting architecture.

In this paper, we describe in detail how regression 
analysis process can be implemented using GPUs and how 
much acceleration can be achieved by GPU implementa-
tions compared to traditional central processing unit (CPU) 
implementations. In addition, we describe the factors that 
affect the performance and accuracy of GPU programs, and 
evaluate how much these factors affect the performance 
of CARAT-GxG. Next, we demonstrate how the several 
adjustable parameters related to regression analysis and 
GPU-related computational issues affect the accuracy of 
the results and the execution time. Finally, we introduce a 
way to apply a GPU computing system with CARAT-GxG 
and summarize the improvements achieved by using the 
GPU computing system. CARAT-GxG is freely available 
from the software website (http://bibs.snu.ac.kr/software/
caratgxg/).

Methods and Implementation
CARAT-GxG was implemented in the C/C++ language 
within a CUDA environment. For performance comparisons, 
R package and PLINK were used.

Implementation of analysis method. CARAT-GxG 
is capable of performing all possible SNP combinations in a 
regression model, including all possible pair-wise SNP–SNP 
interactions (eg, a dataset with 10,000 SNPs has 49,995,000 
SNP–SNP pair-wise interaction combinations in addition to 
10,000 single SNP combinations). The SNP variables, includ-
ing main and interaction effects, can be treated either as 
nominal or ordinal variables. Depending on the phenotype,  
CARAT-GxG is implemented by using either logistic or 
linear regression.

For the continuous phenotypes, CARAT-GxG builds 
a linear regression model and estimates the parameters 
using the ordinary least squares (OLS) method for each 
SNP–SNP combination. This OLS estimation does not 
require any iterative processes. The significance of model 
parameters is evaluated via P-values of the Wald test. For 
the binary phenotypes, CARAT-GxG builds a logistic 
regression model. The model parameters are obtained via 
iterative algorithms such as the NR algorithm, which is 
known to converge very quickly, and the scoring algorithm. 
The significance of model parameters is evaluated via the 
likelihood ratio test, which is derived from the full and null 
models. These models are generally represented as depicted 
below:
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where Si and Sj denote genotypes of SNPs, and Ck denotes 
the covariates. These equations are applied to all possible 
combinations.

GPU implementation. The GPU is a circuit specialized 
for graphical processing, which usually requires large-scale 
parallelism and floating-point calculations. Thus, GPU has 
successfully been used to implement several key methods in bio-
informatics, such as GGI analysis,14 sequence alignment,16,17 
and database searching.18 These GPU applications have been 
developed using CUDA by Nvidia, Stream SDK by ATI, or in 
recent years, OpenCL. In order to implement our regression-
based GGI application, we chose the CUDA architecture as 
our development environment.

Generally, a different implementation strategy is required 
when developing an application that uses the GPU rather than 
the CPU because of differences in the underlying architecture 
such as in the memory structure or processing pipeline. These 
differences make it impossible to port many traditional algo-
rithms based on the CPU to the GPU architecture. Thus, we 
developed a new implementation strategy to perform regression 
analysis using the GPU. A key feature of our CARAT-GxG 
implementation is the ability to execute multiple combinations 
concurrently. Our implementation consists of the following 
steps, as shown in Figure 1:

1. As a preliminary step, load the dataset into each GPU 
memory.

2. Enumerate all possible two-way combinations.
3. Assign the combinations into the GPU memory.
4. Launch a GPU kernel with a given number of combina-

tions from the CPU.
5. Distribute the combinations to threads that are included 

in each block. The number of threads is automatically 
determined to maximize performance.

6. Fit a statistical model in each thread, with a given com-
bination through the GPU-optimized algorithm.

7. Calculate the P-value for a given combination in each 
thread.

8. Repeats step 3–7 until all combinations are processed.

In order to accomplish optimal performance using the 
GPU, many aspects must be considered. Since the main com-
putational burden of regression analysis occurs during matrix 
calculation, an optimized access of memory, which highly 
varies by the model of graphics card, is essential to minimize 
race conditions. CARAT-GxG automatically selects the most 
appropriate parameter of GPU execution. In order to deter-
mine this parameter, a very naïve but fast approach is applied; 
it is achieved via a sequential test of equally spaced candidates 
of optimal parameters. As shown in Figure 2C, a concave 
trend of execution time along with the parameter value justi-
fies this approach.

