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Introduction
The vision of miniaturized sequencing devices is turning into 
reality with the emergence of MinION  by Oxford Nanopore.1 
Such devices are promising in a variety of potential applica-
tions, ranging from studying of wildlife and clinical capture of 
sequenced genes to food inspection for identifying pathogens. 
However, such portable devices are commonly subject to the 
constraints in processing capabilities, power budget, and stor-
age and communication limitations. With these constraints, 
the traditional view of genome compression architecture as 
simple decoder and complex encoder needs to be changed. It 
is urgent to develop novel techniques to satisfy the emerging 
reality challenges. Data compression methods (for reducing 
the storage space with significantly lower computational com-
plexity and memory requirements) become crucial for the effi-
cient management of genomic data in portable devices.

In both situations (with or without reference sequences), 
traditional genome compression is computationally expen-
sive at the encoder. The complexity is dominated by match-
ing (approximately) repeated patterns of nucleotides – namely 
adenine (A), cytosine (C), guanine (G), and thymine (T) – 
between or within the DNA sequences. These patterns are 
also accompanied by insertions, deletions, and substitutions 
of single nucleotides.

To date, a number of specialized DNA sequence com-
pression algorithms have been proposed. Following Ziv and 
Lempel’s ideas,2 Grumbach and Tahi3 proposed the first 
DNA sequence compressor, Biocompress, to compress the 
exact repeating patterns with a specially designed Fibonacci 
coder. The algorithm was then improved in Biocompress-24 
by introducing a Markov model for encoding the nonrepeated 
regions. Chen et al.5,6 extended the earlier approach to cover 
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approximated repeats by further exploiting the nature of 
DNA sequences. Meanwhile, the work in Ref. 7 introduced 
a combined CTW + LZ algorithm for searching approximate 
repeats and palindrome using hash and dynamic program-
ing. Behzadi and Fessant8 proposed a dynamic programing 
approach for the optimal selection of approximate repeats 
with promising compression efficiency being witnessed. How-
ever, such methods are heuristic as the underlying statistics 
of the sequence patterns are generally ignored. The authors 
in Refs. 9–11 proposed to combine the matching and sub-
stitution of approximate repeats and a specific normalized 
maximum likelihood model, obtaining a much higher com-
pression ratio. Subsequently, statistical modeling for predict-
ing the generation of symbols and arithmetic coding for such 
symbols in DNA sequences were proposed for more efficient 
compression. Cao et al.12 proposed to estimate the probabil-
ity distribution of symbols with a panel of experts to tackle 
the approximate repeat problem. Alternatively, finite context 
models are proposed to capture different aspects of statistical 
information along the sequence;13,14 such reference-free meth-
ods are plagued by their low compression rates (not .6:1) and 
prohibitive computational consumption for large DNA sets.

Recognizing reference-free architectures do not fully 
utilize information, a series of algorithms are proposed to 
compress sequences by matching approximate repeats with 
a reference sequence. The RLZ algorithm proposed by 
Kuruppu et al.15 performed relative Lempel–Ziv compression 
of DNA sequences with the collection of related sequences. 
Wang and Zhang16 proposed the GRS compressor, which 
is able to compress a sequence using a reference without any 
additional information. Applying the copy model into the 
matching of exact repeats in reference sequences, GReEn17 
achieved even larger gains when compared to that in Refs. 
15 and 16. Recently, reference-based algorithms18,19 achieved 
highly efficient compression performance for the fastq data 
format, by matching and comparing repeated subsequences 
in the reference sequences. Although the reference-based 
architectures can achieve hundreds of folds compression, the 
requirement of reference sequences makes it impractical for 
miniaturized devices, which have very limited storage space 
and communication bandwidth.

In this study, we propose a novel and pioneering architec-
ture for the genome compression application in miniaturized 
devices with limited processing capabilities, power budget, 
storage space, and communication bandwidth. The contribu-
tion of this paper is threefold.

1. First, to the best of our knowledge, the proposed archi-
tecture is the first practical one to meet the demands of 
miniaturized devices. Motivated by the distributed source 
coding (DSC) for sensor networks,20 the proposed scheme 
includes a simplified encoder without having access to ref-
erence sequences or communicating with other encoders, 
and a complex decoder that detects repeated subsequences 

in the stored reference sequences and decompress the 
received encoded bits with the specifically designed graph-
ical model. Hence, the proposed compression system can 
successfully meet the constraints and requirements of the 
miniaturized sequencing devices.

