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Introduction
Human tumor cell lines grown as xenografts in immuno­
compromised mice have in recent years played an increasingly 
important role in the latestage preclinical development of 
targeted anticancer therapies.1–5 Identification of compounds 
and dose regimens with the broadest possible therapeutic win­
dow (the range between the maximal efficacy and the minimum 
allowable toxicity) is a driving goal of latestage preclinical 
research. Evaluating the ability of anticancer agents to reduce 
tumor growth in preclinical xenograft models provides the 
basis for compound optimization. Preclinical biological acti­
vity in xenograft models has been shown to be reasonably well 

correlated with human clinical outcomes,6 particularly when 
conducted at clinically relevant exposures.7

A typical xenograft study involves the comparison of 
different drug treatments or combinations of drugs in mice 
bearing xenograft tumors in their flanks. Therapy is typically 
initiated only after tumors have reached a certain minimum 
size. During this treatment phase, repeated measurements of 
the tumor volume are made using digital calipers, and bio­
logical activity is quantified via the assessment of changes in 
tumor volume between treated and control mice.

One common measure of efficacy is the T/C ratio, the ratio 
of tumor volume in control versus treated mice at a specified 
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time. Another measure that is frequently used is the closely
related Tumor Growth Inhibition index, which is defined as 
(1–(mean volume of treated tumors)/(mean volume of control 
tumors))×100%. While these measures are easy to implement 
and interpret, they have their limitations. In particular, the 
measures are inefficient, as they do not make use of any data 
collected before the final day of treatment. Another problem 
is that the measure is biased because animals are usually sacri­
ficed when the tumor volume exceeds 10% of the body weight 
or exceeds 2cm in diameter. If this occurs before the end of 
the study, these animals will be excluded from the analysis. 
A second source of bias occurs when tumors in the control 
group (which are usually larger than those in the treatment 
group) experience a differential slowing of their growth rate 
relative to treatment because of nutrient and oxygenlimiting 
conditions.

Various researchers have considered alternative methods of 
analyzing xenograft studies, and several complex models have 
been proposed that fit all the data.8–14 Some of the methods 
are based on nonparametric analysis,8,9 which may not have 
sufficient power to handle small sample sizes. Other research­
ers have used mixedeffects regression models,10–14 which pro­
vide several advantages, including the ability to model missing 
data, mousetomouse variability in the growth rates, and a 
correlated noise structure. However, the multiple coefficients 
of a nonlinear regression model are less interpretable than a 
single efficacy measure (analogous to a T/C ratio or a Tumor 
Growth Inhibition index). From an organizational standpoint, 
these complex models lie outside the domain of offtheshelf 
statistical methods, and are complicated to implement and 
understand from the biologists’ perspective. The sheer volume 
of xenograft studies in even a midsized company may make 
customfit regression models for each study unrealistic.

In this paper, we present a new method of analysis called 
the ratebased T/C, which is based on fitting each tumor’s 
growth curve to an exponential model. This approach makes 
use of all the available data, and it is simple enough to be calcu­
lated with an Excel spreadsheet. We verify that the ratebased 
T/C has better precision than the traditional T/C by applying 
both methods to data from a large number of inhouse studies. 
By making more efficient use of the data, the ratebased T/C 
may allow fewer animals to be used in the study while still 
maintaining sufficient precision.

In addition to the analysis method, we also consider 
aspects of the experimental design. In particular, we compare 
the cost effectiveness of 14day studies with 21day studies. 
We also show how historical datasets can be used to recom­
mend a sample size with adequate power for future studies. 
These findings should allow researchers to reduce study costs 
and obtain accurate estimates of in vivo biological activity.

Quick Guide to quations and Assumptions
We assume that the tumor volume for each animal follows an 
exponential growth pattern. This can be written as

 log ( )10 tumor volume     time  error= + × +a b  (1)

Here, a and b are parameters that correspond to the log 
initial volume and growth rate, respectively. These parame­
ters are specific to a given animal. We assume that the error 
terms are independent and normally distributed with equal 
variance.

We consider two measures of antitumor activity. The first 
is the traditional T/C (commonly used), which is defined as

traditional /   

mean tumor volume in the treatment
 

group
T C =

  at the final day of treatment

mean volume in the control ggroup 
at the final day of treatment

(2)

The second measure, proposed by us, is called the rate
based T/C. This is based on the ratio of the fitted growth rates 
of treated versus control groups, normalized to a study length 
of 21days.

