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Introduction
Historically, taxonomy of a disease entity has been based on an 
underlying biology that explains the pathogenesis of a particu-
lar disease. Once a disease is established as a single uniform 
entity from the perspective of a common pathophysiology, 
various clinical and molecular prognostic features are used to 
define the severity of the disease.

This paradigm has been difficult to follow for cancer clas-
sification, because of our lack of understanding of the under-
lying mechanisms. In the case of breast cancer, an empirical 

system developed over the past three decades without a clear 
underlying organizing principle. Clinically, human breast 
cancers are currently grouped into three categories based on 
the presence of estrogen receptor (ER+), progesterone recep-
tor (PR+), and human epidermal growth factor receptor 2 
(HER2+) or by their absence in triple-negative breast cancers 
(ER/PR/HER2−). These categories are based on biomarkers 
that correlate with response to different treatments such as ER-
antagonist tamoxifen and anti-HER2 treatment herceptin. 
Though pragmatic, such an ad hoc classification scheme does 
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not provide insights about the pathogenesis or true phylogeny 
of breast cancer. A comprehensive discussion of inaccuracies 
of breast cancer classification appears in a recent review.1

With the emergence of high-throughput molecular sta-
tistical tools, several purely prognostic classification schemes 
have been proposed for breast cancer. For example, messenger 
RNA (mRNA) expression profiles of breast tumors have been 
used to define four prognostic subgroups of breast cancer: 
Luminal A, Luminal B, Basal-like, Claudin-low and Her2-
like.2 DNA methylation patterns have been used to identify 
five distinct groups3 and 10 different breast cancer clusters 
have been identified in a DNA copy number–based genetic 
classification system.4,5

However, while prognostic categories subdivide diag-
nostic categories into distinct outcome groups, they cannot be 
the sole basis of a comprehensive classification approach. The 
principal reason for this is that in a purely prognostic approach, 
the only criterion that distinguishes two entities is their dif-
ference in clinical outcome. Hence, two different entities with 
the same outcome but with different pathogenesis cannot be 
distinguished by this approach. This is a nontrivial issue as 
they may require different treatment approaches because of 
the differences in pathophysiology. Conversely, a purely prog-
nostic approach may end up categorizing two different stages 
of a single disease as different entities.

Consequently, purely molecular prognostic approaches to 
classify breast cancer have not led to a comprehensive clas-
sification. There has been little overlap among the mRNA 
expression, DNA copy number, and methylation-based 
prognostic groups, because they are not based on a common 
pathophysiology. A breast cancer task force recently concluded 
that molecular tools do not currently provide sufficiently 
robust information beyond histological type, grade, and ER, 
PR, and HER2status,6 and these molecular tests are therefore 
not routinely performed at most institutions.7

We set out to provide a pathophysiological framework 
that can provide a biological setting in which prognostic cat-
egories can be discovered. The phylogeny of normal cell types 
have been successfully used as a reference point to classify 
lymphomas and leukemias.8 The discovery of the molecular 
similarity between leukemias and lymphomas with normal 
lymphocytes and leukocytes was important in this process.

In solid tissues, characterization of the normal cell sub-
types has been difficult. Until recently, only two cell types – 
luminal versus myoepithelial cells – had been described in the 
human breast.9 This has precluded a normal cell-type–based 
classification system for breast cancer. Inspired by the clas-
sification of hematopoietic malignancies, we hypothesized 
that a more detailed description of normal cell types in the 
human breast may be important for classification of human 
breast tumors.

Recently, we analyzed more than 15,000 normal breast 
cells and described the normal phylogeny of cell subtypes in 
the luminal layer of human breast.10 These cell types conform 

to four novel hormonal differentiation groups (HR0, HR1, 
HR2, and HR3) based on estrogen receptor, androgen recep-
tor, and vitamin D receptor (ER, AR, and VDR) in normal 
human breast. When normal cell types were compared with 
more than 3000 human breast tumors, we found that each 
patient’s tumor could be placed precisely in this normal cell-
type phylogeny.

In this study, we examine breast tumor “taxonomy” based 
on normal tissue differentiation: triple-positive tumors (HR3) 
that co-express ER, AR, and VDR; double-positive tumors 
(HR2) that are ER/AR[+] (HR2ea), AR/VDR[+] (HR2av), or 
ER/VDR[+], (HR2ev); single-positive tumors (HR1) that only 
express one of the hormone receptors, ER[+] (HR1e), VDR[+] 
(HR1v), or AR[+] (HR1a); and hormone receptor–negative 
tumors (HR0) that are negative for ER, AR, and VDR.

