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ABSTR ACT: Prion protein (PrPC) was originally known as the causative agent of transmissible spongiform encephalopathy (TSE) but with recent 
research, its true function in cells is becoming clearer. It is known to act as a scaffolding protein, binding multiple ligands at the cell membrane and to be 
involved in signal transduction, passing information from the extracellular matrix (ECM) to the cytoplasm. Its role in the coordination of transmitters at the 
synapse, glyapse, and gap junction and in short- and long-range neurotrophic signaling gives PrPC a major part in neural transmission and nervous system 
signaling. It acts to regulate cellular function in multiple targets through its role as a controller of redox status and calcium ion flux. Given the importance 
of PrPC in cell physiology, this review considers its potential role in disease apart from TSE. The putative functions of PrPC point to involvement in neuro-
degenerative disease, neuropathic pain, chronic headache, and inflammatory disease including neuroinflammatory disease of the nervous system. Potential 
targets for the treatment of disease influenced by PrPC are discussed.
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Introduction
Knowledge of the function of prion protein is rapidly expanding. 
This review examines the role of prion proteins in molecular 
signal transduction and cell physiology, and considers ongoing 
questions about the role of prion protein in the nervous system. 
The involvement of prion protein in non-prion disease as well 
as potential therapeutic targets is considered.

Prions are the agents that cause a number of forms of 
transmissible spongiform encephalopathies (TSEs), com-
prising Creutzfeldt–Jakob disease (CJD), including variant 
CJD (v-CJD), familial CJD (f-CJD), and spontaneous CJD 
(s-CJD); Gertstmann–Sträussler–Scheinker syndrome 
(GSS); fatal familial insomnia (FFI) syndrome and kuru 
in humans; bovine spongiform encephalopathy (BSE or 
“mad cow disease”) in cattle; scrapie in sheep; and chronic 
wasting disease (CWD) in deer and elk. This disease is 

caused by an abnormal form (PrPSc) of the normally occur-
ring prion protein (PrPC). Since the recognition of prion 
disease in the early 1980s1 and the discovery of the molecu-
lar basis of the disease,2 the prion protein itself has proved 
to be an enigmatic and controversial protein. The associa-
tion of prions with TSE initially gave prominence to the 
negative role of prions in cell physiology and disease. The 
functions of prion protein in normally operating cells are, 
however, becoming more apparent although the full range 
of functions has still to be determined. Evidence regarding 
the involvement of prion protein in cell physiology, signal 
transduction and long-term potentiation (LTP) in memo-
ries, and epigenetic inheritance has been increasing over 
the past 25 years, and there is now a growing indication 
that PrPC functions, in both beneficial and harmful ways, 
as a molecular switch.3
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Prion Protein Structure
Prion disease is the only known disease that can be caused by 
infection (through the food chain or injection/transplantation) 
as well as by sporadic and inherited mutations. Prion disease 
is caused by a self-replicating protein found in normal cells. 
There is one prion protein in humans, and prion proteins have 
been found in many mammals and other vertebrates (birds, 
reptiles, amphibians, fish),4 as well as fungi, with at least seven 
discovered so far in yeasts.5 Interestingly, PrPC has not been 
found in lower animals (insects, molluscs, protozoa).6

Prion protein exists in at least two conformational states: 
first, the cellular α-helix-rich isoform (PrPC) and, second, 
the prion disease-associated β-sheet isoform (PrPSc)7 (Fig. 1). 
In humans, PrPC is a 32-kDa protein, with 253 amino acids 
encoded by the single-copy PRPN gene, located on chromo-
some 20.8 The protein has regions that are highly conserved 
in all vertebrates.9 When not in a disease state, the cellular 
prion protein has two isoforms with 208–209 amino acids: 
a membrane-bound form and a soluble cytosol (=secreted) 
form. The membrane-bound PrPC is a glycoprotein, attached 

by a glycosylphosphatidylinositol (GPI) anchor10 to lipid rafts 
on the outer leaflet of the cell membrane, as is the case with 
most GPI-anchored proteins. The soluble form is not glyco-
sylated. Prion protein has an intrinsically disordered protein 
(IDP) component, in that the N-terminal end (amino acids 
23–121) of the protein does not have a permanent tertiary 
structure but is flexible (Fig. 1A). The C-terminal end of the 
protein (amino acids 127–231) has a well-structured globular 
tertiary structure, folded into three α-helices and two short 
β-strands.11

The structure of the disease form of prion protein is 
not fully known. It has the same primary structure (amino 
acid sequence) as PrPC, but the secondary structure has more 
β-sheet regions than the α-helix of PrPC (Fig. 1C) and is 
able to form amyloid fibrils12 (Fig. 1D). The isoform of the 
disease is highly stable, resistant to proteolytic enzymes, and 
self-replicating.2 The presence of PrPC is necessary for pro-
gression to prion disease and for neurotoxicity to occur, but the 
actual mechanism that controls the misfolding of PrPC is not 
known. According to the “protein only hypothesis” of prion 

Figure 1. Cartoon of the structure of prion protein deduced from NMR, showing the IDP N-terminal end—amino acids 23–121 (yellow dots), the three 
α-helices (orange), and the short β-sheet section (blue). (B) Cartoon of the structure of human PrPC with residues that form β-sheets in PrPC shown in 
red. (C) Suggested structure of misfolded PrPSc as the amyloid core. (D) Network of β-sheets in an amyloid fibril with the long axis of the fibril indicated by 
arrow and hydrogen bonding between the β-sheets indicated by circle. (A—reproduced from Zahn et al7 and B–D reproduced from Cobb et al).12
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disease transmission,13 the conversion is an auto-catalytic, 
posttranslational conformation change, with PrPC interact-
ing with existing PrPSc, which acts as a template or “seed” 
and recruits PrPC to aggregate into the β-form, which acts 
as a template in its turn, continuing the chain reaction and 
corrupting more PrPC.14 The prion disease can be initiated 
either by introduction of the PrPSc protein (v-CJD, kuru) 
or by a point mutation in the PRNP gene (s-CJD, f-CJD, 
FFI, GSS). When PrPC is originally synthesized at the 
endoplasmic reticulum (ER), the correct folding of PrPC is 
controlled by chaperone molecules (such as Hsp110, Hsp60, 
αB-crystallin, Rdj2, Hsp40/Hsp70, Hsp90).15 Any protein 
that has been misfolded is handled by the unfolded protein 
response (UPR) of the cell. This involves the protein being 
refolded either with chaperones and being degraded by lyso-
somes or proteasomes or being confined and isolated in cyto-
plasmic inclusion bodies (aggresomes). Interestingly, IDP 
regions in any protein increase the potential for protein mis-
folding.16,17 The mechanisms that control the homeostasis of 
PrPC in the cell are as yet unknown, but the progression to 
prion disease might be seen as a failure of cellular quality 
control of the UPR.

The PRPN gene is expressed in many cells of the body, 
but is most highly expressed in cells in the nervous system. 
Likewise, the protein PrPC is ubiquitous in cells of the body, 
but (as reviewed by Linden and coworkers)18 is found most 
abundantly in nervous system cells; in neurons (cell body and 
synaptic membrane) of the hippocampus, cortex, thalamus, 
cerebellum, and medulla; and in glial cells, including astro-
cytes.19 It is found in high numbers in the neuroimmune net-
work, including small diameter fibers of the skin, sympathetic 
ganglia and nerves, parasympathetic and enteric nervous sys-
tem, dispersed neuroendocrine systems, and peripheral ner-
vous system axons.20 It is also present in high numbers in bone 
marrow stem cells, lymphocytes, monocytes, macrophages, 
natural killer cells, dendritic cells, and follicular dendritic 
cells.11 In most cells, PrPC is almost entirely membrane bound, 
with very little found in the cytoplasm. In some cells, how-
ever, such as neurons in the hippocampus, thalamus, and neo-
cortex, the cytosol form of PrPC is commonly found.21 Both 
membrane-bound and soluble forms of PrPC are found in the 
cerebral spinal fluid.22 Membrane-bound PrPC can be secreted 
from cells into the extracellular matrix (ECM) in exosomes, 
and Martins and coworkers23 list a number of mechanisms for 
the release of soluble PrPC from the GPI anchor at the cell 
membrane.

PrPC is able to move between cells via two pathways.24 
The first relies on soluble PrPC in extracellular space. The sec-
ond depends on the presence of the GPI anchor and direct 
cell-to-cell contact. This shares a common proteolytic shed-
ding mechanism with amyloid precursor protein and other 
surface proteins, and invokes the mechanism of molecular 
crowding,25 thus, occurring when increased density of cells 
causes increased cell-to-cell communication.

A number of proteins related to human prion proteins 
have been found in the yeast Saccharomyces cerevisiae as well 
as in other yeast and filamentous fungi. These proteins spon-
taneously aggregate in vitro, and display the seeding that is 
characteristic of prion aggregation. Seven proteins have so 
far been identified as prions with up to 18 identified as being 
potentially prions or prion like.5

The conserved nature of prion DNA sequences in dis-
tantly related animals, the ubiquitous distribution of PrPC 
in many cells of the body, and the concentration of PrPC in 
nervous tissue, all suggest that PrPC plays an important and 
widespread role in cellular metabolism, especially in the ner-
vous system.