2. Second, a flexible encoding and decoding mechanism is 
proposed. Using feedback from the decoder, the encoder 
transmits either hashes conducting the detection of vari-
able-size exact repeats in decoder or syndromes obtained 
with low-complexity Slepian–Wolf (SW) coding21 of 
the nonrepeated subsequences. The proposed encoder 
and decoder perform efficiently by considering both 
exact repeats and approximately repeated subsequences 
(eg, insertion, deletion, and substitution).

3. Third,21 the syndrome and reference sequences at the 
decoder, we construct a novel factor graph model to 
tackle the challenge in detecting insertion, deletion, and 
substitution between the reference and original source. 
Experimental results show that the proposed architecture 
can achieve an efficient compression performance with 
significantly low encoding complexity when compared to 
the benchmark compressor GRS.

The rest of this study is organized as follows. In the 
System Architecture section, we introduce the proposed 
DSC-based genome compression system, which includes the 
implementation details of the proposed hash-based (exactly) 
repeated sequence coding with adaptive length and an overview 
of syndrome-based nonrepeated sequence coding. Then, in the 
the Syndrome-based Nonrepeated Sequence Coding section, 
we focus on the design of the coding, which can handle the 
insertion, deletion, and substitution between sources and ref-
erence. The experimental results and concluding remarks can 
be found in the last two sections.

system Architecture
The block diagram of the proposed genome compression 
framework is depicted in Figure 1. Suppose that there are two 
correlated DNA sequences (ie, source and reference sequences) 
available at the encoder and decoder, respectively, the varia-
tions between the two sequences are modeled by insertion, 
deletion, and substitution. The alphabet of our studied DNA 
sequence is confined within the set {“A”, “C”, “G”, “T ”, “N”}, 
where “N” denotes an unknown base due to a low sequenc-
ing quality. Figure 2 shows the logical flow of the proposed 
framework, which we will discuss in detail.

At the encoder (see the left hand side of Fig. 2), a streaming 
DNA sequence obtained from the portable sequencer will be 
first stored in the incoming data buffer for further process-
ing. Second, a sub-sequence xi

L , which starts with the i-th 
to be compressed based on the source sequence, is extracted 
from the incoming data buffer, where its length L and the cor-
responding coding method are decided by the adaptive code 
length and types selection module. The compressed sequence 
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can be either low-density parity-check Accumulate (LDPCA) 
syndromes Sxi

L i
L= Hx  or hash bits hxi

L depending on whether 
variations are presented between the source and the reference 
sequence, based on the decoder feedback, where H is the par-
ity check matrix in LDPC codes. Third, the encoded sequence 
will be temporally stored in the forward data buffer and send 
to the decoder.

At the decoder (see the right hand side of Fig. 2), the 
received streaming data in the incoming data buffer will be 
processed by one of the following modules based on the cor-
responding data compression mode (ie, either hash bits or 
syndromes).

1. For the received hash data hxi
L , it will be compared with the 

hashes generated from a bunch of subsequence candidates 

y yj U
L

j V
L

+ +, ,  within the reference sequence for V – U + 1 
total candidates, where j is the current offset compensated 
start location, and U and V are predefined lower and upper 
bounds, respectively, of the search region for start loca-
tions. Then, the comparison result can be further processed 
as follows.
a. If a matched hash hyk

L for k = j + U,· · ·, j + V  is detected 
( , ),ie h hy xk

L
i
L=  the next offset compensated start 

location of the sliding window can be updated as j 
= k + L (see Fig. 3). Moreover, we claim that yk

L 
will be identical to xi

L , if hyk
Land hxi

L are matched 
with each other, which is the fundamental assump-
tion of our proposed system. Intuitively, the afore-
mentioned assumption can be enforced by choosing 
a strong hash code with a small search region. The 
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figure 1. Workflow of genome compression based on DSC.
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experimental results based on sequences22,23 with 
total more than 238 million bases demonstrate that 
a 16-bit cyclic redundancy check hash code with a 
search region U = –2 and V = 10 provides a strong 
assertion of such assumption. In addition, the decoder 
will inform the success to the encoder and request a 
longer code length based on a predefined protocol 
as updating Lcurrent = bL0, where L0 is a predefined 
initial length and the scaling factor b is updated 
as b = b + db, db is an incremental constant, and b 
is initialized as 0. For example, at the beginning, 
Lcurrent = L0, if a matched hash is detected, the adap-
tive length Lcurrent will be updated as Lcurrent = dbL0, 
as the scaling factor b = 0 + db. Similarly, if nh num-
ber of successively matched hashes are detected, the 
adaptive length and its corresponding scale factor 
will be Lcurrent = nhdbL0 and b = nhdb, respectively.

b. If no matched hash can be detected, the following 
two conditions will be checked.

  i.   if Lcurrent = L0, the decoder will inform the 
hash matching failure to the encoder and 
request syndromes from the encoder for fur-
ther action.

  ii.        Otherwise, the decoder also informs the hash 
matching failure to the encoder, but requests 
a shorter code length by setting Lcurrent = L0.