In general, normal tissue differentiation and cellular 
phylogeny is regulated by epigenetic mechanisms. It remains 
to be demonstrated that an epigenetic basis exists for the 
breast-specific phylogeny we have described. DNA methy-
lation, tightly associated with alterations in the nucleosome 
DNA scaffold (and hence chromatin), is in part responsible 
for coordination of gene expression in individual cells.11–13 
Differentially methylated DNA regions (DMRs) distinguish 
cell lineages with high sensitivity and specificity,14 and consid-
erable research has been underway to delineate precise DMRs 
that define and specify a particular cell lineage. Our recently 
published set of statistical methods exploits this association to 
infer changes in cell mixture proportions solely on the basis 
of a DNA methylation profile. These methods are based on 
linear mixing assumptions, ie, that latent linear structures 
within DNA methylation profiles reflect phenotypic associa-
tions with cell mixture. In particular, we have demonstrated 
the use of a reference DNA methylation data set to deconvolve 
a separate target DNA methylation data set into constituent 
cell-type proportions15 and have more recently demonstrated 
the reference-free deconvolution of DNA methylation data 
sets, which allows for inference of latent linear structures 
reflecting cellular mixtures when no reference data sets exist.16 
Both methods assume that DNA methylation is measured on 
an average beta scale roughly corresponding to a fraction of 
methylated cytosine molecules and that an m×n matrix  of 
average beta values (m=# CpG sites, n=# subjects) is lin-
early generated via E()=XT+MΩT, where X is the n×d 
design matrix of phenotype and potential confounders,  is 
the m×d matrix of regression coefficients representing direct 
effects not mediated by cell type, and MΩTrepresents the lin-
ear mixture effect, with M an m×k matrix representing cell-
specific methylation states, Ω an n × k matrix representing 
subject-specific cell-type distributions, and the value k chosen 
in advance. In the reference-based method, an estimate of M is 
obtained from the reference data set, while the reference-free 
method extracts it as a latent variable. The latter is achieved 
by first fitting the model =* XT+*, where * is an m×d 
matrix of “unadjusted” coefficients and * is an m×n matrix 
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of errors, subsequently using straightforward linear algebra to 
extract an estimate B̂ of the adjusted coefficient matrix from 
the singular value decomposition of the concatenated matrix 
(*, *). Additionally, we have proposed a bootstrap method 
for obtaining standard errors (SEs) for both B̂ and *B̂  and have 
distributed software for our method via the R/CRAN pack-
age RefFreeEWAS.

No reference data set currently exists for normal breast 
cells types. However, we propose that breast tumors, arising 
from a particular cell-of-origin in a more-or-less clonal fashion, 
will essentially magnify the epigenetic state of their original 
cell type. In particular, any phenotype that reflects histologic 
information will also contain information about the epigenet-
ics of normal breast cells. Specifically, if the proportions Ω of 
constituent cell types vary with available phenotypic informa-
tion X, then the DNA methylation data  from tumors will 
be strongly influenced by the underlying DNA methylation 
states M for the constituent cell types, assumed more or less 
to reflect normal breast cells. Thus, we hypothesize that tumor 
methylation data can be decomposed into two components: 
the cell-mixture component ∆ = MΩT(Delta), reflecting 
normal breast cells, and the remainder term (Beta), which 
reflects tumor-specific activity. Critically, ∆=*−, which is 
estimable by our recently published statistical methods.

In this paper, we use three publicly available breast tumor 
methylation data sets to test our hypothesis. All three data 
sets were obtained from Gene Expression Omnibus (GEO), 
and each contain data assayed by the Illumina Human
Methylation27 BeadChip array. Table 1 describes the data 
sets, GSE20712,17 GSE31979,18 and GSE32393.19 Note that 
each of the three data sets contains additional samples reflect-
ing normal breast tissue, and GSE20712 also includes com-
panion mRNA expression data set, GSE20711. Regressing 
DNA methylation data on phenotype matrices X reflecting 
underlying histology, we demonstrate the following: (1)CpG 
sites and genes with significant ∆ coefficients (reflecting cell 
mixture effects) will be more consistent across the three data 
sets than those with significant  coefficients (reflecting 
effects that are independent of cell mixture); (2) deconvolu-
tion of DNA methylation data from normal breast tissue at 
CpG sites with the most significant ∆ coefficients will lead 
to latent linear structures that more strongly correspond to 
normal breast cell types than do the latent linear structures 

obtained by deconvolving normal breast tissue at CpG sites 
with the most significant  coefficients; and (3) deconvolution 
of tumor data will produce linear structures that more closely 
align to tumor histology when CpG sites with the most sig-
nificant ∆ coefficients are used instead of those with the most 
significant  coefficients. Note that for (2), we use mRNA 
expression data paired with samples in GSE20712 to super-
vise deconvolution of cell types and use data from our recent 
paper, Santagata et al.10 as a basis for normal-cell compari-
son, and that for (3) we use tumors only from GSE31979 and 
GSE32393 as the basis for comparing classifications obtained 
from GSE20712, since the tumor histology classifications of 
GSE20712 ultimately form the basis of classification via the 
phenotype matrix X used to obtain estimates of ∆ and .

esults
omparison of delta and beta coefficients. We applied 

the method of Houseman etal.16 to tumor data obtained from 
the three GEO data sets described in Table1. The phenotype 
matrix X used for each analysis is detailed in Table 2. The 
Venn diagrams in Figure1 illustrate the number of signifi-
cant (q,0.05) CpG coefficients ∆ (mixture) and  (mixture-
adjusted) as well as overlaps between the three data sets. 
Corresponding numbers are shown for unique genes to which 
significant CpGs are mapped. Venn diagrams in Figure 1 
illustrate overlaps between significant ∆ coefficients and 
significant  coefficients within each data set. While there 
were 344 overlapping CpGs (57 overlapping genes) with sig-
nificant ∆ coefficients across the three data sets, there were 
no overlapping CpGs or genes with significant  coefficients. 
Significantly more CpGs and genes overlap via ∆ than via  
(P,10−12, two-sample binomial proportion test).

Figure S2 illustrates correlation among estimates of 
*(total unadjusted), , and ∆ in significance (as measured 
by–log10 P-value) averaged over the three data sets. Signifi-
cance of ∆ coefficients correlated strongly with significance of 
*coefficients (Spearman rS=0.61) but was uncorrelated with 
significance of  coefficients (Spearman rS=−0.01); signifi-
cance of  coefficients correlated only weakly with significance 
of *coefficients (Spearman rS= 0.33). FigureS3 illustrates 
correlation between data sets in significance of ∆ and  coef-
ficients. Spearman correlations for ∆ were 0.41, 0.43, and 
0.35 for GSE20712 versus GSE31979, GSE20712 versus 

Table1. ummary of data sets.

