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ABSTRACT: Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among 
other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and 
cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with 
phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expres-
sion. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of 
the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, 
cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, 
recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results 
demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-
to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive 
potential of human fibrosarcoma cells.
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Introduction
Caveolae are specialized cholesterol- and sphingolipid-enriched 
plasma membrane invaginations, which, in cancer cells, regu-
late oncogenic functions through multiple signaling cascades.1 
Among these functions, roles of caveolae in mechanosensing, 
vesicular trafficking, and shuttling of molecules through the 
cell have been described.2–5 Caveolae have also been ascribed 
functions in many physiological events, such as wound heal-
ing, embryonic development and tissue regeneration,6,7 and in 
pathological settings such as cancer progression and metastasis.8 

Cancer cell invasion, which involves several cellular processes 
including disruption of cell adhesion, degradation of the extra-
cellular matrix (ECM) and regulation of cell invasion of blood 
and lymph vessels,9 has also been shown, in part, to require 
caveolae.

Caveolae control cancer cell motility by coordinating sev-
eral oncogenic signaling intermediates, including eNOS, VEGF 
receptor 2, EGF receptor, PDGF receptor, several regulators of 
Ca2+ signaling such as a Ca2+ ATPase, and members of the Rho 
family of small GTPases.10,11 Expression of caveolar proteins 
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is consequently well recognized as involved in cancer cell 
invasion, and these proteins are believed to act as either positive 
or negative regulators of ECM degradation and cancer aggres-
siveness.8,12 Similarly, uncontrolled proteolysis of ECM com-
ponents involves a family of zinc-dependant endopeptidase or 
matrix metalloproteinases (MMPs), amongst which MMP-9 
plays a major role in the disruption of the blood-brain barrier, 
an initial event leading to multiple sclerosis lesion formation,13 
leukemic cell infiltration into the central nervous system,14,15 
and sepsis development.16 Disruption of caveolin-1 has been 
shown to downregulate MMP-9 expression,17 while enhanced 
formation of caveolae has been correlated with increased 
MMP-9 activity.18

More recently, it has been suggested that coat proteins 
called cavins not only work together with caveolins to regu-
late the formation of caveolae, but also have the potential to 
transmit signals dynamically from caveolae to various cellular 
destinations.19 Of the four cavin proteins, PTRF/cavin-1 has 
been shown to mediate the reduction of MMP-9 production, 
independent of caveolar formation, and has been reported to 
decrease metastatic PC3 prostate cancer cell migration.20,21 
Altogether, these observations support the notion that con-
trol of MMP-9 expression/secretion occurs through caveolar 
components or through caveolae-mediated signaling. MMP-9 
transcriptional regulation is already, in fact, considered to be 
triggered by cytokines, such as tumor necrosis factor (TNF)-α, 
or inducers such as phorbol-12-myristate-13-acetate (PMA), 
through transcriptional factors including SP1, AP-1 and 
NF-κB.22

Several studies have pointed out dual roles for the other 
cavin proteins.23 Cavin-2 also known as SDPR, for serum 
deprivation protein response, and cavin-3 SRBC, as it is an 
Sdr-related gene product that binds to c-kinase. Cavin-4 
MURC, for muscle restricted coiled-coiled protein. Cavin-2 
shares 20% homology with cavin-1, and a decrease in cavin-2 
expression leads to a decrease in caveolar formation and 
numbers. It is also localized at the plasma membrane, along 
with caveolin-1 and cavin-1.24 Cavin-3 was first identified as 
a substrate of PKC delta and is located in a tumor suppressor 
region at chromosome 11p15.5, which is lost in breast, prostate 
and pancreatic cancer cells.25 Cavin-4 expression is restricted 
to smooth muscle, such as skeletal and cardiac myocytes.26

In the current study, the roles of cavin proteins in the 
aggressiveness of sarcomas, particularly in human fibrosarcoma 
cells, have been examined. We first performed a comparative 
study between the expression of cavins-1, -2 and -3 and 
assessed their effects on the migration of PMA-activated 
fibrosarcoma cells. We then focused on the role of the cavin-
3-to-MMP-9 signaling axis as a regulator of fibrosarcoma cell 
migration.