Prion Protein and Amyloid
During prion disease, PrPSc is functionally an amyloid form 
of normal PrPC; indeed, purified PrPC will form amyloids in 
vitro with detergent,26 and about 10% of CJD patients and 
100% of v-CJD patients show amyloid plaques.27 Amyloids 
consist of β-sheets arranged in cross-layers that are repeated 
many times to form insoluble fibrils28 (Fig. 2) (described in 
reviews by Fowler,29 Greenwald and Riek,30 and Eisenberg 
and Jucker).31 Amyloid disease is characterized by progressive 
aggregation of the native tertiary protein structure into this 
very stable β-fibril form. This process appears similar to prion 
infection, which also recruits PrPC to an amyloid-like PrPSc 
β-form. This poses the question as to whether all amyloid dis-
eases are in fact prions or at least prion like in their action. 
Research continues to emphasize the closing gap between 
amyloid and prion diseases.32

Amyloid protein has been suggested to be an ancient 
form of protein structure.29 Rather than a particular pro-
tein sequence that form amyloids, there are many amino 
acid sequences that have this capability, although, some amino 
acid sequences are more prone to amyloid formation than oth-
ers.5 Amyloid formation may even be a common or intrinsic 
property of most proteins.

While many proteins have the capacity to form amyloids, 
they do not normally do so, because of an array of protective 
mechanisms present in cells, including chaperone proteins that 
guide and assist protein folding to ensure that amyloid struc-
tures do not form and to ensure that proteins achieve their 
correct functional conformation (see reviews by Bukau et al33 
and Chen and Inouye).34 Cells also maintain tight intracellu-
lar control of temperature and pH to maintain correct protein 
conformation. When confronted with unfolded or misfolded 
proteins, the cells invoke the UPR. It is possible that a break-
down in this defense (such as a mutation in chaperone genes)35 
as well as protein denaturation could be responsible for the 
development of amyloid diseases such as Alzheimer’s disease, 
Huntington’s disease, and Parkinson’s disease, and amyloid 
formation in Type 2 diabetes and cataracts. These diseases are 
characterized by amyloid aggregates that form from particular 
proteins via a series of intermediate structures.36

http://www.la-press.com
http://www.la-press.com/signal-transduction-insights-journal-j102


Liebert et al

14 Signal Transduction Insights 2014:3

Evolution appears to have selected globular forms of pro-
teins, hiding the amyloid forming sequences in the interior of 
the protein. While the development of IDP could be seen as an 
evolutionary step37 (ie, conserved between organisms, a multi-
tude of functions—especially in cell signaling and molecular 
binding, more common in complex eukaryotic organisms than 
simpler prokaryotic organisms), IDPs are also more prone to 
misfolding than globular proteins.16,17,38 Some of the proteins 
implicated in amyloid disease, for example, Aβ in Alzheimer’s 
disease and α-synuclein in Parkinson’s disease, are IDPs.38

Functional amyloids. Not all amyloids are harmful. 
Non-harmful or useful amyloid structures (functional amy-
loids) have been identified in diverse organisms,30 such as 
bacteria, fungi, insects, and mammals (including humans). 
Amyloid structures are often used as structural proteins, 
because of their strength, resilience, and resistance to chemi-
cal and enzymatic attack. In bacteria, extracellular amyloids 
(“curli” fibers in Escherichia coli, and “tafi” fibers in Salmonella) 
are used as adhesion matrices during colony formation,39 and 
in Streptococcus mutans, amyloid is a constituent of the bio-
film formation in dental plaque40 among other functions.41 
Yeasts, such as Candida, use amyloid for cell adhesion,42 and 
many filamentous fungi use amyloid fibers (hydrophobin) to 

strengthen aerial hyphae and spores.43 Insect eggshells can be 
protected by amyloids,44 and some spider silks have an amyloid 
structure.45 In humans, functional amyloids so far discovered 
include the protein PMEL17, which assists in the assembly 
and transport of the pigment melanin,46 peptide hormones 
stored as amyloid structures in pituitary secretory granules,47 
and the suggestion of amyloid involvement in blood clotting.48 
The mitochondrial anti-viral-signaling (MAVS) protein has 
been found to form amyloid fibrils in cells infected by some 
viruses, which initiates a signaling cascade to produce inter-
feron to combat the infection.49 It has also been suggested that 
amyloids could play a role in memory formation.50

Functions of PrPC

The full function of PrPC remains elusive, despite decades 
of research. Many of the proposed roles for PrPC (Fig. 3) are 
linked to its location, that is, concentrated in nervous tissue 
cells and localized on plasma membranes, specifically within 
lipid rafts.

Elucidation of the role of PrPC in the non-disease state 
has been aided by the study of PRNP knockout mice, as well 
as overexpression of PrPC in transgenic mice and the expres-
sion of PrPC in mammalian cell lines, zebrafish, Drosophila, 
nematodes, and yeasts. In addition to being non-susceptible to 
prion disease, null PrPC mice lines have displayed symptoms 
that ranged from no obvious developmental effects through 
subtle behavioral and cognitive deficits to severe ataxia, neu-
rodegeneration, and total paraplegia, depending on the type 
of mutation or ablation.18 One reason for the variability in the 
phenotypic effects of PrPC-null mice is the variety of methods 
used to knockout the PRNP gene (comprehensively reviewed 
by Linden et al18 and Onodera et al).51 Ablation of the PRNP 
gene using some (but not all) methods resulted in removal of 
large DNA segments, with the flow on effect of a downstream 
gene (PRND) overexpressing the Doppel protein, which 
turned out to be the cause of the observed ataxia. Interest-
ingly, the ataxia could be reversed by PrPC. The variability 
caused by differences in construction of PrPC-null mice has 
made pinpointing the function of PrPC challenging.

Prion disease itself is associated with ataxia, loss of cir-
cadian activity, p53 regulation, copper and zinc transport dys-
function, and the dysregulation of redox homeostasis through 
reactive oxygen species (ROS) modulation (as reviewed 
by Linden et al).18 These losses in function during prion 
disease are also suggestive of the role of PrPC in normally 
functioning cells.

Animal studies have suggested that PrPC plays a role in 
neuroprotection, neuritogenesis, and neurite polarization,18 as 
well as having a role in processing olfactory signals,52 circadian 
rhythms and sleep patterns,53 memory,54 and behavior.55,56 
PrPC-null mice have been shown to have muscle fatigue under 
stress,55 decreased mitochondrial number and mitochondrial 
malformations,57 and increased superoxide dismutase (SOD) 
and free radical production.58 Overexpression of PrPC has been 

Figure 2. (A) Structure of natively folded insulin. (B) Proposed structure 
of insulin amyloid fibril. (Reproduced from Jiménez et al).28

http://www.la-press.com
http://www.la-press.com/signal-transduction-insights-journal-j102


Prion protein signaling in the nervous system

15Signal Transduction Insights 2014:3

shown to lead to necrotizing myopathy of skeletal muscles59 
and other muscular disorders.60 PrPC has been found to be 
neuroprotective and may be involved in muscle strength and 
endurance via the PPAR pathway.61 Morel et al62 also found 
evidence that PrPC is involved in the differentiation and polar-
ization of epithelial cells. With this wide range of effects 
attributed to PrPC, the picture that emerges is of a protein with 
extreme versatility of function, which makes pinning down a 
unifying molecular basis for the function of PrPC challenging.

A number of proteins have shown differential expres-
sions (under-expressed or over-expressed) in cells with symp-
toms of TSE. This finding implies some role for PrPC in the 
functioning of these proteins. Gawinecka and coworkers63 
found 46 proteins differentially expressed in the proteome 
of patients with s-CJD, including protein 14-3-3, Hsp90, 
β-tubulin, SUMO2/3, and stathmin. Most common differ-
entially expressed proteins between s-CJD subtypes were pro-
teins associated with signal transduction and neuronal activity, 
especially Rab GDP dissociation inhibitor α, which regulates 
Rab3a-mediated neurotransmitter release.

A well-studied prion is the yeast translation-termination 
factor Sup35. Like human PrPC, Sup35 carries a prion-
determining domain (PrD), which occasionally adopts an 
amyloid conformation that perpetuates itself by templating 
the same amyloid conformation on other Sup35 molecules, 
which then sequesters most Sup35 into insoluble fibers. Prion 
proteins occur naturally in many wild yeasts and can be a 
selective advantage when in the amyloid form.64 The switch 
from non-prion to prion state occurs at a measurable rate, 
which is increased during stress. There is a suggestion that 

prion protein might also be an important switch in mammals, 
including humans.32

PrPC appears to be central to neuronal survival and func-
tion, because of the many roles that have been suggested for 
PrPC in the nervous system (reviewed by Westergard et al,59 
Linden et al,18 Martins et al).23 These include antiapoptotic 
effects,65 neuroprotection,59,66 myelination, neuritogenesis,67 
axon growth,68 neurite outgrowth,65,69 neurite polarization,67,70 
synapse formation,71 cell-to-cell communication through gap 
junctions and neurotrophic activity,72 and LTP.73,74

In the immune system, PrPC affects such processes as 
T-cell proliferation and phagocytosis among other effects in the 
nervous and immune systems.6,18,23 PrPC has also been shown 
to have a role in stem cells (reviewed by Lopes and Santos).75 
Zhang and coworkers76 have shown PrPC to be highly expressed 
in hematopoietic stem cells and required for self-renewal, as is 
the case for neural stem cells.77 Prion protein is seen as a switch-
ing mechanism that controls human embryonic stem cell pro-
liferation, self-renewal, and the fate of cell cycle dynamics.78

Many of the functions that have been attributed to PrPC 
could be triggered because of signal transduction.