Ao Sb U PubMed

# S # Cps

To No # #2 #=0

G20712 3/2010 2/2014 21910250 119 4 27,571 27,571

G31979 9/2011 1/2014 21825015 90+13a 6+15b 27,570 27,485

G32393 9/2011 1/2014 22346766 114 23 27,563 26,589

Notes: aA total of 103 total samples were available, but 13 had missing/ambiguous histology. bSix healthy tissues matched to tumor and 15 to normal breast 
organoid.
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0
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GSE31979

546335 15
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Genes: B coefficients 

GSE32393 GSE31979 GSE32393
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igure1. Overlaps in CpGs and genes having significant ∆ or B coefficients. Each panel reports the number of features that significantly distinguish 
clinical phenotypes within three breast cancer data sets (described comprehensively in Tables1 and 2). Panels (A) and () report significant (q,0.05) 
CpG loci, while panels (C) and (D) report unique genes to which significant CpG loci are mapped. Panels (A) and (C) report significance based on ∆ 
coefficients (representing cell-composition effects), while panels () and (D) report B coefficients (representing effects not mediated by cell composition).

Table2. ummary of analysis.

EWAS o (X)

SE20712 SE31979 SE32393

oog+ g+ z oog oog+ER+ g+g

Histology categories Basal|HER2|LumA|LumB −|+|Her2|
LumA|LumB|TriN

Invasive ductal|invasive 
lobular|mucinous or medullary+ others

Deg. Free (Total Mod) 6 6 7

Deg. Free (Phenotype Test L) 3 5 3

Dirichlet Model () – Histology Histology+

otes Age and size available only 
as binned high/low. Node and 
Age bin were omitted due to 
low overall significance; Grade 
was binned into (1,2) versus 3. 
ComBAT-adjusted for Beadchip 
effects (with Histology as pro-
tected phenotype).

103 tumors available, 13 excluded 
from W analysis due to 
missing/ambiguous histology, but 
included in Dirichlet model for 
assessing cell-type proportion 
estimates. Age/node not avail-
able. Size omitted due to low 
overall significance. Two different 
types ofnormal breast tissues are 
included, as described in able3.

Size not available; Grade: 1,2, (3,NA) 
[4NAs]; mean Age=59. ComB-
adjusted for Beadchip effects (with 
Histology as protected phenotype). 
Both Histology and ER used as tested 
phenotype.

Note: Boldface variables in Epigenome-wide Association Study (EWAS) model were used in phenotype-specific hypothesis tests represented by the matrix L 
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GSE32393, and GSE31979 versus GSE32393 respectively; 
corresponding Spearman correlations for  were 0.01, −0.01, 
and 0.01.

Figure2 shows the GeneDecks annotation terms most 
significantly associated with lists of genes to which significant 
(q,0.05) CpGs are mapped, either via ∆ or via . Prominent 
terms include protein binding, neuronitis, breast cancer, mor-
tality/aging, and tumors; for the top 10 terms, greater numbers 
of matching genes were obtained via ∆ than via . Note that 
there were no significantly matching  terms for GSE20712. 
In general, the number of genes mapped to significant ∆ coef-
ficients significantly matching GeneDecks terms was larger 
than the corresponding number of genes mapped to  coef-
ficients. For GSE31979 and for GSE32838, Figure S4 illus-
trates a comparison of significance between ∆ and  over all 
significant GeneDecks terms, demonstrating greater signifi-
cance via ∆ than via . Overall, these results suggest greater 
statistical and biological significance and consistency across 
data sets among lists of genes were obtained via ∆ compared 
with lists obtained via . In order to compare GeneDecks 
terms by predominance among one type of coefficient over 

another, we sorted the terms by two quantities: N N∆ Β−  
and by N NΒ ∆− , where N∆ was the number of matching 
genes mapped to significant ∆ coefficients across all three data 
sets, NB was the corresponding number of genes mapped to 
significant  coefficients, and the square-root function was 
used as the variance-stabilizing transform for Poisson counts. 
Table S1(A) shows the top 50 terms by the first criterion, and 
Table S2(B) shows the top 50 terms for the second criterion. 
Terms favored by ∆ were predominantly disorder attributes, 
while those favored by  were predominantly expression pat-
tern attributes. The most predominant disorder terms favored 
by ∆ coefficients involved immune function, inflammation, 
and cancer, while additional terms suggest cell membranes 
and signaling. Interestingly, VDR, which has been shown to 
distinguish normal breast cell types,10 may figure prominently 
in two of the top terms, “tuberculosis” and “hepatitis b”,20–22 
not to mention the vascular endothelial growth factor (VEGF)  
pathway critical in “hypertension”.23 In contrast, the predomi-
nant terms favored by  coefficients demonstrate no strong 
pattern other than expression in disparate tissues. Taken 
together, these lists suggest that the genes mapped to CpG 
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loci that share epigenetic patterns in a linear fashion (ie, 
suggestive of mediation by cells) share integrated biological 
activity, while the genes mapped to CpG loci that represent 
“unique” epigenetic markers of clinical phenotype share less 
biological activity.