Materials and Methods
Cell culture, cDNA and siRNA transfection. The 

human HT-1080 fibrosarcoma cell line was purchased from 

American Type Culture Collection and maintained in Eagle’s 
Minimum Essential Medium (EMEM) containing 10% 
(v/v) fetal calf serum (FCS) (HyClone Laboratories), 2 mM 
glutamine, 100 units/mL penicillin and 100 μg/mL strepto-
mycin, and were cultured at 37°C under a humidified atmo-
sphere containing 5% CO2. C-terminal turboGFP-tagged full 
length cDNAs encoding human cavin-1, cavin-2, and cavin-3 
were purchased from OriGene Technologies. HT-1080 cells 
were transiently transfected with expression vectors using 
the Xtreme Gene transfection reagent (Roche Diagnostics) 
according to the manufacturer’s instructions. Transfection effi-
ciency was confirmed either by confocal fluorescence micros-
copy or by immunoblotting. The pEGFP cDNA plasmid was 
used as a control. Gene silencing of cavin-3 was performed 
through cell transfection of 20 nM cavin-3 specific siRNA 
(Qiagen, SI02622473), or with a scrambled siRNA sequence 
(Qiagen, AllStar Negative Control siRNA, SI03650318) as a 
control using lipofectamine 2000 reagent (Invitrogen) follow-
ing the manufacturer’s instructions. Twenty-four hours post- 
transfection, cells were treated with 100 nM PMA or vehicle 
in a serum-free medium for 18 hours.

Cell migration assay using the xCELLigence biosensor 
system. Cell migration assay experiments were carried out 
using the Real-Time Cell Analyzer (RTCA) Dual-Plate (DP) 
Instrument of the xCELLigence system (Roche Diagnostics). 
Twenty- four hours post-transfection, mock-, cDNA-, or siRNA-
transfected HT-1080 cells were trypsinized and 20,000 cells/well  
were seeded onto CIM-Plates 16 (Roche Diagnostics). These 
plates are similar to conventional Transwells (8 μm pore size), 
with gold electrode arrays on the bottom side of the membrane 
to provide a real-time measurement of cell migration. Prior to 
cell seeding, the underside of the wells from the upper chamber 
was coated with 25 μL of 0.15% gelatin in PBS and incubated 
for 1 hour at 37°C. PMA was dissolved in serum-free culture 
medium and added to the upper wells, while the lower chamber 
was filled with 10% FCS medium to act as a chemoattractant. 
Cell migration was monitored for 8 hours. The impedance values 
were measured by the RTCA DP Instrument software and were 
expressed in arbitrary units as the Relative Cell Migration Index. 
Each experiment was performed in quadruplicate.

Immunoblotting procedures. Following treatments or 
transfection, cells were washed with PBS and lysed with lysis 
buffer (50 mM Tris-HCl, pH 7.4, 120 mM NaCl, 5 mM 
EDTA, 0.5% Nonidet P-40, 0.1% Triton) in the presence of 
phosphatase and protease inhibitors on ice for 30 minutes. 
Cell debris was pelleted by centrifugation for 10 min at high 
speed. Protein concentration was quantified using a micro 
bicinchoninic acid protein assay kit (Thermo Fisher Scientific 
Inc). Proteins from control and treated cells were separated by 
Sodium dodecyl sulfate (SDS)–polyacrylamide gel electro-
phoresis (PAGE). After electrophoresis, proteins were elec-
trotransferred to polyvinylidene difluoride membranes, which 
were then blocked overnight at 4°C with 5% non-fat dry milk 
in Tris-buffered saline (150 mM NaCl, 20 mM Tris–HCl, 
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pH 7.5) containing 0.3% Tween-20 (TBST). Membranes were 
further washed in TBST and incubated with primary antibodies 
directed against either turboGFP (1/10,000), AKT, phosphory-
lated AKT (1/1,000), ERK, phosphorylated ERK (1/2,000), or 
anti-cavin-3 (1/1,500). Washing was then performed in TBST, 
followed by a 1 hour incubation with horseradish peroxidase-
conjugated anti-rabbit IgG (1/10,000) or anti-mouse IgG 
(1/5,000) in TBST containing 5% non-fat dry milk. Immunore-
active material was visualized by Western Lightning Enhanced 
Chemiluminescence Pro (Perkin Elmer).