Signal Transduction
PrPC binding partners. PrPC has a propensity to bind 

to many molecules, due in part to the IDP nature of the 
N-terminal end of the protein (see Fig. 1), which lends itself to 
promiscuous binding.18,79 IDPs depend on molecular crowd-
ing to induce compact and stable binding. They function by 
wrapping around their partner molecules to achieve their final 
state and can often bind to multiple partners. In general, IDPs 
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have roles in signal transduction, gene expression, and chap-
erone activity.79 Up to 45 ligands have been identified as bind-
ing to PrPC (see reviews by Westergard et al,59 Linden et al,18 
Aguzzi and Steele,80 and Martins et al).23 In addition, soluble 
PrPC can act as a ligand for membrane-bound receptors.23 
Although the in vivo relevance of the association has as yet 
to be determined in all cases, it is possible that many of these 
ligands could be triggers for cellular signaling.

PrPC has been known for some time to selectively bind to 
copper ions at the N-terminal region of the protein (reviewed 
by Vassallo and Hems),81 with at least four Cu2+ ions binding 
to each PrPC molecule. The region of the protein that binds 
Cu2+ is highly conserved between species, arguing for an 
important role for this property of PrPC. The binding has been 
linked to a role of PrPC in the regulation of Cu2+ levels and 
the consequent protection of cells against oxidative stress.82 
This may be linked to an interaction with the calcineurin 
complex.83

PrPC has been shown to bind to many molecules, including:

·	 ECM proteins such as laminins84 and vitronectin,85 
and glycosaminoglycans such as heparin and heparin 
sulfate;86

·	 molecules on the outer leaf of the plasma membrane such 
as 37 kDa laminin receptor precursor (37LRP), 67 kDa 
laminin receptor (67LR),87 and ganglioside GM1;88

·	 molecules on the inner surface of the plasma membrane 
such as Fyn kinase89 and neuronal nitric oxide synthase 
(nNOS);90

·	 intracellular membrane components such as glutamic 
acid decarboxylase (GAD),90 STI1,91 Bcl-2,92 and 
synaptophysin;90

·	 transmembrane proteins including neural cell adhesion 
molecule (NCAM),68 integrins,85 G-protein-coupled 
serotonergic receptors (GPCR),89 and G-protein 
receptors;89

·	 transmembrane ion channels such as voltage-gated cal-
cium channels (VGCC),93,94 calcium-activated potas-
sium channels,95 and two-pore potassium channel protein 
(TREK-1);96

·	 cytoskeleton proteins α-tubulin,90 β-tubulin,21,97 and 
stathmin;98

·	 scaffolding proteins GRB2,99 β-1 integrins,67 synapsin,99 
Caveolin-1,89 and protein complex 14-3-3;100 and

·	 chaperones and co-chaperones such as Hsp60,101 Hop/
STI1,91 αB-crystalline,102 Rdj2,103 and clusterin.104

The binding of PrPC to chaperone molecules leads to 
speculation as to a possible function of PrPC as a protein co-
chaperone, although it is also possible that the binding is 
linked to the role of chaperones in ensuring the correct fold-
ing of a potentially lethal protein.14,15 It is, however, known 
that PrPC can act as a molecular chaperone for DNA and 
RNA.105,106 Many of the ligands binding to PrPC are related 

to cytoskeleton functions,107 including cell growth (neurito-
genesis), differentiation (polarity), and neuron maintenance.

Protein scaffolding. PrPC is most commonly found in 
the detergent-insoluble (=lipid raft) domains of the plasma 
membranes,108 a region of concentrated cholesterol and sphin-
golipids. Some PrPC is also found away from raft regions, in 
clathrin-coated pits where it is subject to endocytosis. It has 
been recognized for some time that PrPC traffics between a 
membrane location and endocytes, especially in neuronal 
cells.109 Endocytosis of PrPC and encapsulation appears to be 
intimately involved in the function of PrPC, and the protein is 
circulated between the plasma membrane and the cytoplasm 
rapidly,18 with a proportion of membrane-bound PrPC being 
transported in endosome compartments. This may first entail 
translocation from the lipid raft section of the membrane to 
a non-raft region8 before being endocytosed, most probably 
with the aid of clathrin proteins. Alternatively, Caveolin-1 
and caveolae may be involved in endocytosis.110 The PrPC is 
then recycled, with much returning to the cell membrane but 
some being broken down (with lysosomes) and some being 
exported from the cell (exosomes). Endocytosis from the cell 
membrane is a common feature of proteins involved in neuro-
trophic activity and therefore suggests the same role for PrPC.

Lipid raft domains are known to contain a number of 
receptor molecules, and these domains are closely associated 
with signal transduction, with the interaction between ligand 
and receptor activating a signaling cascade.111 The lipid raft 
regions of the plasma membrane serve to segregate and con-
centrate signaling components into discrete locations, which 
are important sites for relaying information into cells. The 
location of PrPC in the lipid raft domains and the binding to 
ligands is additional evidence for a function in signal transduc-
tion. PrPC is, however, located on the outer leaf of the plasma 
membrane and does not have a transmembrane domain, so 
signal transduction would depend on transmembrane ligands, 
the partner’s transmembrane ligands, or endocytotic pathways 
(either by clathrin-coated pits or caveolae).

Signal transduction cascades. It is now generally accepted 
that PrPC is active in signaling processes,112 not merely as a link 
between extracellular proteins to the cytoplasm but as a signal 
receptor and inducer of enzymatic activity in the transduction 
of signals. PrPC acts as a membrane platform for assembly of 
signaling scaffolds through binding of various ligands and 
transmembrane signaling pathways, and may modulate the 
activity of receptor molecules. Despite the known and reported 
effects of PrPC, the actual molecular mechanisms are still being 
elucidated. Signal cascades have been reviewed by Linden and 
coworkers.18,23,112

PrPC binding of laminin molecules results in neuritogenesis, 
neuronal plasticity, and memory consolidation in rat hippocam-
pus.113 GPI PrPC colocalizes with 37LRP/67LP, which suggests 
a complex binding of laminin with 37LRP/67LR + PrPC + other 
receptors such as integrin, to give a cluster of receptors acting by 
integrin-mediated signal transduction and/or internalization of 
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the lipid raft (Fig. 4A). This acts to induce cell adhesion, increase 
filopodia production, and promote directional motility.23

PrPC has been shown to regulate the activity of p59fyn 
tyrosine (Tyr) kinase through interaction with Caveolin-1 in 
caveolae of neurites,89,110,114 most likely mediated via interac-
tion of PrPC with NCAM at the lipid raft membrane site.68 
Downstream, this mediates the production of ROS via 
NADPH oxidase, which in turn acts a “second messenger” 
to induce a signaling cascade via the extracellular-signal-
regulated kinase (Erk1/2) pathway.115 ROS can also induce 
cAMP response element-binding protein (CREB), Egr-1, 
and c-Fos.116 Erk1/2 promotes calcium flux117 and neurite 
outgrowth.68 It has been shown that endocytosis of the mem-
brane raft complex is essential for this signal transduction.118

NCAM-induced signaling also activates a range of 
other signal cascades, including focal adhesion (FA) kinase, 
intracellular kinase, and mitogen-activated protein kinase 
(MAPK), as described by Martins and coworkers.23 This can 
also occur between cells (Fig. 4C).

The binding of PrPC with secreted stress-inducible protein 
1 (STI1)119 stimulates an increase in cAMP and activation of the 
cAMP/protein kinase A (PKA) pathway, which facilitates neu-
roprotection,120 as well as the Erk1/2 pathway.119 It is not clear 
how the bound ligands from the ECM trigger this response, 
although GPCR and G-proteins may serve as intermediates, 
controlling cellular redox18,23 (Fig. 4B). This signal leads to a 

number of cellular outcomes including neuroprotection and 
cell rescue120 as well as short-term memory (STM) formation 
and long-term memory (LTM) consolidation,121 apoptosis, 
neuronal death, and neuritogenesis.18

PrPC has been shown to interact with β1 integrins at the 
membrane.67 The consequence of this interaction on cyto-
skeleton modulation and neuritogenesis has been reviewed by 
Alleaume-Butaux and coworkers.122 In addition, PrPC binds 
to the ECM glycoprotein vitronectin85 and may be involved 
in the neuritogenesis and neuronal differentiation growth of 
axons in dorsal root ganglia (DRG) during embryogenesis.