omparison with normal breast tissue. We next sought 
to compare the biological significance of ∆-based coefficients 
with -based coefficients for normal breast tissue. Table3sum-
marizes normal breast tissue available via the three GEO 
data sets used in this analysis. We first used mRNA expres-
sion data for Estrogen Receptor 1 (ESR1), AR, and VDR to 
assign each “tumor” in GSE20712 to one of eight categories. 
These categories are mapped to 11 normal cell-type catego-
ries, each defined by expression of ER, AR, VDR, and K5, as 
described previously10 and as shown in Table4. Additionally, 
to address potential contamination by blood, we used DNA 
methylation data from 500 CpGs to infer leukocyte propor-
tions for each tumor, using our reference-based deconvolution 
algorithm.15 Over the union of 100 leukocyte DMRs with the 
5000 CpGs having most significant ∆ coefficients (for a total 
of 5081 CpGs), we estimated the mean methylation matrix 

M∆ for the eight hormonal cell subgroup categories described 
in Table4, subsequently applying our reference-based decon-
volution algorithm15 to normal data described in Table3 to 
obtain cell proportion estimates ˆ

∆Ω  for each of 14 cell types (8 
breast cells and 6 leukocyte types). We repeated the analysis 
using top 5000 CpGs having the most significant  coeffi-
cients (for a total of 5077 CpGs), obtaining the correspond-
ing cell proportions ˆ

BΩ . Finally, as a basis of comparison, 
we used data provided in Supplementary Tables S2A–S2D of 
Santagata etal.10 to infer the proportion of normal cell types 
in normal breast tissue. Figure3A illustrates the proportion 
of normal cell types inferred from the Santagata etal data,10 

Table3. Normal breast tissues available.

D  Lb n

G27012 ormal 4

G31979 Normal adjacent to tumor 6

ormal breast organoid 15

G32393 Healthy 23
 

Table4. ormal breast cell types.

C  ER AR DR K5 na

H0 L1–2 − − − − 5

L3 − − − +

H1 L4 + − − − 1

L5 − + − − 1

L6 − − + − 20

L7 − − + +

H2 L8 + + − − 14

L9 + − + − 3

L10 − + + − 13

H3 L11 + + + − 31

otal 88

Note: aNumbers of tumors available in both GSE20712 (DNA methylation) and 
GSE20711 (mRNA expression).

Proportions inferred from
Santagata et al. (2014) 
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igure3. Correspondence of estimated normal cell proportions. Panel (A): left subpanel indicates estimated proportions; right subpanel illustrates variation 
among bootstrap samples. Panel (): distributions of cell proportions inferred from tumor data or normal cell data obtained from antagata etal.10
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while Figure3B illustrates the correspondence between these 
inferred proportions and proportions ˆ

∆Ω  and ˆ
BΩ  of cell-type 

obtained from GEO data. Note that bootstrap estimates of 
cell-type probabilities are also shown in Figure3A and were 
used to generate the distribution of parameter estimates shown 
in gray in Figure3B. Additionally, Figures S5 and S6 depict 
the GEO-based estimates in clustering heat map format. The 
absolute correspondence was far from perfect in either case (
ˆ

∆Ω  or ˆ
BΩ ); in particular, the GEO analysis suggested elevated 

proportions of L11cells, while the Santagata etal data sug-
gest relatively low proportions. However, in all other respects, 
there was general semiquantitative agreement: in both analy-
ses, proportions of L1–3 and L6–7 were elevated relative to 
L4, L5, L8, L9, and L10. Note that while imperfect in both 
cases, the correspondence was worse for ˆ

BΩ  (8 degrees-of-
freedom χ2 statistic=1528) than for ˆ

∆Ω  (8degree-of-freedom 
χ2 statistic=2608). The clustering heat map shown in Figure 
S6 shows that the leukocyte assignment appears principally 
in the natural killer (NK) category, ie, for a relatively rare cell 
type in comparison to granulocytes or CD4+ T cells; such 
a finding would contradict overall contamination of tumor 

sample by blood, and instead suggest either biased estimates 
MB of normal cell-specific epigenetic states or infiltration of 
tumor via NK cells, in either case failing to reflect normal 
breast cell activity. Note also that a paired t-test comparing 
the total proportion assigned leukocyte cells differed sig-
nificantly (P,10‑12) between ˆ

∆Ω  and ˆ
BΩ  with greater leu-

kocyte proportion assigned for ˆ
BΩ ; this finding, illustrated 

in Figure S7, provides additional evidence that ˆ
BΩ  repre-

sents greater misclassification with respect to normal breast  
cell phylogenetics.

omparisons with tumor tissue. Finally, we applied 
the deconvolution method described above to tumor data 
from GSE31979 and GSE32393. Clustering heat maps 
appearing in Figures 4 and 5 depict the correspondence of 
tumor histology with inferred cell proportions (via Delta 
coefficients): 31979( )ˆ GSE

∆Ω  for GSE31979 (Fig.4) and 32393( )ˆ GSE
∆Ω  

for GSE32393 (Fig.5). A likelihood ratio test (LRT) assum-
ing a Dirichlet model for 31979( )ˆ GSE

∆Ω  and 31979( )ˆ GSE
BΩ  revealed 

highly significant results for both cell proportion estimates, 
but greater significance for 31979( )ˆ GSE