Gelatin zymography. To assess the levels of MMP-2 and 
MMP-9 activity, gelatin zymography was used as described 
previously.27 Briefly, an aliquot (20 μL) of the culture medium 
was subjected to SDS-PAGE in a gel containing 0.1 mg/mL 
gelatin. The gels were then incubated in 2.5% Triton X-100 and 
rinsed in nanopure distilled H2O. Gels were further incubated 
at 37°C for 20 hrs in 20 mM NaCl, 5 mM CaCl2, 0.02% Brij-
35, 50 mM Tris-HCl buffer, pH 7.6, then stained with 0.1% 
Coomassie Brilliant blue R-250 and destained in 10% acetic 
acid, 30% methanol in H2O. Gelatinolytic activity was detected 
as unstained bands on a blue background. All experiments were 
carried out with cells that had been serum-deprived by over-
night incubation.

Total RNA isolation, cDNA synthesis and real-time 
quantitative RT-PCR. Total RNA was extracted from cell 
monolayers using TriZol reagent (Life Technologies). For cDNA 
synthesis, 2 μg of total RNA were reverse-transcribed using a  
high capacity cDNA reverse transcription kit (Applied Biosys-
tems). Gene expression was quantified by real-time quantitative 
PCR using SsoFast EvaGreen Supermix (Bio-Rad). DNA ampli-
fication was carried out using a CFX connect Real-Time System 
(Bio-Rad) and product detection was performed by measuring 
binding of the fluorescent dye EvaGreen to double-stranded 
DNA. The QuantiTect primer sets were provided by QIA-
GEN: MMP-9 (Hs_MMP9_1_SG, QT00040040), cavin-1 
(Hs_PTRF_3_SG, QT02453507), cavin-2 (Hs_SDPR_1_SG, 
QT00201453), cavin-3 (Hs_PRKCDBP_1_SG, QT00218316), 
GAPDH (Hs_GAPDH_2_SG QT01192646), β-actin 
(Hs_Actb_2_SG QT01680476) and PPIA (Hs_PPIA_4_SG 
QT01866137). The relative quantities of target gene mRNA 
compared with two internal controls, chosen from GAPDH, 
β-actin or PPIA RNA, were measured by following a ∆CT 
method employing an amplification plot (fluorescence signal vs. 
cycle number). The difference (∆CT) between the mean values in 
the triplicate samples of target gene and those of GAPDH and 
β-actin mRNAs were calculated by CFX manager Software ver-
sion 2.1 (Bio-Rad) and the relative quantified value (RQV) was 
expressed as 2-∆C

T .
Statistical data analysis. Data are representative of three 

or more independent experiments. Results are expressed as the 
mean ± SEM and statistically analyzed using the GraphPad 
Prism 5 software with two-way ANOVA or one-way ANOVA 
analysis for three groups or more. Bonferroni post-test with 
values of p  0.05 (*) have been considered significant.