 Rate-based   T C  daysT C/ ( )= − ×
10

21µ µ  (3)

Here, µT is the mean of the growth rates for the treat­
ment group, and µC is the mean of the growth rates for the 
control group. The ratebased T/C uses a fixed time (day 21) 
so that it is less dependent on the choice of the final treat­
ment day. A time of 21days was chosen so as to be consis­
tent with the most commonly used treatment length at our 
facility.

To evaluate the precision of the ratebased T/C and the 
traditional T/C, we compare the Zscores of the two mea­
sures. The Zscore is computed by generating a large number 
of bootstrap samples15 from the original data and computing 
the measures on each sample. For a given measure of antitumor 
activity, we define the Zscore as16

Z-score 

 
mean across the bootstrap samples of the log of 

=
tthe measure

standard deviation across the bootstrap sampless of the log 
of the measure  (4)

A larger Zscore indicates better precision for the mea­
sure. This formula assumes that the measure is always positive 
and that it equals one under the null hypothesis. The Zscore 
could be used to estimate the power to detect a significant dif­
ference between the two groups at a given false positive rate 
(α). We used the formula17
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Here, Φ is the cumulative distribution function of the 
standard normal distribution. This formula assumes that the 
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distribution of the log of the measure across the bootstrap 
samples is approximately normal.

Materials and Methods
Xenograft studies. To assess the performance of differ­

ent measures and experimental designs, we retrospectively 
analyzed a set of 219 xenograft biological activity studies in 
mice completed between 2006 and 2012. The studies involved 
36 different xenograft models derived from cell lines. Supple­
mentary Table S1 lists the number of studies completed with 
each of the different models. Thirteen different drug discovery 
programs spanning a variety of drug targets were used to pro­
vide a range of different cell lines and model systems for the 
exploration of the modelfitting procedures. Although each 
study is unique, the experimental details for a typical study in 
our analysis are described by Kupperman etal.18 Our research 
made use of data collected for other purposes, and thus no 
additional animals were needed for our work. Therefore our 
research did not require IRB approval.

The average number of treatment groups was 4.4 (in 
addition to the control group), and a majority (76%) of the 
studies in this dataset had between two and six treatment 
groups. Most studies (78%) used 10 animals in each treat­
ment group, while a significant minority (7%) used 8 animals 
per group.

The average study length in this dataset was 21 days 
(SD=5). Longer studies included a regrowth phase (following 
the final day of treatment). All studies were considered only 
during their treatment phase (some studies included a regrowth 
phase, which was not used in the analysis). Studies involving 
primary patientderived xenografts were not included in the 
analysis. For the purposes of this analysis, we did not include 
biological treatments, focusing exclusively on smallmolecule 
treatments. It is worth noting that biological treatments may 
behave differently in terms of growth kinetics.

umor volume measurements. The width and length 
of the tumors were measured at regular intervals (typically 
twice weekly) with digital vernier calipers. The volumes were 
estimated using the formula: volume=(width)2×(length)/2, 
where the width is the smaller of the two dimensions. For 
some of the studies, one or more animals had only partial data 
because they died early or reached a humane endpoint and 
were removed. The studies involved a total of 1103 control ver­
sus treatment comparisons.

Model-fitting and calculation of rate-based / 
measure. Figure1shows how the traditional T/C and rate
based T/C are computed. The ratebased T/C relies on the 
assumption that the tumor volumes grow exponentially with 
time. To fit the data into this growth model, the volumes 
are log transformed, and linear regression is applied using 
Equation1. Unfortunately, log transformation can make low 
volume measurements become extreme; so to prevent this 
problem, tumor volumes below 50 mm3 were truncated to 
50mm3. Note that the exponential model is able to handle 

animals with missing data. For our analysis, the exponential 
growth rates were estimated for any animal with at least two 
unique measurement times.

To test the assumption of exponential growth, we plotted 
the log tumor volume versus time for 100 randomly selected 
animals (Supplementary Fig. S1) and confirmed that the 
relationship was approximately linear in most cases. We also 
plotted the corresponding residuals versus the fitted values 
(Supplementary Fig. S2) and confirmed that the residual values 
had no apparent systematic pattern. In addition, we computed 
the R2 values for the fits among all the control group animals 
(Supplementary Fig. S3). The R2 values were generally quite 
high, with an interquartile range of 0.93–0.98.