∆Ω  than for 31979( )ˆ GSE
BΩ . In 

particular, for GSE31979, the LRT statistic via ∆ was 201.2 
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igure4. Clustering heat map showing estimated proportions of normal cell types within tumors available in GSE31979. Left annotation bar represents 
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Abbreviations: HR, hormone receptor, v, Vitamin D receptor; a, androgen receptor; e, estrogen receptor; B cell, B Lymphocyte; CD4, Helper T Cell; 
CD8, Cytotoxic T Cell; G, granulocyte (Gran); Mono, Monocyte; NK, natural killer cell. 
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(90 d.f. χ2, P=1.7 × 10−10) and via  was 191.3 (90 d.f. χ2, 
P=2.8× 10−9). Similar results were obtained for GSE32393: 
the LRT statistic via ∆ was 156.1 (45 d.f. χ2, P,10−12) and 
that via  was 125.4 (45 d.f.χ2, P=1.6 x 10−9). Note that the 
clustering heat maps for both data sets reveal that the ER 
status of tumors (bar on left, green for ER+) line up reason-
ably with the ER status of the inferred ER+ cell types (HR3, 
HR1-e, HR2-ev, and HR2-ae). In contrast, ER− tumors 
mostly line up with HR0 and HR1-v. Figure4suggests little 
to no clustering by HER2 status; the lack of an epigenetic 
signature is consistent with the genetic amplification–driven 
pathogenesis of these tumors. In Figure5 there is once again 
a correlation between ER+ tumors and HR subtypes (HR3, 
HR1-e, HR2-ev, and HR2-ae) and ER− tumors mostly line 
up with HR0 and HR1-v. In contrast, no clustering accord-
ing the morphological categories (ductal, lobular, mucinous, 
or medullary) is observed. Note also that, as measured by esti-
mated cell proportion, about 24% of the GSE31979 tumors 
and 36% of the GSE32393 tumors belonged to the triple-
positive HR3group, while 12% of the GSE31979 tumors and 
6% of the GSE32393 tumors belonged to the triple-negative 
HR0 group. It is worth pointing out that in the standard 

breast cancer classification, all ER+ tumors would be com-
bined into one group. However, as can be seen in Figures4 
and 5, HR3 tumors, which are by definition ER+ (ER/AR/
VR+), form a very distinct cluster category different from 
other ER+ tumors, such as HR2 (ER/AR+ or ER/VDR+) 
and ER+ HR1 (ER+).

iscussion
We hypothesized that the coefficient matrix ∆, representing the 
effects of tumor phenotype on DNA methylation mediated by 
cell composition, would more stably reflect tumor biology than 
the coefficient matrix , which represents DNA methylation 
effects that are apparently independent of cell composition. 
We have shown this is indeed the case, with greater overlap 
across three breast cancer data sets (GSE20712, GSE31979, 
and GSE32393) in CpGs and genes with significant ∆ coef-
ficients compared with  coefficients; this finding suggests 
that the CpGs that act together in a linear fashion consistent 
with cell composition effects more consistently reflect breast 
tumor biology. Additionally, there was greater correlation of 
CpG-specific total (unadjusted) effects *=∆ +  with ∆ than 
with , suggesting that the cell-composition portion of the 

ER−/invasive ductal

ER+/invasive ductal

HR3

HR2

HR1

HR0

ER−/invasive lobular

ER+/invasive lobular

ER−/mucinous or medullary

ER+/mucinous or medullary

ER−/others

HR3 HR1 HR2 HR2 HR2HR1HR0 HR1

0.0
0.2
0.4
0.6
0.8
1.0

H
R

3

C
D

4

C
D

8

B
 C

el
l

G
ra

n N
K

M
o

n
o

H
R

1-
a

H
R

2-
ev

H
R

0

H
R

1-
v

H
R

2-
av

H
R

1-
e

H
R

2-
ae
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association between tumor phenotype and DNA methylation 
drives the overall association.

For the prominent annotation terms that match genes 
to which CpGs having DNA methylation significantly asso-
ciated with phenotype are mapped, more genes are mapped 
to CpGs with significant ∆ coefficients than with signifi-
cant  coefficients. Cancer-specific terms such as “breast 
cancer”, “tumors”, and “leukemia” were prominent. Also 
prominent were immune-related terms such as “leukemia” 
and “mortality/aging” (changes in immune function are hall-
marks of aging24,25); this finding is consistent with previously 
observed immune characteristics of breast tumor methyla-
tion, reflecting processes such as infiltration by T-cells,17 
although we attempted to address infiltration in downstream 
analyses. The very general Gene Ontology term “protein bind-
ing” also figured prominently; this is consistent with previ-
ously observed importance of cytoskeletal protein binding in 
breast cancer26 as well as established signaling pathways3,27 in 
which substrate binding may be involved. The prominence of 
the term “neuronitis” is puzzling, but consistent with meta-
bolic changes observed in both breast tumors and synaptic 
coupling,28 and with the prominence of the Wnt pathway in 
both DNA methylation–related mRNA expression in breast 
tumors3 and neuronal differentiation.29 While we found that 
prominent terms were represented more by genes with sig-
nificant ∆ coefficients than by genes with significant  coef-
ficients, we acknowledge several alternative interpretations 
of this finding. The first is that the cell-compositional effects 
that consistently associate with tumor phenotype simply 
reflect infiltration by immune cells; the second is that the cell-
compositional effects represent clonal expansion of a specific 
underlying normal breast cell type that has undergone carci-
nogenic transformation.