Results
PMA triggers MMP-9 and cavin-3 expression, but 

reduces the HT-1080 cell migration index. Phorbol-
12-myristate-13-acetate (PMA) is routinely used to activate 
several signaling pathways involved in the regulation of cell 
migration. These include phosphorylation of extracellular 
signal-regulated kinase (ERK), c-Jun N-terminal kinase ( JNK), 
and P38 mitogen-activated protein kinase.28 However, while 
it is accepted that PMA-treated cells are consequently in an 
“activated state”, the overall effect on the cells’ migration index 
has rarely been evaluated. We therefore first investigated the 
effect of PMA on human HT-1080 fibrosarcoma cell migra-
tion. Live cells were seeded and cell migration assessed in 
real-time as described in the Methods section. We observed 
that PMA dose-dependently reduced the relative cell migra-
tion index (Fig. 1A) while it concomitantly induced MMP-9 
and cavin-3 gene expression levels, but not those of cavin-1 or 
cavin-2 (Fig. 1B). The MMP-9 increases were further reflected 
by increases at the functional level as measured by zymography, 
which shows increased hydrolytic activity of MMP-9 secreted 
in the cell conditioned media, while that of MMP-2 remained 
relatively unaltered (Fig. 1C). The protein expression level of 
cavin-3 was increased in cell lysates as determined by immu-
noblotting upon PMA treatment (Fig. 1D). Interestingly, we 
observed that 10 nM PMA maximally induced MMP-9 gene 
and protein expression. While such expression reached a pla-
teau, that of cavin-3 was still able to be induced at higher PMA 
concentrations. This can, in part, be explained by the differential 
involvement of transcriptional factors in the regulation of each 
of MMP-9 and cavin-3 genes. Moreover, the fact that increasing 
cavin-3 expression correlated with a decreased-to-plateau effect 
on MMP-9 supports that cavin-3 exerts repressive regulation 
on MMP-9. Altogether, although increased MMP-9 secretion 
is classically associated with increased cell migration, our data 
suggeste that the relative migration index of PMA-activated 
cells is actually reduced, as has been also reported in anaplastic 
human thyroid cancer cells,29 and is correlated with increased 
cavin-3 expression. The existence of alternate compensatory 
mechanisms, which possibly involve cavin-3, was next explored.

Overexpression of recombinant cavin-3 specifically 
decreases cell migration and abrogates PMA-induced 
MMP-9 expression. In order to directly assess the impact of 
cavin-3 on cell migration, cDNA plasmids encoding green 
fluorescent protein (GFP)-tagged recombinant cavin-1, cavin-2, 
or cavin-3 were transiently transfected in HT-1080 cells. While 
the fluorescent recombinant cavin proteins were all expressed, 
as confirmed by confocal fluorescent microscopy (Fig. 2A), only 
cavin-3 significantly reduced the HT-1080 cell migration index 
(Fig. 2B). The impact of recombinant cavins was also assessed 
on MMP-9 transcription, and we observed that cavin-3 was 
the only recombinant cavin protein tested that inhibited both 
endogenous (Fig. 2C, white bars) and PMA- induced MMP-9 
gene expression (Fig. 2C, black bars). To test whether a balance 
exists between cavin-3 expression and MMP-9 expression, we 
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transfected increasing amounts of cavin-3 cDNA in HT-1080 
cells and then stimulated them with PMA. We found that 
expression of recombinant GFP-tagged cavin-3, discriminated 
from the endogenous form via detection with the anti-turbo- 
GFP antibody, increased in cell lysates in a dose-dependent 
manner in both untreated and PMA-treated cells (Fig. 3A), 
whereas MMP-9 secretion was only expressed in PMA-treated 
cells (Fig. 3B) and expression inhibited with increasing quan-
tity of cavin-3 cDNA transfected. Overall, these observations 
confirm that a cavin-3/MMP-9 expression balance may exert 
a crucial regulation of cell migration, and that cavin-3 could in 

fact exert tumour suppressive activity in human fibrosarcoma 
cells, in part, by downregulating cell migration in PMA-
activated cells through decreased MMP-9 expression.

Loss of cavin-3 function restores PMA-decreased cell 
migration and potentiates PMA-induced MMP-9 expression. 
In order to further examine the possible role of cavin-3 as a 
tumor suppressor via the balance between its expression and 
that of MMP-9 in PMA-treated cells, we used gene silenc-
ing strategies to repress cavin-3 gene expression by transiently 
transfecting HT-1080 cells with a siRNA against cavin-3. Gene 
silencing efficiency was demonstrated in both untreated and 