Although the exponential growth model performed well 
for most animals, nonexponential growth is still possible. 
For treatment groups with nonexponential growth (ie, non
constant growth rates), fitting the data into Equation1 would 
yield the mean growth rates. Thus, the ratebased T/C could 
still be useful to detect differences in the mean growth rates 
between the groups.

ootstrapping. Different summarization methods 
and designs will produce different levels of precision in the 
result. To estimate the level of precision, we used a tech­
nique called bootstrapping.15 Bootstrapping is a standard 
statistical practice that is used to estimate properties of a 
measure (such as its mean or variance) by random sampling 
with replacement from the original dataset. (This assumes 
that the original dataset is obtained from an independent 
and identically distributed population.) Bootstrapping thus 
starts with an original dataset and randomly generates 
multiple datasets that are similar to the original dataset. 
By computing the mean and standard deviation for each 
bootstrapped sample, the precision of the measures can be 
compared against each other. We used this technique to 
compare the precision of the different measures and show 
how changes in the study length and number of animals per 
group can affect the precision.

We performed a bootstrap analysis as follows (see 
Supplementary Fig. S4 for a flow chart). For each pair of 
control versus treatment arms, we generated 30 bootstrap 
samples of the data for the pair. For each animal in each boot­
strap sample, we truncated the low tumor volumes and per­
formed a leastsquares fit to Equation1 to estimate the tumor 
growth rate. The mean growth rate for each group was used 
in Equation3 to compute the ratebased T/C for the boot­
strap sample. We also computed the traditional T/C using 
Equation2 without any log transformation or truncation.

omparison of study designs against each other. To 
quantify the variation across different bootstrap samples, 
we used Equation4 to compute the Zscore for each control 
versus treatment comparison. We then computed the median 
Zscore across all the comparisons for both the traditional T/C 
and ratebased T/C. The number of animals per group in the 
bootstrap samples was varied from 4 to 10 animals, and the 
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Zscore calculations were redone. Two different study lengths 
were considered by truncating the data at either 14 or 21days. 
The impact on the Zscore was then examined.

We were interested in understanding the implications of 
different study designs on the overall cost. A detailed financial 
model was constructed by us, based on inhouse data, to eval­
uate each step of a xenograft study in terms of manpower and 
consumable costs. To compare relative costs of studies against 
each other, we normalized the studies to the most expensive 
study, setting the cost of that to 100%.

We also performed power calculations for the ratebased 
T/C using 14days of data. The Zscores computed by boot­
strapping were used in Equation5 to estimate the power of 
each comparison. Equation5 assumes that the distribution of 
the log of the ratebased T/C across the bootstrap samples is 
approximately normal, so we verified this assumption using 
normal QQ plots (see Supplementary Fig. S5). Next, among 
the comparisons for which the ratebased T/C was below 0.4, 
the power estimates were averaged. The threshold of 0.4 was 
chosen because it is a common cutoff to determine if the anti­
tumor activity is sufficient to be of practical significance. The 
result was an estimate of the average power to detect a rate
based T/C below 0.4. The average power was estimated for 
various sample sizes.

esults
Figure 2 shows examples of the ratebased and traditional 
T/C computed for two different studies. The calculations were 
done using the data up to days 7, 14, or 21. The traditional 
T/C tends to decrease as the study length increases, since the 
groups become more separated with time. In contrast, the 
ratebased T/C is normalized to a fixed day, so it is more stable 
with respect to study length.

Table1shows the estimated power versus the number of 
animals per group. For xenograft studies that are being con­
ducted for the purposes of assessing robust biological activity 
(typically assessed as a T/C below 0.4), the ratebased T/C is 
powered at between 99% (for 10 animals) and 93% (for 4 ani­
mals). While this runs counter to the perception of xenograft 
studies being noisy, the basic point is one that is familiar to 
many researchers in the field, namely that robust biological 
activity in a xenograft study can be quite reliable. To place 
the power of these studies in context, it is worth noting that a 
power of 80% is typically considered adequate for hypothesis 
testing.19

Figure 3 shows the median Zscore versus the study 
cost for several different scenarios. A Zscore of 1.96 corre­
sponds to a 5% chance of observing a result as a consequence 
of chance (α=0.05). It is thus worth noting that a xenograft 
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study run with 10mice for 21days provides a Z score of 4.63, 
corresponding to a 0.0004% chance of observing the result 
purely by chance (α=0.000004).

Figure 3A shows that the ratebased T/C has a higher 
median Zscore and is thus more precise than the traditional 
T/C for the same group size. While the gain from the rate
based T/C is small, it is statistically significant, with a Pvalue 
of 2×10‑16 found by using the nonparametric sign test to com­
pare the two measures with 10 animals per group. This small 

change also allows a reduction in study sizes, as switching 
to the ratebased T/C allows a reduction from 10 animals to 
7animals with no reduction in Zscore. Note that using the 
ratebased T/C yields a Zscore of 2.95 for a study with four 
mice at 21days (α cutoff of 0.003).