To distinguish between these two explanations, we ana-
lyzed DNA methylation data from normal breast cell tissue, 
using a supervised deconvolution approach,15 where cell types 
were determined by applying expression-based normal breast 
cell categories10 to existing mRNA expression data (available for 
the breast tumors in GSE20712), choosing CpGs that had the 
most significant ∆ coefficients and choosing additional CpGs 
that identify known immune cell types.15 The rationale for this 
analysis was the following: if cell-type heterogeneity in breast 
tumors is driven by the clonal expansion of a specific type of 
normal breast cell, then the set of CpGs for which heterogene-
ity in DNA methylation is explained mostly by cell composition 
will represent, for the most part, the set of CpGs that serve to 
identify each normal breast cell type, in the same manner that 
has been previously characterized for leukocytes.15,30 In other 
words, tumorogenesis acts to magnify the typical epigenetic 
state for one type of normal breast cell, thus enabling a plau-
sible (if imperfect) characterization of such states. Emerging 
from this deconvolution analysis were estimated proportions 
within normal breast cell tissue of each expression-based 
normal cell type, described in Table 4, adjusted for immune 

infiltration. While we did not observe perfect correspondence 
between these estimated proportions and those obtained from 
an independent data set,10 there was general semiquantitative 
agreement. The greatest discrepancy was that, in our deconvolu-
tion analyses, there was a smaller estimated proportion of L1-3 
(HR0) cells and a greater estimated proportion of L11 (HR3) 
cells, when compared to the independent data set based on nor-
mal breast tissue, reflecting a potential bias in the use of tumor 
data to define representative sets CpGs. When we repeated the  
analysis using the most significant  coefficients in place of the 
significant ∆ coefficients, we found a similar pattern but strictly 
worse correspondence with proportions estimated from normal 
tissue, thus reinforcing the finding that the DNA methylation 
profiles may be driven more by cell-composition effects reflect-
ing normal cell types than by effects that are independent of 
normal cell composition.

We applied similar deconvolution analysis to tumor data 
appearing in GSE31979 and GSE32393; we found negligible 
correlation of cell-type proportions to HER2status and sub-
stantial agreement in ER status between predicted cell type 
and tumor histology. We also observed low estimated propor-
tions of leukocytes, suggesting that cell-compositional effects 
are explained principally by underlying normal cell histology 
and negligibly by immune infiltration. Finally, we note that 
the correspondence between tumor phenotype and estimated 
cell-type proportion was greater for the compositionally based 
estimates ( ˆ

∆Ω ) than for the estimates based on independent 
effects (Ω̂B), though both were strong.

To date, the most comprehensive integrated molecular 
profiling of breast tumors is that undertaken by the Cancer 
Genome Atlas (TCGA) network.3 The DNA methylation 
profiling in the TCGA study did not attempt to establish cor-
respondences with normal tissue, so the potential of a direct 
comparison with our results is limited. However, TCGA 
found a significant correspondence of DNA methylation with 
mRNA expression in the Wnt signaling pathway (associated 
with ERs31–33 and also a child term of the GO “protein bind-
ing” term), and also found at most a modest association of 
DNA methylation with HER2status. A slightly older study34 
found no associations between DNA methylation and ER sta-
tus, parity, or oral contraceptive use (ie, hormonal signaling), 
but this study used the relatively sparse GoldenGate platform 
(Illumina, Inc) for assaying DNA methylation.

We note that a substantial proportion of the tumors in 
GSE31979 and GSE32393 were apparently members of the 
triple-positive HR3 lineage, while smaller fractions were mem-
bers of the triple-negative HR0 lineage. While these propor-
tions are biased by selection of tumors in the original study and 
thus do not necessarily represent population-based estimates, 
we note that in our earlier study10 we found that nearly half 
of the breast cancer patients belonged to the HR3group and 
that patients with these triple-positive tumors (HR3) were up 
to seven times more likely to survive compared to patients with 
triple-negative tumors (HR0). Compared with many existing 
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genetic/molecular tests with 2–5 fold survival differences, this 
cell-type–based approach can become a powerful new tool in 
predicting patient outcomes, thus representing great prognos-
tic potential. Additionally, we note that the selection of CpGs 
based on cell-composition effects (∆) led to greater consistency 
in significant associations across distinct data sets and better 
apparent correspondence with normal breast cell phylogeny 
compared with results obtained by selection of coefficients 
than CpGs presumed to have an effect independent of cell 
composition (). Thus, as an analytical technique for develop-
ing prognostic biomarkers using DNA methylation data, the 
reference-free approach we have employed in this analysis may 
have great potential.

A major limitation of this analysis, reflected in the imper-
fect correspondence between estimated normal cell propor-
tions obtained from the two distinct analytical approaches 
we employed, is that our CpG sets that putatively distinguish 
normal breast cell types as well as the normal DNA methyla-
tion states estimated for those CpGs were determined from 
tumor data, thus potentially biased by epigenetic changes 
related to carcinogenesis. We would expect much cleaner 
correspondence if the CpGs and their normal methylation 
states could be obtained by profiling DNA methylation for 
isolated cell types from normal breast tissue. While no such 
data sets yet exist, we anticipate that such data sets will exist 
in the near future, thus potentially validating the findings in 
the present article.

Finally, it is worth noting that we initiated this study based 
on eight cell subtype lineages defined by protein expression for 
ER, AR, VDR, and K5 detected by immunostains. The CpG 
methylation results corresponding to these eight lineages sug-
gest that they may have distinct DNA methylation signatures. 
Hence, this result supports the notion that these protein-based 
phenotypic categories may have an epigenomic underpinning. 
These results indicate that the novel analytical approach we 
used for estimating normal cell proportions from protein co-
expression cell counts could be applied more generally to esti-
mate normal cell proportions for heterogeneous tissue.