PrPC is known to interact with ion channels (reviewed 
by Martins et al),23 which can then influence the flux of ions 
across the plasma membrane. There is an interaction between 
PrPC and TREK-1 channels, which regulate K+;96 L-type 
VGCC, which regulate Ca2+;93 and the NR2D subunit of 
NMDA (N-methyl-D-aspartate) receptor, which opens a 
non-selective cation channel (Fig. 5). PrPC also appears to 
be involved in Ca2+ homeostasis via the purinergic (P2Y) 
pathway and store-operated calcium channels (SOCCs)20  

(Fig. 6). Calcium ion flux, as well as cytoplasmic ROS, has the 
potential to influence the mitochondrial retrograde signaling 
response (reviewed by Butow and Avadhani).123 In addition, 
PrPC has been linked to both protein complex 14-3-3100 and 
calcineurin B,83 both of which are known to directly affect 
the regulation of the K+ leak channel K2P, TRESK, which 

Figure 4. Interaction of PrPC with ligands at the lipid raft and the subsequent signal transduction and ultimate effect. (A) Binding to laminin receptor 
(37LRP/67LR), integrins, heparan sulfate proteoglycans (HSPG), and ECM proteins laminin (LN) and vitronectin (VN). (B) Interaction with secreted STI1 
to induce signaling pathways PKA and ERK1/2. (C) Interaction with NCAM to activate Fyn kinase, possibly between two membranes. (Reproduced with 
permission of the authors—Martins et al).23
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Figure 5. PrPC modulation of the activity of ionic channels. (A) PrPC interaction with a two-pore potassium channel protein (TREK-1), which forms a 
mechanically gated K+ channel and reportedly promotes neuroprotection via PKA. (B) VGCCs promote an increase in a cytoplasmic calcium. Cells 
from PrPC-null mice show a reduction in calcium influx by VGCCs, probably caused by the impairment in AKT activity and phosphorylation of the VGCC 
subunits, which is an essential step for their insertion in the membrane. (C) PrPC interaction with the NR2D subunit of NMDA (N-methyl-D-aspartic acid) 
receptors, which are ionotropic glutamate receptors permeable to Ca2+. When PrPC is absent, the NMDA channel is more sensitive to NMDA, which 
promotes an increase in calcium influx, leading to neuronal cell death. (Reproduced with permission of the authors—Martins et al).23

Figure 6. PrPC modulation of intracellular Ca2+ homeostasis through G-protein-coupled purinergic (P2Y) receptors, which are activated by ATP and 
coupled to calcium stimulatory G-protein and to phospholipase Cβ, reducing cleavage of phosphatidylinositol-bisphosphate into inositol-3-phosphate 
(InsP3). InsP3 promotes a Ca2+ release from the ER; thus, PrPC reduces Ca2+ release, contributing to neuronal protection. Concurrently, there is an 
increase in the Ca2+ influx through the plasma membrane by activation of SOCCs and increase in the activity of adenylate cyclase (AC). (Reproduced 
with permission of the authors—Martins et al).23
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determines resting membrane excitability124 and is the only 
K2P channel upregulated by a Ca2+-dependant pathway. This 
may give PrPC an indirect role in this ion channel and there-
fore cellular electrical excitability.

Málaga-Trillo and coworkers125 have shown that PrPC 
is essential for cell adhesion and that this occurred through 
activation of the Src-related Tyr kinase p59fyn and possibly 
Ca2+ metabolism, leading to the regulation of the trafficking 
of E-cadherin, a member of surface-expressed CAMs respon-
sible for cell growth and differentiation.

In summary, rather than acting as an explicit single path-
way, PrPC has been proposed112 to act as a sensor within a 
complex signaling scaffold, activating intracellular signaling 
cascade networks. PrPC can be seen as acting as a “master 
controller” in the orchestration of aggregation of proteins at 
the cellular membrane, with dynamic and complex interac-
tions with multiple ligands in the formation of scaffolding 
assemblies. PrPC appears to operate as a central protein in 
a “non-linear” scaffolding system, with each ligand partner 
coordinating with distinct signaling pathways, which pro-
vide coordination with downstream neurotrophic signaling 
pathways, cytoskeleton modulation, vesicle transport, and 
communication through ion channels and calcium flux, trans-
lating into long-range effects on physiological function. The 
precise cellular result of the PrPC signal most probably will 
depend on its cellular setting.

Redox signaling. One of the earliest and most widely 
accepted functions of PrPC is the protection that it may afford 
against oxidative damage.18 Copper ions are released into the 
synaptic cleft during neuronal activation,126 and free Cu2+ can 
cause an increase in ROS because of redox reactions. PrPC has 
a high affinity to bind Cu2+ and, hence, limit the formation of 
ROS.82 The ability of PrPC to bind copper has thus been sug-
gested as a basis for PrPC function at the synapse81 where PrPC 
could transport Cu2+ back to the cell after its release on depo-
larization. Consistent with this, PrPC-deficient mice showed 
reduced SOD activity to cope with ROS.127 As Cu2+, PrPC has 
been shown to react to H2O2 (an ROS molecule) as a signal,117 
which stimulates a rise in intracellular calcium ion. PrPC has 
thus been proposed to act as a redox sensor,73,81,116,117 react-
ing to Cu2+ or ROS, to initiate a signal cascade that, through 
Fyn kinase, releases cellular calcium ion from ER stores to 
modulate synaptic transmission, to maintain neuronal activ-
ity, and to afford neuroprotection. PrPC also acts to initiate an 
antioxidant cascade using the glutathione (GSH) oxidant sys-
tem, which decreases neural sensitivity.73 If this mechanism 
is impaired, the result is increased sensitivity of neurons to 
H2O2, which implicates PrPC as having an important role in 
neuropathic pain.

In addition to acting as a redox sensor, PrPC is also 
involved in the regulation of cellular redox equilibrium.128 The 
PrPC–Caveolin-1–Fyn pathway induces NADPH oxidase pro-
duction of ROS,114,115 which triggers the Erk1/2 pathway.101 
It is generally accepted that NADPH oxidase-generated ROS 

has an important role in signal transduction, particularly in 
stressed cells.129

PrPC appears to be central to cellular redox balance and 
homeostasis.115 PrPC as a redox modulator may be intimately 
involved in the regulation of the nervous system at the cell 
membrane as well as intracellular and ECM. The “harle-
quin”3 nature (the biphasic regulation) of PrPC is apparent in 
its role both as a redox receptor and in the upregulation of the 
ROS response.

Signaling in the Nervous System
PrPC at the synapse. PrPC is found ubiquitously in cells, 

indicating a general cellular function. It is, however, found 
at higher levels in neurons and is preferentially concen-
trated at synaptic membrane sites,130,131 mainly presynaptic, 
and also postsynaptic, where many ion channels are also 
concentrated. PrPC knockout mice display electrophysi-
ological abnormalities in the cerebellar and hippocampal 
neurons132 with decreased neurotransmission function.66,72,74 
Progression to prion disease involves loss of synaptic function 
prior to neural degeneration,133 and gamma-aminobutyric 
acid (GABA)A receptors are reduced in some PrPC-null 
mice (although in others, there may be no change or even 
an increase).6 Increased neuronal excitability has been dem-
onstrated with PrPC-null mice, which were more prone than 
wild-type mice to seizures after administration of a con-
vulsion drug.134 Re and coworkers135 showed an increase in 
acetylcholine release and excitability at the neuromuscular 
junction. Robinson and coworkers136 found enhanced synap-
tic release in Drosophila neuromuscular junction. These fac-
tors strongly suggest a role of PrPC at synaptic junctions, in 
synaptic transmission and neuronal excitability, as does the 
involvement of PrPC in behavior and memory.18 This role may 
be because of involvement in neurotransmitter release (synap-
sin I and synaptophysin) or because of more general antioxida-
tive or antiapoptotic affects.82 Some studies of PrPC-null mice 
have shown lowered LTP at synapses and reduced GABAA 
receptor,137 both linked to learning and memory formation.138 
Taken together, these results have been interpreted as demon-
strating a modulating effect of PrPC on “neuronal excitability 
and synaptic activity”.18 Overall, available evidence suggests 
that PrPC has a role in modulating neuronal excitability and 
synaptic activity.

Fournier131 has summarized the suggested roles for PrPC 
at the synapse (Fig. 7), including protecting the synapse from 
oxidative stress (by binding copper ions); scaffolding and 
endocytosis; signal transduction pathways via activation of 
(for example) Fyn kinase; neurotransmission by binding to 
synapsin 1 and synaptophysin; modulation of GABA inhibi-
tion and glutamate excitation; and ultimately modulating axo-
nal growth and controlling synaptic plasticity.

PrPC and memory. The involvement of PrPC mecha-
nisms in the formation of LTM has been proposed by a 
number of researchers.139,140 The cytoplasmic polyadenylation 
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element-binding (CPEB) protein, found in neurons, has a sim-
ilar structure to yeast prion protein and acts as a prion when 
inserted into yeast. In the Californian Sea Hare, CPEB has 
been shown to be important in synaptic growth and LTM for-
mation.141 The occurrence of proteins with similar domains to 
the sea hare CPEB is widespread in eukaryotes and suggests 
the possibility of prion-based memories being common.139 
Halfmann32 speculates that the prion switching mechanism 
has been co-opted by neurons for memory formation. It has 
been hypothesized140 that LTM in humans is initiated by elec-
trical stimulation at the synapse, which causes aggregation of 
PrPC and which holds the synaptic connection together, thus 
forming the neural circuit associated with the stimulus. The 
proposal is that the greater the stimulus (traumatic, exciting, 
etc.), the greater the connection and the long-lasting memory. 
In support of this, Caiati and coworkers142 have demonstrated 
the role of prions in hippocampus plasticity in immature mice. 
The role of PrPC in memory retention has also been demon-
strated in animal models (reviewed by Linden et al).18 Both 
LTM and STM have been shown to be influenced by PrPC in 
hippocampal neurons, via two mechanisms: binding with lam-
inin and binding with hop/STI1.121

There is also evidence that PrPC has a role in human 
memory. A change in the amino acid sequence in PRNP was 
associated with decreased cognitive performance and early 

cognitive decline in elderly subjects but, conversely, better 
LTM in healthy young adults.18 This indicates a strong rela-
tionship with this molecular site to cognitive performance.