Figure 3B shows that for a given sample size, 14day 
studies are almost identical in precision to 21day studies 
(Zscore of 3.19 for five mice at 14days versus 3.28 for five mice 
at 21 days). However, the 14day studies are less expensive, 
and also permit a higher study throughput, if that is desired. 
Supplementary Figure S6shows the isoZ curves for a range 
of study sizes and study lengths (the calculation is described 
in the Supplementary File). Each line on these plots connects 
points with the same Zscore. For a Zscore of 3, study lengths 
of 10–21days are essentially equivalent in terms of the study 
size. As the study length is reduced below 10days, larger group 
sizes are required to achieve the same Zscore.

We acknowledge that the final choice of sample size is 
somewhat subjective, as this will also depend on the study 
objectives in any given situation. Also, the benefit of increased 
power is hard to quantify in financial terms, so one cannot 
easily compare with the cost of an increased sample size. 
In our case, we believe that a sample size of six animals per 
group, with a power of 0.96, is reasonable for routine com­
pound screening.

iscussion
The ratebased T/C has several advantages over the traditional 
T/C measure, as listed in Table2. The ratebased T/C uses all 
available data, while the traditional T/C uses data from only 
a single day. Thus, the ratebased T/C is able to account for 
random differences in the initial volume. In addition, fitting 
all the data reduces the effect of measurement noise and allows 
the ratebased T/C estimates to be more precise.

In addition to making full use of the data, the ratebased 
T/C has an advantage in that the measure does not strongly 
depend on the study length. The traditional T/C, however, 
is sensitive to the study length because longer studies show 
a greater divergence in the volumes of the groups. As the 
growth rate of the control arm usually determines the length 
of a xenograft study for a given model, comparing T/C ratios 
between xenograft models usually results in comparisons 
between studies of different lengths. For such experiments, 
the ratebased T/C would allow a more meaningful compar­
ison, because the analysis could be normalized to the same 
fixed time, regardless of the actual study lengths.

In xenograft studies, animals are often sacrificed for 
humane reasons, such as high tumor volume or excessive drug 
toxicity. As a result, these animals have shorter time series pro­
files compared with the other animals in the same study. We 
acknowledge that as with the traditional T/C, the ratebased 
T/C also suffers from a reduction in precision when animals  
are removed early. With the ratebased T/C, the growth 
rates for the sacrificed animals are still estimated and used to 

Table1. Mean power versus the number of animals per group.
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calculate the overall effect size. The estimated growth rates for 
these animals will tend to have less precision compared with 
animals that were not sacrificed early. Therefore, early animal 
sacrifices will reduce the precision of the overall ratebased 
T/C estimate. However, we expect this reduction in preci­
sion to be small in most cases because sacrifices usually occur 
toward the end of the study, when the tumor sizes become 
large and drug toxicity effects accumulate. In such cases, 
measurements should be available for most of the time points, 
so the growth rate for a sacrificed animal can still be estimated 
accurately. We do not expect early sacrifices to cause substan­
tial bias in the ratebased T/C because the sacrificed animals 
are still included in the analysis.

Although our data showed that the simple exponential 
model used for the ratebased T/C worked well in most cases, 
it is possible for tumors to grow at a nonconstant rate in some 
cases. In particular, larger tumors may have slower growth 
rates (because of oxygen perfusion and nutrient limitations) 
or may sometimes cavitate (as the poorly vascularized center 
of a large tumor turns necrotic and collapses). This could bias 
the biological activity assessment with both the traditional 
T/C and ratebased T/C, as the smaller treated tumors do 
not experience these effects to the same extent. However, we 
expect the ratebased T/C to be less affected than the tradi­
tional T/C because the ratebased analysis includes data from 

earlier time points, before the growth rate slows. Even when 
the growth rates vary over time, the ratebased T/C analysis is 
still meaningful because it measures differences in the average 
growth rate between groups.

A limitation of the ratebased T/C shares with the tradi­
tional T/C in that the scale is not particularly intuitive. In par­
ticular, the scale does not have a fixed level that corresponds 
to stasis. For example, with a slow growing tumor model, 
a T/C of 0.3may correspond to tumor regression, but in a fast 
growing tumor model, a T/C of 0.3may only correspond to 
reduced growth. Using the growth rate ratio of treated versus 
control would eliminate this problem. For example, we could 
define the growth rate inhibition as a measure of biological 
activity equal to (1–(growth rate of treatment group)/(growth 
rate of control group))×100%. For this measure, a value of 
0% would indicate that the treatment has no effect, a value 
of 100% would indicate stasis, and a value above 100% would 
indicate tumor regression.