2. For the received syndromes, the decoder will pass the 
syndrome to the proposed factor graph-based LDPCA 
decoder with the capability of handling deletion, inser-
tion, and substitution between the source and the refer-
ence. (See the Syndrome-based Nonrepeated Sequence 
Coding section for more implementation details). The 
following two conditions will be checked.
a. If the decoded source x̂L

i  satisfies both the parity 
check constraint xie s x̂( , )

i

L
iH=  and the hash 

constraint x xie h ˆ( , ),L L
i i

= h  the decoder will send 
an LDPCA success message back to the encoder 
and update the offset compensated start location 
j through the Smith–Waterman local alignment 
between the reference and the decoded source. 

Moreover, the encoder will send hash codes to the 
decoder for the next subsequence.

b. Otherwise, the decoder will request additional 
LDPCA syndromes from the encoder.

syndrome-based Nonrepeated sequence coding
As previously mentioned in our system architecture, if 
an exact repeat cannot be identified by hash coding, the 
decoder will request syndromes from the encoder through 
a feedback channel. In this section, we introduce the codec 
design of the proposed syndrome-based nonrepeated 
sequence coding.

syndrome-based nonrepeated sequence encoding. The 
first step of the proposed syndrome-based nonrepeat encoder 
is to convert DNA data into a binary source, such that they 
can be compressed under a binary LDPCA encoder. Sup-
pose the following mapping rule for the letters within the 
alphabet, ie, “A” → 000, “C” → 001, “G” → 010, “T ” → 011, 
“N” → 100, a DNA subsequence x can be represented by the 
corresponding binary vector xb. For instance, given a DNA 
subsequence x = [“A” “T” “G” “C” “T” “N”]T with length 
N = 6, its corresponding binary vector will be xb = [000 011 
010 001 011 100]T with length 3N. Thus, for LDPC-based 
SW coding (ie, lossless DSC), the compressed syndromes will 
be generated through Sx b= Hx , where H is a sparse parity 
check matrix with size M × 3N and M , 3N. Thus, the result-
ing code rate can be expressed as R = M/N bits per base. It is 
worth mentioning that the computational complexity of the 
aforementioned encoder is ultra-low, since the only operation 
is the bit-wise multiplication between the sparse matrix H 
and the original source. Moreover, we employ LDPCA codes 
to implement rate adaptive decoding, where the decoder can 
incrementally request additional LDPCA syndromes from 
the encoder through a feedback channel, when facing decod-
ing errors.

syndrome-based non-repeated sequence decod-
ing. To perform syndrome-based decoding for non-repeat 
DNA subsequence x with the reference sequence as side 
information y, the key factor is to be able to explore the 
variations between the source subsequence x and the refer-
ence sequence y, where the variations are modeled by the 
insertion, deletion, and substitution between the source 
and reference. Moreover, a substitution can be expressed as 
an insertion in the source sequence followed by a deletion 
in the corresponding location in the reference sequence. 
In this section, we demonstrate that such variations can 
be effectively estimated through Bayesian inference on 
graphical models. The graphical model of our proposed 
syndrome-based decoding with variation is depicted in 
Figure 4. In Figure 4, the variable nodes (usually depicted 
by a circle) denote variables such as source symbol, binary 
source bits, local offset introduced by variation, and 
syndromes. Besides, factor nodes (depicted by squares) 
represent the relationship among the connected variable 
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figure 3. the diagram of hash-based coding.
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nodes. In the rest of this section, we will describe how to 
construct the proposed factor graph for the DNA sequence 
decoding with variations. We first study the parity check 
constraint imposed by the received syndromes, where 
s1,…, sM, the realization of variable node Sl, l = 1,…, M,  
denotes the received syndromes in Figure 4. Similar to the 
standard LDPC codes, the factor nodes cl, l = 1,…, M, take 
into account the parity check constraints, where the cor-
responding factor function can be expressed as

 

c s
s

l c l
l c

l

l( , )
,

.
x

if

otherwise
=

⊕ =





⊕1 0

0

,

,

x
 (1)

where xcl
 denotes the set of neighbors of the factor node cl, and 

⊕xcl
 denotes the binary sum of all elements of the set xcl

.
Moreover, x x xi i i

1 2 3, , , and the realization of variable node 
Xi

r  with i = 1,…, N, r = 1,2,3, are the binary representation 
for the i-th base xi in the DNA sequence according to the 

mapping rule introduced in the Syndrome-based Nonrepeated 
Sequence Encoding subsection above, where the mapping rule 
is captured by the factor node f i, i = 1,…, N with corresponding 
factor function as follows

 
f x x x x

x x x x
i i i i i

i i i i
( )

, ,
, ., , ,

, ,
1 2 3

1 2 31

0=
=


 if map( )

otherwise
  

(2)

where map(•) denotes the mapping from the binary bits “•” to 
a letter in the alphabet, eg, the output of map(0, 1, 1) corre-
sponds to the letter “T”.