A β-conformational model of memory formation that 
involves a functional amyloid has also been proposed,50 
where information (memory) is stored as β-sheet proteins in a 
prion-like mechanism. The protease resistance of the amyloid 
ensures the long-term survival of the memory, and the self-
propagation of the protein allows transmission to subsequent 
cell generations.

Long-range PrPC signaling. Long-range signaling in 
the nervous system by PrPC involves neurotrophic activities. 
Neurotrophic theory is defined by Martins and coworkers23 as 
cell–cell communication by cell surface release or presentation 
of molecules that bind to other molecules present in a target 
cell. They may be the same cell (autocrine effect), neighboring 
cell, or distal cell (paracrine effect). These effects depend on 
the neurotrophic factor and the structure and diffusion prop-
erties of the tissue environment.

Retrograde signaling mediated by endosomes has been 
reviewed by Ibáñez.143 It is initiated by the binding of nerve 
growth factor (NGF) to Tyr kinase receptor (TrkA) and 
subsequent endocytosis of clathrin-coated vesicles contain-
ing components of the Ras-mitogen-activated protein kinase 
(MAPK, phospholipase C-γ, and PI3 kinase pathways). 
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These endosomes are transported in axons and uncoated in 
the cytoplasm at their destination. These pathways involve 
dynein-mediated transport. It is also possible that faster alter-
native pathways might exist.143

There is ample evidence of the involvement of PrPC in 
neurotrophic signaling.23 Neurotrophic interactions medi-
ated by prions depend on the ability of PrPC to coordinate 
the assembly of the multi-component scaffold complexes at 
the cell surface and the endocytosis of these scaffolds. PrPC 
involvement in neurotrophic signaling has been reviewed by 
Martins and coworkers,23 who describe a number of mecha-
nisms for internalization of PrPC and ligand scaffold com-
plexes (Fig. 8). PrPC transport relies on a stable kinesin–dynein 
assembly to coordinate PrPC clathrin vesicles movement in 
antegrade and retrograde signaling via microtubules. Prion 
disease (scrapie) is associated with disruption of assembly of 
both kinesin and dynein.61 Erk1/2 signaling induced by ST11 
requires the endocytosis of PrPC.118 This process requires the 
interaction of ST11 and PrPC, and a functioning kinesin and 
dynein assembly.144

There are a number of mechanisms of PrPC signal modu-
lation that operate through neurotrophic activity, including 
axonal transport, physical transport (involving many signal-
ing molecules and pathways including ATP (purigenic) and 
chemokines (chemotactic)),145 and finally, calcium flux and 
calcium wave transmission through glial transmission. Signal 

transduction pathways have traditionally been studied in iso-
lation of each other.143 A more informative approach might be 
seen as a biosystems approach, integrating prevailing mecha-
nisms. Global SUMOylation,146 methylation,147 and the con-
cept of allostasis148 resulting from biological systems including 
the hypothalamic–pituitary–adrenal (HPA) axis are exam-
ples. Ion channels have been postulated as signal integrators146 
through prion protein modulation of TREK-1 and TRESK 
(calcineurin level). Prion protein could potentially have a role 
as a master coordinator of these global responses.

In retrograde transport of neurotrophins, there is a sig-
nificant role for small p75 receptor (p75NTR).143 This recep-
tor can bind all the neurotrophins (eg, NGF, brain-derived 
neurotrophic factor (BDNF)) as well as other ligands. PrPC 
fragments (106–126) bind with the p75 receptor to act on 
NADPH oxidase and produce disease.149 This would imply 
a role for PrPC in neurotrophic TrkA p38 MAP signaling, 
involving the induction of TRPC channels in the DRG facili-
tating heat and cold hyperalgesia. This pathway is important 
in injury-induced neuropathic pain.150

The physical separation between axon terminals and their 
cell bodies can involve relatively long distances to reach down-
stream affecters in the cell soma (retrograde signaling). The 
transport of neurotrophic molecules to neuronal bodies has 
been found to be significant in cell survival responses.151 These 
distances also have important implications for pain processing, 
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including chronic pain. The central role of PrPC in long-range 
neurotrophic signaling may therefore have implications for 
PrPC in the pain response.

PrPC and astrocyte signaling. The PrPC is expressed in 
glia including astrocytes.152 Arantes and coworkers153 have 
concluded that PrPC has an important role in astrocyte devel-
opment, morphology, and function. It has a role in astrocyte 
development via its ligand STI1 and in neuron–astrocyte 
communication and neuronal survival via its influence on 
glutamate uptake by astrocytes. It also influences astroglial 
Na+/K+ ATPase and glutamate. Neurite outgrowth was more 
prominent in wild-type PrPC astrocytes compared to PrPC-
null astrocytes, and null astrocytes showed a more punctate 
pattern with less fibrillar organization. This is similar to the 
malformed villi seen in gut epithelial cells62 and in altered 
neurite morphology in prion disease.128

Calcium cytosolic levels are mediated by PrPC via 
In(1,4,5)P3 and the subsequent release of Ca2+ from ER 
stores.154 These Ca2+ variations appear critical for the release 
of neurotoxic concentrations of the gliotransmitter glutamate, 
and the regulation of astrocyte signaling glutamate receptors 
and ATP-activated purigenic receptors (P2Y1).154 The impor-
tance of glutamate toxicity in astrocytes is emphasized by the 
chronically activated glial cells that surround depositions of 
PrPSc in prion disease evoked by fragments (106–126).152,154 
There is currently no information on the Ca2+ signaling of 
scrapie-infected astroglia.154

Dysregulation of the GSH antioxidant cascade initiated 
by PrPC increases neural sensitivity.73 If astrocytic glial 
glutamate transporter 1 (GLT1) is impaired, there will be a 
build-up of glutamate in synaptic clefts and a resultant neural 
hyperexcitability and hyperalgesia.155 PrPC overexpression and 
disease exhibit the same neural sensitivity.

Given the evidence of PrPC on astrocyte development, 
together with the role of PrPC in Ca2+ homeostasis and Ca2+ 
signaling, it would appear that PrPC is involved in glial sig-
naling (glial transmission). Glial communication in astro-
cytes is mediated by the gap junction protein connexin 43. 
Connexin 43 is known to bind to Caveolin-1,156 which in 
turn is critical in the signal transduction of PrPC to the Fyn 
Tyr kinase cascade.89 Connexin 43 acts to form a functional 
syncytium between astrocytes through which calcium ion 
waves can travel. This is described as a “glyapse” by Ren and 
Dubner,155 which infers a neuron-glial signaling relationship. 
They describe this “tetrapartite” synapse between astrocyte, 
neuron, and microglia as having up to 60 connections. This 
may be important to glial transmission since recent anatomi-
cal studies have shown astrocytes form a polyhedral, three-
dimensional tessellated domain with subtended connections 
of tubulin.157 This is unique to humans and higher primates, 
and is associated with long neurite processes in the astrocytes 
that contain evenly spaced varicosities. Robertson157 hypoth-
esized that these processes provide an alternative communi-
cation pathway across cortical layers that may be involved in 

consciousness and memory of humans. PrPC may have a sig-
nificant impact on this process of cell-to-cell communication, 
since prion disease has a noted and marked impact on mem-
ory and cognition. Thus, PrPC may have a role in the putative 
higher order functions.

There also is a role for the transport of neurotrophic path-
ways involving calcium waves. This pathway potentially has 
significance in prion signaling in the central nervous system 
(CNS). This would involve astrocytes and microglial signaling. 
Calcium wave oscillation and signaling are rhythmic phenom-
ena relying on specific non-linear feedback processes similar 
to cAMP oscillations, circadian rhythms, and cycle-related 
kinases, including p53/mdm2 loop.158 Understanding this cal-
cium wave propagation and messenger system is important for 
understanding whole cell oscillatory behavior and emergence 
from inherent ion channel behavior. This pathway was seen in 
propagating calcium waves from the growth cone to the axo-
nal soma and was sufficient to change the migration pattern 
of a neuron.159 In other studies, the near-infrared of pulsed 
lasers was found to influence axonal growth trajectory,160 and 
neuronal transmission was found to be facilitated by the addi-
tion of glutamate in brain axons with a resultant biophotonic 
neural communication.161 These studies may imply photonic 
cell-to-cell communication and indicate a future research area 
in PrPC, given its role in calcium flux and glutamate release.

PrPC and circadian rhythms. PrPC has a significant role 
in circadian rhythms including REM sleep and sleep–wake 
patterns.162,163 In addition, PrPC-null mice show disrupted 
sleep patterns. Insomnia can be a symptom of TSE,164 and 
the disease FFI is a prion disease. In the rat brain (suprachi-
asmatic nucleus (SCN), cingulate cortex, and parietal and 
piriform cortexes), mRNA of PrPC is regulated in a circadian 
rhythm,162 not only in a light/dark cycle but also when kept in 
constant darkness. Cagampang and coworkers162 suggest that 
expression of PrPC corresponds to clock-related transcripts, 
which may suggest a role for PrPC. Tobler and coworkers163 
show that a lack of PrPC expression is related to sleep frag-
mentation, and concluded that PrPC is needed for sleep conti-
nuity and that PrPC may be a target for the treatment of sleep 
disorders. Given that a lack of PrPC is associated with loss of 
circadian rhythms, this is suggestive as to how PrPC expres-
sion (or lack of expression) might affect other daily rhythms, 
such as calcium and vitamin D metabolites, which show dif-
ferent diurnal acrophases and which are involved in cell–cell 
synchronization. Any role of PrPC may act through an inter-
action between PrPC and ganglioside GM1.88,165

Genes involved in sleep regulation include melanocor-
tin genes such as proopiomelanocortin (POMC)–tyrosinase, 
which also affect breathing rhythms, pain, cardiac regulation, 
and autonomic response.166 The daily light–dark cycle is known 
to be the primary signal that entrains circadian rhythms to 
the earth’s rotation. Changing the circadian rhythm can have 
effects on health and physiology, such as hormonal secre-
tion, body temperature, retinal neural physiology, and gene 
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expression.167 Variations in melanocortin genes can affect 
physiologies such as seasonal affective disorder (SAD).168 
Sleep disorders are connected to a variety of broader health 
risks including cardiovascular disease,169 obesity,170 hyperten-
sion,171 and psychiatric and behavioral disorders,172 which may 
suggest a role for PrPC in a number of disparate diseases.