Figure 1. PMA treatment triggers MMP-9 secretion and cavin-3 expression, but reduces the HT-1080 cell migration index. (A) Human HT-1080 
fibrosarcoma cells were treated with varying concentrations of PMA in serum-free medium for 18 hours. Cells were then collected and analyzed for their 
migration capacity as described in the Methods section. (B) Total RNA was extracted from the remaining of the cells and qRT-PCR was performed to 
assess expression of cavin-1, cavin-2, cavin-3 and MMP-9 transcripts. Values were normalized over the housekeeping genes GAPDH and PPIγ and are 
the mean ± S.E.M of triplicate values from one out of three representative experiments. (C) Conditioned media was harvested to assess the extent of 
MMP-2 and MMP-9 gelatinolytic activity by zymography. (D) PMA-induced changes in endogenous cavin-3 protein expression were analyzed by Western 
blotting.
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PMA-treated cells to range between 74–91% (Fig. 4A). When 
the relative cell migration indices were measured, the decrease in 
migration observed in PMA-treated cells was completely pre-
vented when cavin-3 expression was silenced (Fig. 4B). Loss of 
Cavin-1 or Cavin-2 did neither alter basal cell migration nor did 
it reverse PMA-mediated decrease in cell migration (data not 
shown). Interestingly, loss of cavin-3 expression induced endog-
enous MMP-9 secretion in the conditioned media, whereas it 
significantly enhanced PMA’s ability to trigger MMP-9 secre-
tion (Fig. 4C). Such MMP-9 transcriptional regulation was also 
observed in the basal condition and in the PMA-treated cells, 
where silencing of the cavin-3 gene led to a further increase in 
MMP-9 transcription by PMA (Fig. 4D). Altogether, our data 
highlight an unreported contribution of cavin-3 in regulating 
cell migration and MMP-9 expression in PMA-activated cells. 
The identity of the specific cell signaling pathways involved in 
this process was next investigated.

Cavin-3 overexpression does not alter PMA-induced 
ERK phosphorylation, but potentiates PMA-mediated 
AKT dephosphorylation. It was recently suggested that 
cavin-3 dictates the balance between ERK and AKT 

signaling.30 However, it is currently unknown whether either 
of these two signaling intermediates is also affected by cavin-3 
in PMA-activated cells. Recombinant cavin-3 was therefore 
transiently overexpressed in HT-1080 cells, which were sub-
sequently treated with PMA for up to 30 minutes in order to 
investigate the phosphorylation status of ERK1/2 and of AKT 
(Fig. 5A). Transfection efficiency and specific expression of the 
recombinant cavin-3 protein were confirmed as detected by the 
anti-turbo-GFP antibody, and did not vary upon PMA treat-
ment (Fig. 5A). While the extent of ERK phosphorylation was 
unaltered by PMA (Fig. 5B), overexpression of recombinant 
cavin-3 significantly potentiated AKT dephosphorylation by 
PMA (Fig. 5C). Our results suggest that part of cavin-3’s anti-
migratory action may be attributed to its ability to alter the 
AKT signaling pathway, which, in turn, can also affect MMP-9 
transcriptional regulation.

Discussion
Assessment of in vitro cell migration alterations classically uses 
strategies to prime the cells, such as in response to serum-derived 
growth factors or to specific cytokines.31,32 Given the lack of 

Figure 2. Overexpression of recombinant cavin-3 specifically decreases cell migration and abrogates PMA-induced MMP-9 expression. (A) 
Human HT-1080 fibrosarcoma cells were transiently transfected with 2 μg of cDNA plasmids and fluorescent confocal microscopy was used to visualize 
the encoded recombinant GFP-tagged cavin-1, cavin-2 or cavin-3 proteins 24–48 hours post transfection. pEGFP cDNA plasmid was used as control. 
(B) Cells were then harvested and cell migration assayed as described in the Methods section. (C) HT-1080 cells were transiently transfected with plasmids 
as described above. Twenty-four hours post transfection, cells were treated with vehicle (white bars) or 100 nM PMA (Black bars) in a serum-free medium 
for 18 hours. Total RNA was extracted and qRT-PCR was performed to measure the levels of MMP-9 transcript. Values of PCR are normalized over the 
expression of housekeeping genes GAPDH and PPIγ and are the mean ± S.E.M of triplicate values from one representative experiment.
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in vitro microenvironment components and extracellular growth 
factor-mediated cues, treatments with phorbol esters such as 
PMA are therefore generally used to either trigger secretion of 
ECM hydrolytic enzymes such as MMPs or to initiate signaling 
pathways that affect cell migration.33,34 While several of these 
signaling pathways are well documented, the effective balance 
between positive and negative regulators of cell migration, within 
a defined cell model, in fact still remains poorly understood.