To help scientists analyze their tumor xenograft data, 
we created an Excel spreadsheet that computes the ratebased 
T/C. The spreadsheet is available as a Supplementary File, and 
its details are described there.

The bootstrap approach presented in this paper allows 
us to estimate the uncertainty in our efficacy measures in an 
unbiased manner. In contrast, if we had instead used uncer­
tainty estimates that relied on assumptions specific to each 
biological activity measure, it would have favored measures 
that made conservative estimates of the uncertainty. The 
bootstrap approach is also preferable to simulation studies. In 
particular, simulation studies require assumptions about the 
data, so simulation would favor biological activity measures 
that were based on similar assumptions.

We acknowledge that other research facilities will have 
different amounts of measurement variability and different 
cost structures, so the results may be different across sites. 
However, we expect the ratebased T/C to outperform the 
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Table2. Properties of the traditional T/C and rate-based T/C.

Tiio T/C R-b T/C

Uses data from a single day, leading  
to reduced precision

Uses all available data

Excludes animals that are removed  
early (due to death or humane endpoint),  
leading to bias and reduced precision

Includes all the animals

Strongly depends on study length Minimal dependence on  
study length if the growth  
rates are constant
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traditional T/C regardless of where the data are generated 
because the ratebased T/C uses the data more efficiently. 
The recommended study length and sample size may depend 
on the facility, but the bootstrap approach we presented here 
should allow other researchers to optimize their own inhouse 
studies. For our studies, as we have pointed out here, the use 
of 10 animals in 21day studies resulted in a 99% power to 
detect a T/C of 0.4 and a Zscore of 4.63 (α=0.000004). In 
this context, analysis based on historical data was useful to 
us as it suggested ways in which to rationally optimize study 
design without compromising experimental rigor.

Although our analysis focuses on minimizing the cost 
for a given level of precision, cost is not necessarily the most 
important factor when designing a preclinical study. Other 
factors should be considered, such as the simplicity of the 
experimental design, the total time required to prepare and 
complete the study, laboratory space constraints, and the like­
lihood that the preclinical study will be predictive of future 
clinical results.

While our analysis recommended reducing the study 
length, we caution the reader that longterm studies are still 
necessary in some cases. In particular, certain drug side effects 
may not be observable in shorter studies. Since xenograft 
studies often have a secondary goal to provide tolerability 
data, researchers should consider this factor when deciding 
the study length. In addition, a reduction in the tumor growth 
rate may not be observable in a shorter trial if the drug has 
a delayed effect. If we expect a drug to have a delayed effect 
based on the mechanism of action, then a short study would 
not be suitable. In practice, shorter studies could be recom­
mended for screening, while longer studies could be used for 
confirmation.

In summary, our work presents a simple, alternative met­
ric for tumor xenograft studies, based on the growth rates of 
control and treated tumors. We also demonstrate that this 
metric is capable of providing equivalent statistical power with 
fewer animals and shorter study lengths.

Major Findings
The novel measure of antitumor activity proposed here, the 
ratebased T/C, is more efficient than the traditional T/C, 
requiring fewer animals to achieve the same power. We also 
find that 14day studies are more cost efficient than 21day 
studies, and that studies with six animals per group have suf­
ficient power.

Not all research facilities have the same level of variabil­
ity and operating costs, so the results may differ across sites. 
However, we expect the ratebased T/C to outperform the tra­
ditional T/C regardless of where the study is performed because 
the ratebased T/C makes more efficient use of the data. The 
optimal study length and animal number will depend on the 
variability and cost associated with each site, but our meth­
odology should allow other researchers to optimize their own 
studies. Overall, our results help investigators reduce the size 

and duration of xenograft biological activity studies without 
compromising statistical power.
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upplementary ata
upplementary able 1.
upplementary Figure 1. It shows the log tumor 

volume versus time for 100 randomly selected animals.
upplementary Figure 2. It shows the residuals from 

regressing the log tumor volume on time for 100 randomly 
selected animals. 

upplementary Figure 3. It shows a histogram of the 
R2 values from regressing the log tumor volume on time for all 
control group animals.

upplementary Figure 4. It shows a flow chart describ­
ing the bootstrap analysis.

upplementary Figure 5. It shows a normal QQ   plot 
for the log of the ratebased T/C across the bootstrap samples.

upplementary Figure 6. It shows the estimated 
Zscore for a range of sample sizes and study lengths.
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