PrPC, Immune System, and Phagocytosis
PrPC is also involved in regulation of the immune system, 
and in the areas of inflammation, autoimmunity, phagocyto-
sis, and neuroimmunity (reviewed by Linden et al).18 In this 
function, the expression of PrPC can be either neuroprotective 
or neurodegenerative, a contrast described as the “harlequin 
nature of the prion protein.”3 PrPC has an important func-
tion in the modulation of phagocytosis, showing upregulation 
of NF-κB with a resultant increase in the downstream sig-
naling cascade, which increases phagocytosis.11 Soluble PrPC 
was found to stimulate adherence, phagocytosis, and cytokine 
production (such as tumor necrosis factor (TNF)-α) of mono-
cytes via activation of Erk1/2 and NF-κB.11 Levels of prion 
protein expressed in mouse neutrophils have also been shown 
to be dependent on HPA axis activation during inflammation 
events.173 Interestingly, no other bone marrow cell showed 
this response. This places the expression of the PRNP gene in 
the neutrophil under the control of the HPA axis. This dem-
onstrates a role for prion protein in integrating the immune 
endocrine and nervous systems, and there may be a broader 
role for PrPC in the immune responses linked to the HPA axis.

Available evidence suggests that PrPC also has a role in 
T-cell activation,18 in endocytosis and signal transduction,174,175 
as well as in the correct functioning of macrophages.176 PrPC-
deficient mice showed decreased pseudopodium extension in 
macrophages.177 It has also been demonstrated that prion-like 
proteins (such as MAVS) behave as switches for signal trans-
duction to initiate protection from infectious disease, such 
as viral infections.49,178 Prion-like switches could have both 
positive and negative effects on the immune system to fend off 
disease or cause neurodegeneration.

Neuritogenesis and Polarity
Neurons develop from neuronal stem cells through a process 
of neuritogenesis, where multiple neurites elongate and ulti-
mately form axons and dendrites. This necessitates extensions 
to the plasma membrane, driven by changes to the cytoskel-
eton, including F-actin and microtubules.179 PrPC has been 
known for some time to be involved in neuritogenesis, neurite 
growth, and neuronal polarity.18,122 The action of PrPC as a 
receptor to link the extracellular proteins to cytoskeleton, the 
resulting signal transduction, allows for the modulation of 
neurite outgrowth, neuronal survival, and synaptic plasticity.3 
Butowt and coworkers24 found PrPC to be present in the elon-
gating axons of the embryo, increasing during development 
before declining postnatally. This suggests a role for PrPC 
in axon growth. In adults, PrPC remains present in areas of 

ongoing growth or plasticity, such as the olfactory bulb and 
the hippocampus.180

Neuritogenesis relies on a number of pathways to remod-
ulate cytoskeleton during neuritogenesis, including the inte-
grin pathway.179 This pathway is influenced by PrPC, which 
interacts with β1 integrins at the membrane67 to modulate the 
cytoskeleton. Decreased PrPC leads to increased β1 integrin 
signaling, which in turn has a number of effects.122 Turnover 
of FAs is slowed; the RhoA-ROCK-LIMK1-2cof signal-
ing cascade is activated, which in turn triggers conversion of 
G-actin into F-actin; there is a build-up of ECM fibronectin, 
possibly via the CREB signaling pathway, which is also regu-
lated by β1 integrin signaling. All of these lead to a decrease in 
neuritogenesis. In order to initiate neuritogenesis, FAs need to 
be assembled with high turnover rates, and both G-actin and 
F-actin need to be present. Normal level of PrPC influences 
neuritogenesis by its regulatory effect on β1 integrin, illustrat-
ing the dynamic interplay between PrPC and β1 integrin in 
the regulation of neuritogenesis. This would be important in 
mechanotransduction in the periphery181 and the CNS.182

Other mechanisms are also at play with the effect of 
PrPC on cytoskeleton modulation. According to Zafar and 
coworkers,107 up to 40% of the ligands binding to PrPC are 
related to cytoskeleton functions, including cell growth (neuri-
togenesis), differentiation (polarity), and neuron maintenance. 
PrPC has been shown to bind to the ECM protein vitronectin, 
which influences axon growth.85 PrPC-null mice, however, are 
able to grow axons normally, suggesting that there are other 
mechanisms that can compensate for the loss of PrPC.

Nieznanski and coworkers96,97,181,184 propose that PrPC 
has a role in α- and β-tubulin oligomerization and competes 
with microtubule-stabilizing proteins such as stathmin98 to 
modulate microtubule stability. The interaction between PrPC 
and tubulin has also been demonstrated by others, most nota-
bly during cell apoptosis,185–188 with Schmitz and cowork-
ers finding that PrPC-null mice showed reduced numbers of 
neurons with β-tubulin in the hippocampus.56 PrPC has also 
been shown to interact with the tau proteins that stabilize 
microtubules.189,190 

PrPC has been shown to mediate calcium-independent 
homophilic cell adhesion in embryonic cells125 via signal 
transduction pathways that reorganize the actin cytoskel-
eton and mobilize E-cadherin (a CAM) from vesicles to the 
plasma membrane. CAMs induce signaling events that inter-
act with the cytoskeleton to regulate neurite outgrowth and 
polarization.191

The signal transduction of PrPC via Fyn also has the 
potential to affect microtubule organization, since Fyn appears 
to be an important player in microtubule organization, at least 
in T-cells.192 The interaction between laminin and STI1 sug-
gests that PrPC also has a role in promoting axon growth in 
the peripheral nervous system.193 Thus, it appears that PrPC 
affects multiple mechanisms that in turn control cytoskeleton 
modulation and neuritogenesis.

http://www.la-press.com
http://www.la-press.com/signal-transduction-insights-journal-j102


Liebert et al

24 Signal Transduction Insights 2014:3

Oxidative stress dysregulation and the effect on neuri-
togenesis by overexpression of PrPC were demonstrated by 
Pietri and coworkers128 using a segment of PrPC (amino acids 
106–126). This resulted in oxidative injury to bioaminergic 
neuronal cells. This was characterized by negative effects on 
neural epithelial cells, neuronal progenitor cells, and neu-
rotransmitter levels, as well as negative effects on serotoner-
gic and noradrenergic cells with resultant negative effects on 
their neuritogenesis. This resulted in enlarged neurons, ter-
minal varicosities, increased number of budding vesicles, and 
shorter stumpier neurites.128 This is similar to the malformed 
villi seen in gut epithelial cells62 and altered astrocytes.153 
This varicosity formation is characteristic of the sympathetic 
fiber distortion in the DRG in neuropathic pain194 and the 
delayed neurite basket-like structures resembling varicosi-
ties in the periphery and CNS.195 The mechanism involved 
would include recruitment of Caveolin-1-Fyn signaling plat-
forms and overstimulation of the activity of NADPH oxidase. 
There would also likely be an accompaniment of activation on 
TRPV1, a redox sensor responding to increased ROS196 and 
store-operated Ca2+ entry.197 This mechanism is important 
in the acute synovial inflammation that results in TRPV1-
mediated cell destruction198 and points to a role of PrPC in 
modulating inflammatory joint disease.

PrPC and body symmetry. When an embryo consists of 
three or four cells, it begins the process of producing body 
symmetry. This is controlled by intracellular Ca2+ concentra-
tions that vary throughout the embryo.181,199 High expression 
of PrPC in the nervous system of the embryo compared to the 
adult180 and the role that PrPC plays in the control of Ca2+ 
flux implicate PrPC as having a role in the development of 
symmetry. This is critical for diseases of symmetry, such as 
Parkinson’s disease, cervicogenic headache,200 transforma-
tional headache,201 and some familial migraines. Parkinson’s 
disease has part of its genesis in polymorphisms of several 
axonal guidance genes in the embryo, and this genomic 
difference is predictive of age of onset and absence of adult 
Parkinson’s disease.202

PrPC Signaling Integration
It appears likely that PrPC may have an influence on a vari-
ety of coordinated responses to stimuli. One such response 
is mechanotransduction203 where a localized mechanical 
response can elicit a global mechanical and chemical signaling 
response. PrPC is known to interact with integrin pathways 
and thus influence these signaling cascades and cytoskel-
eton. Integrin pathways are also known to coordinate the 
response to mechanical stimuli in mechanotransduction,204 
which influences ion channel activation. PrPC also binds to 
and influences TREK-1 and Ca2+-activated ion channels.96 
Thus, PrPC would seem to be directly involved in mechano-
transduction, which may be important in mechanotherapy203 
and mechanobiology of the brain,182 where ion channels can 
have a significant effect. Mechanical force is also important in 

membrane dynamics, cytoskeleton and microtubule modula-
tion, and potentially in microtubule-coded communication.44 
This mechanism would involve posttranslational modifica-
tions of tubulin and, hence, the cytoskeleton. Antegrade and 
retrograde mechanical signaling has been proposed to play a 
role in information transfer and neural plasticity.44 As a con-
sequence, PrPC may also be crucial to the signal transduction 
pathways involved in mechanotransduction, because of its role 
in microtubule assembly and the function of the cytoskeleton 
in neurons.