In this study, we used a human fibrosarcoma cell line 
that responded to PMA in part through increased secretion 
of MMP-9,33 the secretion of which is classicaly correlated 
with pro-inflammatory,35,36 pro-angiogenic and metastatic 
processes.37 Our study demonstrates that, although both MMP-9 
expression and cell migration can effectively be triggered in vitro 
upon a defined PMA treatment, the overall effect that is actually 
measured is, in fact, a diminished cell migration index, in part 
consequent to the increased expression of the tumor suppressor 
cavin-3. In fact, our study suggests that PMA should rather be 
considered, in specific cell models, for its anti-migratory effects 
as it impaired HT-1080 fibrosarcoma cell growth and prolifera-
tion in agreement with previous reports.38–40

Our study further provides new insight into the tumor 
suppressive functions of cavin-3. We show that endogenous 

cavin-3 is undetectable at the protein level in the HT-1080 
fibrosarcoma cell model we used, in agreement with the fact 
that many other cancer cell lines effectively also lack cavin-
3,26,41,42 and this precluded any cavin-3 gene silencing strategies 
to be used in the non-activated cellular model. Cavin-3 expres-
sion was in fact shown to require the nuclear factor-kappa B 
(NF-κB) pathway following TNF-α-activation.42,43 Interest-
ingly, PMA is also a well-established NF-κB activator15,27,35,44 
and it is believed to relay its effects, to some extent, through simi-
lar signaling. More importantly, our study also demonstrates for 
the first time that overexpression of cavin-3 itself reduces basal 
as well as PMA-induced cell migration. Such regulation is 
believed to occur at the MMP-9 transcriptional level given that 
overexpression of recombinant cavin-3 reduced endogenous 
as well as PMA-induced MMP-9 expression. While cavin-3 
overexpression did not affect PMA-induced ERK phosphor-
ylation, we found that recombinant cavin-3 further and sig-
nificantly reduced PMA-mediated AKT phosphorylation. Our 
results are in good agreement with a recent postulate that links 
ERK and AKT pathways to cell migration,45,46 and with evi-
dence demonstrating that introduction of cavin-3 into a lung 
carcinoma cell line reduced AKT signalling.30,47 Blockage of 
the PI3K/AKT and MAPK signalling pathway was also found 
to decrease MMP-9 protein expression in an ovarian cancer 
cell model.48 It is therefore tempting to speculate that cell 
migration is decreased as a consequence of cavin-3-mediated 
signaling, which prevents phosphorylated-AKT transcriptional 
regulation of MMP-9 gene expression. Prohibition of nuclear 
phosphorylated-AKT was recently reported also to inhibit epi-
dermal growth factor (EGF)-induced MMP-9 transcription in 
glioblastoma cells.49 Loss of Cavin-3 is therefore believed to 
alter the cell’s ability to assemble optimal signaling modules 
with cell surface receptors.30 Finally, it was previously demon-
strated that cavin-1, another member of the cavin family, also 
decreased MMP-9, in prostate cancer.20

As is the case for cavin-3, MMP-9 can also be activated 
by TNF-α, PMA, and EGF.36,44,50,51 Here, we show that PMA 
effectively induces MMP-9 transcription and secretion in 
HT-1080 fibrosarcoma cells, but that this induction in MMP-9 
is actually the result of a change in the balance between PMA-
induced MMP-9 and cavin-3 signaling (summarized in Fig. 6). 
This signaling balance was further strengthened by siRNA-
mediated gene silencing of cavin-3, where silenced expression 
was demonstrated to relieve cavin-3’s negative regulation of 
MMP-9, and to allow higher expression. Increases in MMP-9 
expression by PMA can, in fact, be induced through activation 
of several signaling cascades involving mitogen-activated pro-
tein kinase (MAPK) and phosphoinositide-3 kinase (PI3K)/
AKT.52 Several transcription factors are involved in the tran-
scriptional regulation of MMP-9 induced by PMA, including 
AP-1 and NF-κB through ERK, JNK and PI3K/AKT signal-
ing pathways; the MMP-9 promoter bears several of the DNA 
consensus binding sequences corresponding to these transcrip-
tional factors.53–56