Methods for performance comparison. Typically,  
R package and PLINK are used in order to perform regres-
sion analysis of GWAS data. Thus, a performance comparison 
between the former tools and CARAT-GxG is essential. In 
addition, it is important to note the differences arising from 
execution on the GPU versus the CPU. Some of these differ-
ences are as follows:

1. Calculation architecture and conditions: CPU versus 
GPU, one way and two way.

2. Acceleration by the number of GPUs: one, two, and three 
GPUs.

3. Difference of accuracy between GPU and CPU imple-
mentations: this arises because the CPU and GPU treat 
floating-point numbers differently.

4. Performance during repeated iterations of the NR 
method: it is essential to see how the number of iteration 
affects the speed and result.

5. Acceleration by the application of CARAT-GxG to the 
GPU system.

While the ultimate purpose of regression analysis on 
GWAS data is to find statistically significant associations 
between variants and target phenotype, the results should 
also have biological significance. Thus, it is important to 

CPU-side task

GPU-side task

Repeat until
all combinations and processed

Loading
dataset

Generating
combinations

Invoking
GPU kernel

Receiving and
sorting results

Writing ranked
result to output

Processing each
combination

Distributing the
combinations

Receiving
dataset

Execution flow

figure 1. Execution flow of CARAT-GxG. The blue arrow indicates the execution flow between CPU and GPU. The upper and lower sides indicate the 
task of CPU and GPU, respectively. Data transfer between CPU and GPU is illustrated by an arrow, with description. Both tasks at the same time point 
can be executed concurrently.
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evaluate their biological significance as well. For this reason, 
an additional parameter to evaluate the biological significance 
of identified SNP–SNP combinations is required. It can be 
determined in many ways, such as through a literature search 
or biological data mining.

In order to assess the analysis result of CARAT-GxG, we 
analyzed a real GWAS dataset from an age-related macular 
degeneration (AMD) study, which has several validated GGI.19 
For AMD dataset, several validated association results, includ-
ing interactions, have been already reported in studies.20,21 The 
AMD dataset contains a binary phenotype indicating the sta-
tus of AMD. The genotypes of 146 samples with 105,980 SNPs 
were available, which passed quality control process.

GPU computing system setup. Deploying GPUs to 
computing system infrastructures is unpopular because the 

method of implementing general-purpose computing on 
graphics processing units (GPGPU) differs depending on the 
vendors of graphic cards. However, CUDA has now become 
a de facto standard for GPGPU. Several open-source-based 
parallel computing infrastructures, such as TORQUE or 
Ganglia Monitoring System, now support the integration 
of CUDA technology. For these reasons, we developed our 
CARAT-GxG to perform grid computing via TORQUE, an 
open-source-based infrastructure enabling the control over 
batch jobs and distributed computing resources.

In order to evaluate the effectiveness of the GPU com-
puting system with CARAT-GxG, an appropriate setup for 
a given GPU computing system is required to run CARAT-
GxG. All setup and comparisons were performed on both 
the stand-alone GPU system and the GPU cluster. The 
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figure 2. results of Carat-GxG performance assessment. (A) the dotted line indicates the theoretical acceleration folds by adding a graphics card. 
the solid line indicates measured acceleration folds in two against one (green) and three against one (blue) graphics cards. (B) execution time between 
Carat-GxG and CPU implementations in a single snP test. (C) execution time of Carat-GxG according to the number of threads and blocks with the 
dataset including 1,000 samples with 500 snPs.
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stand-alone GPU system contains an Intel Core i7–950 CPU 
and three NVIDIA GTX480 graphic cards, while the GPU 
cluster consists of four nodes, and each node includes two 
physical CPU cores with 24 threads and eight NVIDIA Tesla 
M2070 GPUs.

According to the system setup of TORQUE, CARAT-
GxG automatically generates sequences of tasks that are 
independently queued by TORQUE and executed. Since the 
queued tasks are automatically distributed by TORQUE, 
GPU utilization can be maximized.

results and discussion
All performance comparisons between CARAT-GxG and 
CPU implementations were conducted in a stand-alone GPU 
system with an Intel Core i7–950 CPU and three NVIDIA 
GTX480 graphic cards. Owing to enormous time consump-
tion of the CPU version of the R code, the whole execution 
time of the CPU had to be estimated from the execution time 
of lower (1,000) combinations in each dataset. In order to 
perform the comparisons, we simulated a simple dataset con-
sisting of varying numbers of SNPs from 100 to 5,000 and 
samples from 100 to 1,000 with randomly generated binary 
phenotype. The genotypes in the dataset were also randomly 
generated with diverse minor allele frequencies (MAFs) using 
the uniform distribution between 0.05 and 0.5.