PrPC may also have a role in the global modification of 
proteins by small ubiquitin-like modifier (SUMO) proteins 
(or SUMOylation). The SUMOylation of K+ leak channels 
and nuclear and perinuclear targets produce a global response 
via NF-kB205 and PPAR-γ.206 SUMO 2/3 is also heavily 
involved in regulating the p53 response to DNA damage by 
SUMOylation and deSUMOylation, an important process to 
protect genomic integrity.207 SUMO/sentrin-specific proteases 
(SENP) involved in the deSUMOylation of p53 reduce apop-
tosis and increase the antioxidant SIRT1/SUMOylation.207 
PrPC is a candidate target for SUMOylation because of its 
involvement with p53, its regulation of ion channels, and 
redox modulation. Patients with prion disease (s-CJD) showed 
a consistent decrease in expression of SUMO2/3,63 which also 
points to a role of PrPC in SUMOylation, as does the regula-
tion of the myocyte enhancer factor 2 (MEF2) by calcineurin 
and Ca2+ flux.208 This is an example of a complex physiological 
process being tightly regulated by posttranslational modifica-
tion by a switch that activates or inhibits synapse formation.209 
The role of PrPC in the protein pathways involved in DNA 
repair is an area of future research.

Three yeast prion proteins (PSI+, URE3, RNQ+) have been 
implicated in non-DNA, epigenetic inheritance (reviewed by 
Fowler).29 That is, the aggregated form of the protein is passed 
to and persists in daughter cell phenotypes, often demonstrat-
ing positive selective characteristics in the rapidly changing 
environments in which yeasts can find themselves. In humans, 
PrPC is thought to be involved in the chromatin modification 
through interaction histone H3.210 Histone changes have been 
linked to epigenetic inheritance in humans (reviewed by Greer 
and Shi)211 as well as chronic pain.147

PrPC, Non-prion Disease, and Potential Treatments
PrPC has a significant role in nervous system signaling, 
responding to extracellular stimuli by binding to ligands, 
then coordinating a response to these stimuli by ligation with 
other proteins in the signal scaffold, and initiating signal cas-
cades. This function makes PrPC a potential therapeutic tar-
get, with implications for health and disease beyond the scope 
of prion disease and its rarer familial and sporadic variants 
(GSS, FFI, etc.). PrPC involvement in disease may extend to 
subtle dysfunctions of the protein and its ligands that could be 
of genetic, epigenetic, or environmental origin. Modulation 
of PrPC function would, therefore, appear to be a potential 

http://www.la-press.com
http://www.la-press.com/signal-transduction-insights-journal-j102


Prion protein signaling in the nervous system

25Signal Transduction Insights 2014:3

treatment intervention. Accordingly, diseases such as insom-
nia, chronic pain (including headache), chronic inflamma-
tion (including autoimmune disease), and neurodegenerative 
disorders are discussed with reference to PrPC regulation and 
dysregulation.

PrPC, neuroendocrine, and disease. It is increasingly 
apparent that PrPC has a role in the regulation of the neu-
roendocrine secretion of the pituitary molecule POMC in 
an animal model.212 POMC is also regulated by p53, which 
is a target of PrPC. Oversecretion of PrPC over long periods 
resulted in destruction of POMC secretory granules by cri-
nography (lysosome mediated).212 POMC is a precursor mol-
ecule in the formation of melanin and hormones ACTH, 
αMSH (an inhibitor of NF-κB), β-opioid, and thyroid; and is 
therefore involved in energy homeostasis, autonomic regula-
tion, pain regulation, and the pain and anesthetic response of 
red-headed women.213 Importantly, αMSH is an inhibitor of 
NF-κB, which may also be upregulated by PrPC via ROS sig-
naling. Taken together, these evidences point to a role for PrPC 
in melanocortin-inspired disease. As p53 can be activated by 
various stressors, including sun exposure, inflammation, and 
aging, this may implicate PrPC as having a role in such diverse 
disease responses as inflammation (including asthma),214 
energy and weight homeostasis,18 recovery from brain injury,59 
and myopathy.215 Further, PrPC may also be involved in other 
melanocortin diseases such as collagen-related disease (of the 
eye),216 pigmented collagen disease of the synovium (involv-
ing p53 regulation of monocytes),217 and thyroid disease.218 
The link between PrPC, αMSH, and NF-κB suggests that the 
neuroprotective role of PrPC could play a part in the anesthetic 
response of elderly patients who suffer postanesthetic demen-
tia (Alzheimer’s disease),219,220 possibly involving the role of 
PrPC in cytoskeleton organization,21,122 an important focus for 
further investigation.

Another possibility in relation to the interaction between 
PrPC and the melanocortin system (as hypothesized by 
Hernandez)116 is the close proximity on chromosome 20 (in 
humans) of the PrPC gene to critical pigmentation genes, 
including genes for agouti signaling protein (ASIP), attractin 
(ATRN), and melanocortin 3 (MC3) neural anti-inflammatory 
receptor.221 This proximity may link pigmentation to regula-
tion of PrPC and hence to prion disease in animals such sheep 
and rodents. If extended to humans, this would point to an 
interrelationship between PrPC gene expression and PrPC-
regulated disease, especially given the effect of the temporary 
disruption of the cytoskeleton during general anesthesia222 
and the role of PrPC interacting with MAPs and microtubule 
assembly and disassembly.

In addition to the two mechanisms for anesthesia vulner-
ability discussed above, a third area of vulnerability to anes-
thetically induced neurodegeneration related to PrPC function 
could be proposed. It has been demonstrated that there is a 
link between protein 14-3-3, calcineurin, and PAR-1/MARK 
pathway,223,224 which results in the coupling of microtubule 

dynamics and neuronal excitability through TRESK 
channels.225 TRESK is the ion channel most sensitive to anes-
thetics such as halothane and isoflurane, mediating the sup-
pression of wakefulness, awareness, and memory.226 PrPC has 
also been linked to protein 14-3-3100 and calcineurin B83 giving 
a further link (via TRESK channels) to cytoskeleton dynam-
ics. Thus, it might be expected that PrPC would have a role in 
postanesthetic disease vulnerability. Implications for treatment 
include the screening of patients undergoing anesthesia for 
TRESK polymorphisms and the targeting of PrPC for neuro-
protection in relation to anesthetic-induced disease.

PrPC and neurodegenerative disease. There are clear 
common features between prion diseases and amyloid neu-
rodegenerative diseases (Alzheimer’s disease, Parkinson’s dis-
ease, Huntington’s disease). They share neuropathic symptoms 
such as synaptic dysfunction, neuron loss, and neuropeptide 
signaling disintegration. The diseases are all progressive con-
formational diseases, which involve the misfolding of proteins 
from the native form to an amyloid-like β-form that accumu-
late (aggregates) in the CNS as amyloid fibrils. All may have 
a genetic component, and all show similarities in gene expres-
sion pathway changes during the disease process, most com-
monly, the MAPK/Erk1/2 signaling pathway.227 It is likely 
that progression to neurodegenerative disease may (in part) be 
because of a failure in the chaperone-mediated UPR.228 It has 
also been established that (at least in the case of Alzheimer’s 
disease in mice)229 the amyloid disease can be experimentally 
transmitted via amyloid protein.

Initiation of the conformational disease depends on a 
switch from the native state of proteins to the misfolded state. 
Triggers for this switching are largely unknown, but Iram and 
Naeem230 have reviewed the five most important aggregation 
mechanisms, viz,

·	 reversible aggregation of protein monomers,
·	 transient conformational change leading to aggregation,
·	 chemical modification (eg, oxidation, proteolysis) leading 

to aggregation,
·	 nucleation-induced aggregation, where the “seed” mono-

mer eventually reaches a critical size and can then rapidly 
accumulate further monomers (as in progressive prion 
and amyloid disease), and

·	 aggregation initiated by a surface-changing protein 
conformation.