Materials and Methods
ata sets. Data sets were obtained from GEO. All 

three sets (accession numbers GSE20712, GSE31979, and 
GSE32393) represent DNA methylation data assayed via the 
Illumina HumanMethylation27 BeadChip Array platform. 
Beadchip identifiers were available for data sets GSE20712 
and GSE32393, so these were used to preadjust logit-
average betas for BeadChip batch effects using the ComBAT 
algorithm,35 protecting histology, and ER status against over-
adjustment. As beta values are required for the method pub-
lished by Houseman etal.16 adjusted values were subsequently 
transformed back via inverse-logit to the average beta scale. 
Only CpGs having fewer than three missing values were used 
in analysis. We attempted to minimize the size of the mod-
els used in this analysis by omitting covariates that displayed 

only weak overall associations with DNA methylation by pre-
liminary assessment via limma analysis.36 For GSE20712, 
paired mRNA expression data assayed via Affymetrix Human 
Genome U133 Plus 2.0 Array exist in GEO via accession 
number GSE20711; these were used to assign cell-of-origin 
categories to individual tumors in GSE20712.

elta and beta coefficients. For each of the three data 
sets analyzed, we used the recently published reference-free 
deconvolution algorithm16 to estimate CpG-specific DNA 
methylation effects adjusted for cell mixture, as implemented 
in the R package RefFreeEWAS (version 1.01) within R 
version 3.0.0. For each data set, the covariate matrix X was 
constructed as described in Table2. For GSE31979, 13 of 103 
total tumor samples were excluded due to missing or ambigu-
ous histology classification.

In order to estimate the variation in estimators B̂ and *B̂ ,  
the reference-free algorithm generates bootstrap estimates 
for B̂ and *B̂  and hence *ˆ ˆ∆̂ = −B B. These were used to com-
pute SEs and P-values p j

B (for Beta coefficients) and p j
∆  (for 

Delta coefficients) for each row j∈{1,2,…,m}. To represent 
false discovery rate, we used the q value package (version 
1.34.0) in R to transform P-values to q-values. Additional 
technical details are provided in the Supplementary Meth-
ods document. After selecting a q-value threshold of 0.05, 
we computed overlaps between significant Beta and Delta 
coefficients within each data set and Beta-specific and 
Delta-specific overlaps across data sets. We also employed 
the GeneDecks functionality of GeneCards (http://www.
genecards.org/index.php?path = GeneDecks) to biologi-
cally annotate genes to which significant (q, 0.05) CpGs 
were mapped. Since GeneDecks accepts a maximum of 
500 genes, we used only 500 genes corresponding to the 
smallest q-values in cases where more than 500 unique 
genes had significant CpGs. Note that all queries were run 
on April 6, 2014.

omparison with normal breast tissue. To estimate the 
distribution of normal breast cell types, we used data from 
Tables S2A through S2D in Santagata etal.10 Each of these 
tables provides co-expression frequencies of five proteins: K5, 
VDR, ER, AR, and Ki67. In particular, for two proteins G1 and 
G2, imaging-based cell counts N10, N01, and N11 are given for 
G G1 2

+ −, G G1 2
− +, and G G1 2

+ +cells, respectively. From these counts, 
we obtained a vector ω0 with a cell-type proportion estimate 
for each of the 10 categories described in Table4. Bootstrap 
inference was achieved using a parametric bootstrap proce-
dure, where 250 data sets were simulated using fitted param-
eters, each used to obtain a bootstrap estimate 0ω( )ˆ r . Bootstraps 
revealed a slight bias in parameter estimates compared with 
fitted probabilities (as is evident upon careful examination of 
Fig.3A), so that bootstrap means 

250

0 01=
ω = ω∑(•) ( )ˆ ˆ r

r  were used 
to bias-correct final quantiles depicted in Figure 3B (in red 
and gray) and in comparisons described below. In particu-
lar, Figure3B shows the median, quartiles, and 2.5th/97.5th 
percentiles for each cell-type distribution assuming normally 
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distributed estimates with mean equal to bias-corrected esti-
mates 0 0 02ω = ω − ω (•)ˆ ˆ  and standard deviations equal to the cell-
type–specific bootstrap standard deviations σ0 0

1 2
= { }diag Σ

/ , 

0

2501 2
0 01

249− ⊗
=

Σ = ω − ω∑ ( ) (•)ˆ ˆ[ ]r
r

. Details appear in the 
Supplementary Methods document. Complete code for this 
analysis appears on our website, http://people.oregonstate.
edu/∼housemae/software/CancerInformatics2014/.

Gene expression arrays were available for 88 of the 
119 tumors profiled in GSE20712; paired mRNA expres-
sion data appear on GEO via accession number GSE20711. 
These data were used to assign each of the 88 tumors to one 
of eight categories based on AR, ER, and VDR expression 
(collapsing categories L1-2 and L3 in one category and L6 
and L7in another). Bimodal probe 226197_a was used for AR 
expression, dichotomized approximately between modes at 
the value 8.0. Bimodal probe 205225_at was used for ESR1, 
dichotomized approximately between modes at the value 9.0. 
None of the VDR probes were bimodal, so probe 204254_s_at 
was used for VDR, dichotomized just below the mean at the 
value 8.0. Sample sizes for each category are shown in Table4. 
Figure S8 in the Supplement depicts the histograms of the 
expression data as well as the chosen thresholds. The top 5000 
CpGs ranked by Delta P-values p j