It is important to ensure maximum utilization of the 
GPU because the performance of GPU is highly dependent 
on the parameters required by GPGPU. In this context, we 
investigated the relationship between the analysis efficiency 
of CARAT-GxG and two parameters given upon executing 
GPU: the number of threads and the number of blocks. As 
shown in Figure 2C, it is clear that there is a concave trend as 
the number of blocks varies. In contrast, it is relatively easy to 
determine the number of threads, because the number of opti-
mal threads is usually identical to the warp size of the GPU. 
However, it is difficult to determine the optimal number of 
blocks to maximize performance because of its dependence on 
the underlying GPU. Hence, we developed CARAT-GxG to 
attempt to automatically determine the appropriate number of 
blocks and threads.

The comparisons between CARAT-GxG and tra-
ditional CPU implementations, as shown in Table 1 for 
SNP–SNP interaction analysis and Figure 2B for single 
SNP analysis, found that CARAT-GxG performs up to 
almost 700 times faster. More specifically, our compari-
son showed that the speedup stabilized as the number of 
SNPs or individuals increased. The low improvement when 
evaluating 100 SNPs in Table 1 is caused by the overhead 
during the initialization and additional processes, such as 
data transfer between the CPU and GPU or the storage of 
intermediate results.

From the comparison of acceleration by adding a graph-
ics card to the execution, CARAT-GxG showed steady per-
formance improvement, as shown in Figure 2A. Note that as 
the size of dataset increases, the degree of efficiency of par-
allelization becomes crucial. This efficiency was in the range 
of 95–99% compared to the ideal performance as the size 
of dataset increased. In addition, CARAT-GxG performed 
strongly even when using more complex models with addi-
tional variables such as interaction and covariates. As shown 
in Table 1 and Figure 2B, CARAT-GxG outperformed the 
CPU implementations when calculating the two-way model 
including interaction.

When comparing the reliability represented by P-values 
from CARAT-GxG and CPU implementations, we observed 
that these P-values are slightly different; however, these differ-
ences are negligible and do not significantly affect the result. 
The representation of the floating-point number is exactly the 
same between CPU and GPU. However, the slightly different 
computation step between CPU and GPU may make a neg-
ligible discrepancy of P-values. Specifically, these differences 
were almost proportional to the size of the actual P-value, 
and the range of differences was about 10−4–10−10 (data not 
shown).

The other comparison was made from the difference of 
rank, sorted by P-value for all possible iterations. Since our 
program supports additional optimization methods, it is pos-
sible that the restriction of the possible number of iterations 
seriously affects the performance. To confirm this, we checked 
how much the rank has changed from the full iteration, as 

Table 1. execution time of Carat-GxG and CPU implementation in two-way testing (UnIt: seConD).

SNPs 100 300 500 1K 3K 5K

SAMPLES

100 0.6239
(75.2351)

3.3846
(771.0163)

9.5516
(3147.0682)

38.1707
(16763.22)

327.1889
(465504.78)

976.2125
(3636110.1325)

300 1.564
(98.3813)

9.1754
(980.2416)

24.2124
(3420.8945)

102.0229
(28763.7075)

883.1818
(965256.6405)

2606.218
(3908843.075)

500 2.5504
(143.2877)

15.4253
(2030.7632)

44.5972
(6609.8788)

168.7734
(40383.0765)

1644.9804
(1008473.73)

4593.415
(5729728.825)

1,000 4.9348
(260.6621)

30.0753
(2732.666)

84.1235
(8333.9238)

327.5836 
(42924.5325)

2995.5481 
(1052311.613)

8662.1345
(5924214.92)

Notes: all time units are seconds. the upper and lower ones indicate the execution times of Carat-GxG and CPU implementations, respectively.
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shown in Figure 3. The number of conserved ranks was almost 
identical after 11 iterations, and a list of significant interac-
tions became identical over 10 iterations.

We further evaluated the performance gain of CARAT-
GxG on our GPU cluster. In the evaluation, the total analy-
sis time was almost inversely proportional to the number of 
nodes requested for use by CARAT-GxG, indicating that our 
approach is highly suitable to implement regression analy-
sis using GPUs with a GPU computing system. In brief, 
CARAT-GxG on our GPU cluster was capable of perform-
ing an exhaustive two-way linear regression analysis with the 
GGI of 500 K SNP chip in 12 days.