Liu and Zhao231 have used an algorithm to predict 
regions of various proteins that might correspond to “switch-
ing regions”. They confirmed the five PrPC regions reported by 
Kuwata and coworkers232 as potential sites for the conforma-
tional change of PrPC to PrPSc. The switching mechanism and 
the switching regions of proteins are obvious targets for inter-
vention and therapy, particularly before the protein attains its 
permanent irreversible conformation, prior to frank disease 
onset. The implications for drug therapy of conformational 
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disease to circumvent or reverse the misfolding have been dis-
cussed recently,233 as has the potential role of low-level laser 
therapy (LLLT).234

Once established, treatment to reverse the protein mis-
folding in neurodegenerative diseases has proved very difficult, 
although a number of targeted drugs may eventually be found 
to be effective235,236 as may immunotherapy.228,237 Recently, 
laser has been shown to detect insulin fibrils and the fibrils 
of Alzheimer’s disease and Parkinson’s disease. The authors 
attribute the photon absorption to the juxtaposition of aro-
matic amino acids in the fibril and also suggest that laser may 
remove the amyloid.238 Laser has been shown to be effective 
in treatment of Alzheimer’s disease in the mouse model239,240 
and in tissue culture,241 and is thought to have potential for 
treatment of human-misfolded protein diseases.242

The relationship between PrPC and both Parkinson’s 
disease and Alzheimer’s disease is increasingly becoming a 
target for research, as reviewed by Prusiner243 and Chrobak 
and Adamek.244 PrPC has been shown to act as a receptor to 
the amyloid beta (Aβ) protein of Alzheimer’s disease, which 
suggests a synergy between the two proteins. PrPC appears 
to be neuroprotective against the build-up of α-synuclein, 
β-amyloid, and tau plaques,245 possibly as a result of its influ-
ence on phagocytosis and neuroregulation.11 PrPC has also 
recently been suggested as a therapeutic agent in the treatment 
of Alzheimer’s disease.246,247 The relationship between PrPC 
and Alzheimer’s disease has been the subject of a number of 
recent reviews.132,248,249

PrPC and diseases of asymmetry. Diseases involving 
asymmetry are good candidates for research into the role of PrPC 
in disease. These would include Parkinson’s disease,202 asym-
metrical headache200 (including migraine with aura and cervi-
cogenic headache), complex regional pain syndrome (CRPS),250 
and posttraumatic stress disorder (PTSD), which involve asym-
metrical amygdala volume (right larger than left).251

Genetic polymorphisms of a set of axonal guidance 
and nuclear import genes are predictive of age of onset, 
and presence and absence of Parkinson’s disease. The role 
of PrPC in axonal guidance and proliferation is well estab-
lished.67 Application of a redox-modulating intracranial 
laser device has been shown to be effective in neuroprotec-
tion against Parkinson’s disease in an animal model.252 A 
similar mechanism may be in place in humans, and testing 
for this gene may point to preventative strategies against 
Parkinson’s disease.

During phagocytosis, there is a release of near-infrared 
wavelengths 400–820  nm.253 These wavelengths have been 
found to be neuroprotective when applied to the brain in the 
prevention of Parkinson’s disease in an animal model.252 In 
addition, neurogenesis has been demonstrated when exog-
enous pulsing photons (800 nm) are applied to an axon, which 
may mimic the near-light emitted by cells as communica-
tion from nearby cells.160 The neurogenesis is also influenced 

by membrane-anchored proteins (axonal guidance by PrPC). 
Upregulation of phagocytosis by PrPC would result in an 
increase in endogenous photons. Exogenous photons applied 
to other body areas, apart from the brain, in the same ani-
mal  model252 result in neuroprotection through an abscopal 
effect.234 Interestingly, asymmetric disease is associated with 
abnormal left–right symmetry of global photon emission from 
the body.254

PrPC and pain. Prion disease is accompanied by neural 
sensitivity and decreased resistance to environmental stress, 
which may indicate a role for PrPC in regulation of chronic 
pain syndromes. PrPC is expressed in many cells of the neu-
roimmune network,18 including lymphocytes and macro-
phages, peripheral axons, sympathetic C fibers and ganglia,20 
gut epithelial tissue;62 and in the CNS, including the hippo-
campus, thalamus, and cortex (particularly, SCN and cingu-
late cortex, which are involved in sleep diurnal rhythms and 
cognition). Since chronic pain is considered to be a dysregu-
lated immune response,255,256 there exists a potential role for 
PrPC in the modulation of chronic pain that could include 
chronic sympathetically mediated pain syndromes such as 
neuropathic pain, cervicogenic headache, migraine with 
aura, and CPRS.257

Chronic pain is a widespread problem affecting qual-
ity of life and productivity. For example, cervicogenic head-
ache, a subset of sympathetically mediated chronic pain, is a 
major burden in treatment clinics and daily life activities,200 
because of the lack of responsiveness (25% of cases) to classi-
cal treatment including medication, surgery, and physiother-
apy.258,259 TRESK polymorphisms have been recently found 
to be involved in headaches260 and response to anesthetics,226 
and TREK-1 polymorphisms have been found to be involved 
in polymodal pain syndromes.261 The interaction of PrPC on 
TREK-1, VGCC, and TRESK, through the interactions of 
calcineurin83 and Ca2+ flux,23 means that PrPC may have a 
role in K+ channel regulation and is thus a potential treatment 
target. The ability of the organism to compensate and adapt 
to severe ion channel dysfunction gives a role for PrPC to be 
involved in compensatory pathways.

The implications for treatment of chronic and unre-
sponsive pain that would evoke a PrPC response and that 
may modulate prion function would include treatments that 
change the redox status including drugs and light energy. 
For example, LLLT affects the oxidant/antioxidant balance 
through intracellular signaling cascade (reviewed by Wu and 
Xing).262 Photons are absorbed by the cytochrome-c-oxidase 
and increase ROS in the mitochondria and the cytoplasm, 
leading to signal transduction via NF-kB and the Erk1/2 and 
the PI3K/Akt pathways.262

PrPC has a role in modulation of the cytoskeleton, 
through interactions with integrins, stathmins, and tubu-
lins (see above). Morel has also shown that overexpression of 
PrPC results in disruption of microtubule architecture and the 
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consequent shortening of intestinal villi and the homeosta-
sis of epithelial renewal. Pietri and coworkers128 found that 
overexpression of PrPC (106–126) in serotonergic and norad-
renergic neurons resulted in altered neurite extensions with 
increased budding vesicles and changes to the cell body shape 
with contorted swellings that resembled varicosities. In neu-
ropathic injury (in an animal model), there is a disruption of 
cytoskeleton structure in the dorsal root ganglion, with the 
formation of sympathetic varicosities, which is important as 
the mechanism behind neuropathic pain behaviors.194 This is a 
result of abnormal communication between sensory neurons 
and sympathetic fibers in the DRG. Therapeutic interventions 
aimed at restoring homeostasis in cytoskeleton architecture, 
such as LLLT, are becoming increasingly important in the 
treatment of neuropathic pain where microtubule disruption 
causes reversible varicosity formation and provides relief from 
chronic pain.263,264

PrPC and insomnia. One of the characteristics of prion 
disease is insomnia, and FFI is one of the TSE variant dis-
eases. This suggests a role for PrPC in regulating sleep and 
disruption of diurnal rhythms such as SAD. Melanocor-
tin and p53 pathway regulation are involved in insomnia,166 
which is characterized by a maladaptive stress response (see 
above). As PrPC is known to interact with p53 and melano-
cortin and (more broadly) is thought to modulate the cellular 
stress response, this points to a mechanism for PrPC in the 
regulation of sleep. A decrease in GABAergic inhibition has 
been considered by Palagini and coworkers170 as contributing 
to insomnia. Fournier131 has found a role for PrPC in the syn-
apse to regulate GABA release. Thus, there is likely to be a 
role for PrPC in sleep homeostatic mechanisms, particularly in 
vulnerable populations, including vulnerability to SAD.168 In 
terms of treatment, light therapy has proved effective in both 
SAD168 and depressive disorders.242

PrPC and other diseases. Owing to its signal transduc-
tion with multiple pathways, PrPC may have involvement in a 
number of other disparate diseases, including:

·	 Diseases involving collagen, which would include hyper-
mobility diseases (encompassing joints and nerve impair-
ment),265 muscle and tendon repair, and chronic muscle 
and tendon diseases because of PrPC involvement in β1 
integrin pathway signal transduction67—mechanotrans-
duction pathways. Treatment implications involve mech-
anotherapy203 and, possibly, regulation of mesenchymal 
stem cell activity.78,266,267

·	 Autoimmune diseases, including diseases of Tyr kinase 
Lyn268 (eg, systemic lupus erythematosus, rheumatoid 
arthritis) through the regulation of purigenic signaling23 
by PrPC.

·	 Other neurodegenerative diseases including schizophre-
nia and bipolar disorder105,269 through PrPC action on 
Ca2+ homeostasis.

Conclusion
PrPC is an enigmatic protein. Although originally described in 
terms of infective disease, the extent of its myriad functions is 
becoming increasing evident, especially in the nervous system, 
where it is essential for correct system function. PrPC interacts 
with multiple partners to act on a number of targets simultane-
ously. PrPC is seen as a master controller of cellular signaling, 
acting as a receptor and scaffold for multiple ligands and ini-
tiating a number of signal transduction pathways. It has been 
proposed to have synaptic, gap junction and short-range signal-
ing functions including redox modulation and calcium ion flux 
homeostasis, as well as a role in neurotrophic, purigenic, and 
chemotactic signaling. As this review indicates, knowledge of 
the role of PrPC in physiology and disease will become increas-
ingly important in the design of novel treatments. The relation-
ship of prion protein to other amyloid forming proteins and its 
potential involvement in diseases disparate from prion disease 
itself, possibly involving the conformational switching and mis-
folding of proteins, opens up a potential area of research for tar-
geted therapies such as drug therapies and LLLT.231,233,234 As an 
extension of our current work, we have further identified some 
conditions as having a potential PrPC involvement, including 
chronic pain, neurodegeneration, inflammation, and autoim-
mune disease. The wide range of interactions in which PrPC par-
ticipates suggests multiple targets for therapeutic interventions, 
including treatments aimed at the PrPC interaction with redox 
potential mechanisms, Ca2+ flux, and cytoskeleton modulation.
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