Figure 3. Recombinant cavin-3 expression abrogates PMA-induced-
MMP-9 secretion. Human HT-1080 fibrosarcoma cells were transiently 
transfected with various amounts of a GFP-cavin-3 cDNA plasmid. 
Twenty-four hours post transfection, cells were treated with vehicle or 
100 nM PMA in a serum-free medium for 18 hours. (A) Cell lysates were 
used to analyze endogenous cavin-3, GFP-tagged recombinant cavin-3, 
and GAPDH expression by Western blotting, and conditioned media was 
used to evaluate MMP-9 secretion by gelatin zymography (lower panel). 
(B) Scanning densitometry was used to quantify the extent of gelatinolytic 
activity of MMP-9.
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Figure 4. Loss of cavin-3 function restores PMA-decreased cell migration and potentiates PMA-induced MMP-9 expression. Human HT-1080 
fibrosarcoma cells were transiently transfected with 20 nM siRNA against cavin-3 (siCavin-3) or a random sequence (siScrambled) as described in the 
Methods section. Cells were then treated with vehicle or with 100 nM PMA for 18 hours. Total RNA was extracted and qRT-PCR was performed to assess 
(A) cavin-3 and (D) MMP-9 transcript levels. Values were normalized over the expression of the housekeeping genes GAPDH and PPIγ and are the mean ±  
S.E.M of triplicate values from one representative experiment. (B) Cells were treated as described above, collected and analyzed for cell migration as 
described in the Methods section. (C) Conditioned media was also collected to assess the level of MMP-2 and MMP-9 gelatinolytic activity by zymography.

Conceptual limitations of our current study must be 
forthrightly acknowldged as the results presented and conclu-
sions raised may not necessarily be generalized to other cellular 
models. However, HT-1080 fibrosarcoma cells are considered 
as a relatively well-established cellular model and validated for 
studies related to in vivo mice models,57 methodology devel-
opment,58 PMA impact assessment,59 and in models assessing 
metastasis and cancer cell motility.60 In conclusion, our study still 
demonstrates that cavin-3 expression potentiated a decrease in 
PMA-mediated AKT dephosphorylation and that cavin-3 loss 
of function restored increased MMP-9 expression upon PMA 
treatment. Our data therefore suggest that cavin-3 lessened 

phosphorylated-AKT transcriptional regulation of MMP-9 
expression, and consequently decreased MMP-9-mediated 
ECM degradation, which in turn reduced cell migration of 
HT-1080 fibrosarcoma cells. Given that cavin-3 is ubiqui-
tously expressed, it still remains however unknown whether 
differential cell-type functions are involved.61

Abbreviations
ECM, extracellular matrix; ERK, extracellular signal-regulated 
kinase; MMP, matrix metalloproteinase; NF-kB, nuclear factor-
kappa B; PMA, phorbol-12-myristate-13-acetate; TNF, tumour 
necrosis factor.
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Figure 5. Cavin-3 overexpression does not alter PMA-induced ERK phosphorylation, but potentiates PMA-mediated AKT dephosphorylation. 
(A) Human HT-1080 fibrosarcoma cells were transfected with 2 μg of either pEGFP or cavin-3 cDNA plasmids. Twenty-four hours post transfection, cells 
were then treated with 100 nM PMA in serum-free medium for the indicated time. Cells were then lysed and the phosphorylation status of ERK1/2 and 
AKT assessed by Western blotting. Scanning densitometry was used to quantify the extent of phosphorylation of (B) ERK and (C) AKT in pEGFP- (open 
circles) and cavin-3-GFP- (closed circles) transfected cells.
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