Finally, we tested CARAT-GxG with a real GWAS 
dataset from an AMD study.19 We found that the top 
two combinations have already been identified in other 
studies,20,21 and rs380390 is found in the top three com-
binations except the lowest P-value, which is identified to 
be significant in the initial paper of the dataset.19 This SNP 
showed a large marginal effect from the result of our dataset. 
The top five combinations having the lowest P-values are 
shown in Table 2.

In the analysis of biological data using a bioinformatics 
approach, the size of data and required computing power are 
usually very large. Thus, the performance of a given analy-
sis method is a critical factor in providing results for further 
analysis. However, as the method becomes more complex, the 
time required to perform analysis increases rapidly.

Motivated by these issues, we posit that GPU program-
ing has the possibility to dramatically increase the efficiency 
of analysis. Its parallelism is more suited to many bioinformat-
ics methods, which require massive amounts of independent 
calculation. The benefit of this was evident in our almost 700-
fold execution speed performance.

In addition, CARAT-GxG showed stable performance 
increment by adding a new graphics card, through our GPU-
specified optimization and performance tuning processes. 

As shown in Table 1, researchers who use the CARAT-GxG 
can easily estimate and control the analysis time. We expect that 
this predictability can provide an advantage to researchers.

From the aspect of GPU programing, we developed 
CARAT-GxG to gain more performance and provide more 
usability by parameter optimization; adjusting the number of 
blocks and threads is the key to optimize performance. For 
example, if there are 480 cores that can be utilized in GPU, 
running a single kernel with more than 480 blocks would take 
much more time, because some blocks waiting to be executed 
would remain. Simulation results suggest that we should take 
these attributes of the GPU into account. We confirmed it 
before the comparison, by executing CARAT-GxG with vari-
ous numbers of blocks and threads. It suggested that the execu-
tion with appropriate numbers of blocks and threads can boost 
the performance almost twofold.

Finally, we achieved additional acceleration via an appli-
cation of a GPU system using TORQUE and showed that our 
task-based approach analyzed the given dataset in time almost 
inversely proportional to the number of requested nodes by 
CARAT-GxG. However, there is a room for achieving 
more acceleration, because we still do not consider the dif-
ference between requested nodes, which can cause speed 
deceleration.
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Table 2. A list of top five significant two-way combinations from AMD 
data.

CoMBINATIoN p-vALUE PAPER

rs994542, rs9298846 2.95 × 10–14 [20]

rs380390, rs2402053 1.09 × 10–13 [19, 21]

rs380390, rs3775640 4.37 × 10–13 [19]

rs380390, rs10511130 6.25 × 10–13 [19]

rs380390, rs2125743 7.42 × 10–13 [19]
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conclusion
Recently, a number of huge sequencing projects have delivered 
hundreds of completely mapped sequences, fueled by rapid 
advancements in sequencing technology. Consequently, the 
number of available variants has increased significantly. Inevi-
tably, the development of a more computationally efficient 
method is required in order to investigate the GGI in large 
datasets. In this aspect, an extensive application of grid comput-
ing systems can considerably accelerate the speed of analysis. 
However, traditional CPU-based grid computing systems are 
essentially not suitable to perform a huge number of indepen-
dent tasks. However, the application of GPU can overcome this 
drawback, with the high-throughput of parallel tasks and com-
putational efficiency. We took advantage of a GPU-based com-
puting system and developed CARAT-GxG in order to address 
such parallelism and efficiency issues. As a result, we success-
fully showed that a GPU-based computing system could effec-
tively handle the GGI analysis of large-scale GWAS data in the 
regression analysis framework in an exhaustive manner. For our 
best knowledge, it is the first attempt to provide a toolkit that 
enables an exhaustive investigation of regression-based GGI in 
GWAS. In contrast to the variable selection-based methods, 
CARAT-GxG does not screen out any variant from the dataset 
and, thus, it has a less chance of missing the true interactions.

In addition, we also showed that there are many aspects 
that GPU analysis can account for, such as the number of blocks. 
Since regression analysis using GPU is strongly dependent on 
the frequent access of global memory, the optimal number of 
blocks is necessarily varied. By optimal allocation adjustment of 
the number of blocks, CARAT-GxG is dynamically tuned and 
achieves maximal efficiency. This kind of optimization certainly 
should be included in many heterogeneous systems, especially 
in future GPU-based computing systems.