∆  defined above were com-
bined with 100 leukocyte-specific DMRs,15 for a total of 5081 
CpGs. For each of these, mean methylation (average beta) was 
subsequently computed from tumor methylation data for each 
of the eight defined cell categories. These were combined with 
mean methylation values at the same CpGs for six leukocyte 
types (B-cell, CD4+ T cell, CD8+ T cell, granulocyte, mono-
cyte, and NK)15 obtained from data available in GEO, acces-
sion number GSE39881. The result was a 5081×14 matrix 
M(∆) of cell-type–specific methylation values for eight breast 
cell types and six blood cell types, the latter to account for 
potential blood contamination of samples. For each of the avail-
able 48 normal breast cell samples summarized in Table3, we 
obtained cell-type proportions by applying the reference-based 
method.15 In this context, the algorithm produced a 14×1 vec-
tor { 2

1 14 0∆ ∆ ∆
=ω = − ω ω = ω ω ≥( ) ( ) ( )

...,
ˆ argmin y M : ( ) , ,i i h h h  

}1
1

=
ω ≤∑ k

hh for each normal breast tissue sample i having 
DNA methylation profile y i

( )∆  at the selected CpG sites. 
We repeated the process by selecting instead the top 5000 
CpGs ranked by Beta P-values p j

B , resulting in 5077 common 
CpG sites, a 5077×14 matrix M(B) of cell-type–specific meth-
ylation values, and cell proportion vectors ω( )ˆ B

i for each tumor 
sample i. Box-and-whisker diagrams in Figure 3B depict 
the distributions of ∆ω( )ˆ

i  and ω( )ˆ B
i  by cell type. Figures S5 

and S6 display the resulting data 1 48
∆

∆ ∈Ω = ω( )
{ ,..., }

ˆ[ ]i i  and 

1 48∈Ω = ω( )
{ ,..., }

ˆ[ ]B
B i i  as clustering heat maps, with clustering 

obtained via Ward’s method.
To compare ∆ω( )ˆ

i  and ω( )ˆ B
i  to the distribution ω0obtained 

from the Santagata etal data,10 we used the ∆ω( )ˆ
i  and ω( )ˆ B

i  esti-
mates to calculate Delta- and Beta-specific means ω( )∆ and ω ( )B

(respectively) and variance–covariance matrices Σ(∆) and Σ(B) 
(respectively), constructing finally the 8 d.f. chi-square statistics

Q( ) ( ) ( )( ) [ ( ) ]∆ ∆ ∆Σ Σ= − + − −ω ω 0 0
1 148L L L

L
breast
T

breast
T

breast

breeast ( )( )ω ω∆ −  0

and

Q B B B( ) ( ) ( )( ) [ ( ) ]= − + − −ω ω 0 0
1 148L L L

L
breast
T

breast
T

breast

br

Σ Σ

eeast ( )( )ω ωB −  0

with Lbreast the 14×8 matrix that selects out only the breast 
coefficients. Note that Σ0 represents the variance–covariance 
matrix for the “estimate” ω0, but the corresponding matrices 
for mean estimates ω( )∆  and ω( )B  are, respectively, 48−1Σ(∆) and 
48−1Σ(B).

omparisons with tumor tissue. We also applied the 
approach described above (to obtain estimates ∆ω( )ˆ

i  and ω( )ˆ B
i of 

cell-type proportion for normal breast tissue) to tumor samples 
available in GSE31979 and GSE32393. We did not apply the 
approach to tumor samples from GSE20712, since the tumor 
data were used to select the CpGs used in the estimation pro-
cedure (via M(∆) and M(B)). Thus, for each tumor sample i in 
GSE31979, we estimated cell proportion vectors 31979

∆ω( )
,

ˆ
i and 

31979ω( )
,

ˆ B
i, and for each tumor sample i in GSE32393, we esti-

mated cell proportion vectors 32393
∆ω( )

,
ˆ

i and 32393ω( )
,

ˆ B
i. The results 

are depicted as clustering heat maps in Figures4 and5 with 
clustering obtained via Ward’s method. From these individual 
estimates, proportion sets 31979

∆Ω( )ˆ GSE , 31979Ω( )ˆ GSE
B , 32393

∆Ω( )ˆ GSE , 
and 32393Ω( )ˆ GSE

B  were assembled. We simplified the annotation 
of GSE31979 phenotypes in Figure4, classifying each tumor 
as “Ambiguous/unknown” (n = 13), ER+/HER2+ (n = 5), 
ER+/HER2− (n=34), ER−/HER2+ (n=12), ER−/HER2− 
(n=39). Supplementary Table S2 provides details of classifica-
tion based on the histology information available in the GEO 
files. Note that unknown HER status (4LuminalA tumors 
and 21 ER− tumors) were classified as “HER−” for this analy-
sis. Annotation details for GSE32393 are given in Table S3, 
detailing histology by ER status (ER+ n=76, ER− n=38); 
note that one invasive lobular tumor had unknown ER status 
and was classified as ER−.

To evaluate concordancy between cell-type proportions 
and histological/molecular classification, we fit Dirichlet mod-
els to each tumor-specific cell proportion vector, a null model 
that assumes no concordance and another model that allocates 
a portion of each sample to the cell-type categories according 
to histological/molecular classification. Table2indicates the 
variables that were used to define the classification. Note that 
for GSE31979, 13 tumor samples with missing or ambiguous 
classification were included in this analysis, assigned to a sep-
arate histology category of Ambig, producing seven overall 
histology categories. Chi-square likelihood-ratio test (LRT) 
statistics and the corresponding P-values were computed for 
each data set and statistic (Delta and Beta). Details of the 
Dirchlet model fitting appear in the Supplementary Methods 
document.
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