In conclusion, we successfully showed that an exhaustive 
two-way GGI analysis using regression analysis can be achieved 
within one-and-a-half weeks in a small GPU computing sys-
tem. From the comparison of traditional toolkit on a stand-
alone GPU system, we showed that our toolset provides up to 
700-folds of acceleration. This fast acceleration enables an inves-
tigation of GGI in GWAS dataset in an exhaustive manner. We 
expect our CARAT-GxG to provide good performance and 
be practically applicable to the GGI analysis of whole-genome 
scale datasets. Since the CARAT-GxG supports both continu-
ous and binary phenotypes, it could be applied to many GWAS 
dataset with various types of phenotypes. We also expect that 
CARAT-GxG can be easily adapted to future large-scale GPU-
based computing systems because of its high scalability.

Author contributions
Con tributed to the writing of the manuscript: SL, MSK. 
Jointly developed the structure and arguments for the paper: 

SL, MSK, TP. Con tributed to the writing of the manuscript: 
SL, TP. Agree with manuscript results and conclusions: MSK. 
All authors reviewed and approved of the final manuscript. 

references
 1. Hirschhorn JN, Daly MJ. Genome-wide association studies for common dis-

eases and complex traits. Nat Rev Genet. 2005;6:95–108.
 2. Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of 

Asian populations uncovers genetic factors influencing eight quantitative traits. 
Nat Genet. 2009;41:527–34.

 3. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association 
data and large-scale replication identifies additional susceptibility loci for type 2 
diabetes. Nat Genet. 2008;40:638–45.

 4. Sim X, Ong RT, Suo C, et al. Transferability of type 2 diabetes implicated loci in 
multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011;7:e1001363.

 5. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with 
susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7.

 6. Ferreira MA, O’Donovan MC, Meng YA, et al. Collaborative genome-wide 
association analysis supports a role for ANK3 and CACNA1C in bipolar 
disorder. Nat Genet. 2008;40:1056–8.

 7. Scott LJ, Muglia P, Kong XQ , et al. Genome-wide association and meta-analysis 
of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U S A. 
2009;106:7501–6.

 8. Turnbull C, Ahmed S, Morrison J, et al. Genome-wide association study identi-
fies five new breast cancer susceptibility loci. Nat Genet. 2010;42:504–7.

 9. Tomlinson IP, Webb E, Carvajal-Carmona L, et al. A genome-wide association 
study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 
8q23.3. Nat Genet. 2008;40:623–30.

 10. Landi MT, Chatterjee N, Yu K, et al. A genome-wide association study of lung 
cancer identifies a region of chromosome 5p15 associated with risk for adenocar-
cinoma. Am J Hum Genet. 2009;85:679–91.

 11. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. 
J R Stat Soc. 2008;70:849–911.

 12. Ueki M, Tamiya G. Ultrahigh-dimensional variable selection method for whole-
genome gene–gene interaction analysis. BMC Bioinformatics. 2012;13:72.

 13. Wan X, Yang C, Yang Q, et al. BOOST: a fast approach to detecting gene–gene inter-
actions in genome-wide case-control studies. Am J Hum Genet. 2010;87:325–40.

 14. Kwon MS, Kim K, Lee S, Park T. cuGWAM: genome-wide association multifac-
tor dimensionality reduction using CUDA-enabled high-performance graphics  
processing unit. Int J Data Min Bioinform. 2012;6:471–81.

 15. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction 
reveals high-order interactions among estrogen-metabolism genes in sporadic 
breast cancer. Am J Hum Genet. 2001;69:138–47.

 16. Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware accel-
erators for Smith-Waterman sequence alignment. BMC Bioinformatics. 2008;9 
(suppl 2):S10.

 17. Liu Y, Popp B, Schmidt B. CUSHAW3: sensitive and accurate base-space and color- 
space short-read alignment with hybrid seeding. PLoS One. 2014;9(1):e86869.

 18. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman 
sequence database searches for CUDA-enabled graphics processing units. BMC Res 
Notes. 2009;2:73.

 19. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-
related macular degeneration. Science. 2005;308:385–9.

 20. Wan X, Yang C, Yang Q , Xue H, Tang NL, Yu W. Detecting two-locus associa-
tions allowing for interactions in genome-wide association studies. Bioinformatics.  
2010;26:2517–25.

 21. Han B, Chen XW, Talebizadeh Z. FEPI-MB: identifying SNPs-disease asso-
ciation using a Markov Blanket-based approach. BMC Bioinformatics. 2011;12 
(suppl 12):S3.

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10