Moreover, since the alphabet is not uniformly distrib-
uted in an arbitrary DNA sequence, the prior distribution for 
the alphabet is captured by the factor node hxi

, where learn-
ing prior through training DNA sequences will be discussed 
shortly in the Results section.

Now, we introduce an additional erasure variable node 
Mi to capture the variation between reference yi and source xi, 

figure 4. factor graph of genome compression based on DsC.
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where the variable mi = 1 indicates the presence of variations, 
mi = 0 means the existence of matches yi+ti

= xi  and ti = –T, ···, T  
are all possible local offsets within the search region [–T, 
T]. Moreover, the corresponding prior distribution of vari-
able mi is captured by the factor node hmi

 with factor function  
defined as

 
h m

p x

pm i

e i

ei
( ) =

− =





1 if exist matches

otherwise

y

, ,

i+ti

 
(3)

where pe can be learnt through training DNA sequence.
For the existence of matches yi+ti

= xi , the local offset 
ti is captured by the variable node Ti and its corresponding 
prior is represented by the factor node hti

 with h t pt i ti i
( ) ,=  

where pti
 can be learnt through training DNA sequences. 

Furthermore, as the local offsets between adjacent DNA bases 
do not vary significantly in our assumption, it is expected 
that adjacent variables ti will not differ much in value. Such 
characteristic is captured by the additional factor node qt ti i, ,

+1
 

where the corresponding factor function is defined as

 
1

1 +1 2
– | – |

, ( ) i i
i i

t t
t t iq t e ααα +

+
=i,t , ,

 
(4)

where α is the scale parameter of the Laplace distribution.
The factor node gi and its corresponding factor function 

gi(mi, yi, xi, ti) are introduced to combine the impact imposed by 
the side information yi, erasure mi, and local offset ti. For mi = 0, 
the factor function can be expressed as,

 
g m

y x
i i

i t ii( )= =
=






+
0

1
, y ,x ,t

,

,i i i

if

0 otherwise.
 

(5)

For mi = 1, the variable nodes Ti and Yi will be disconnected 
from the factor node gi. Therefore, the simplified factor function 
gi(mi = 1, xi) = 1 can be used to take the impact of erasure into 
account.

Finally, in the context of Bayesian inference, estimat-
ing unknown variables corresponds to the evaluations of their 
marginal distribution, which can be efficiently achieved by 
performing message passing on a factor graph. With the fac-
tor graph defined in Figure 4, the original DNA sequence can 
be recovered by the estimated posterior distribution of each 
source xi.

results
Two genome sequence data, The Arabidopsis Information 
Resource (TAIR)24 and The Institute for Genomic Research 
(TIGR),25 are adopted in our experiments. These two 
databases are collected by professional groups or institutes, 
and have been widely used by research communities.

The TAIR maintains a database of genetic and molec-
ular biology data for the model higher plant Arabidopsis 
thaliana.24 In this experiment, we test TAIR822 dataset and 
TAIR923 dataset, where each dataset contains five chro-
mosomes with over 238 million bases in total. Moreover, 
the genome of TAIR9 is used for testing our compression 
performance with TAIR8 as reference only available at the 
decoder. For this experiment, all the hyper-parameters are 
initialized as follows, the initial code length L0 = 528, the 
incremental constant bd = 3, the scale parameter of Laplace 
distribution α = 1, the maximum local offset search region 
T = 4, and the erasure probability pe = 0.01. The proposed 
codec is implemented in MATLAB and evaluated on an 
Intel 3.0GHz CPU.

First, the empirical marginal statistics of the DNA bases 
{“A”, “T”, “G”, “C”, “N”} and those of the local offsets ti within 
the range from –4 to 4 are shown in Figure 5A and 5B, respec-
tively, which will be used as the priors in the syndrome-based 
nonrepeated sequence decoding. In Figure 5A, we verify the 
assumption that the alphabets of DNA sequences are usually 
non-uniformly distributed. Moreover, Figure 5B depicts that 
the maximum local offset with T = 4 is sufficiently large for 
capturing shifts between the reference and the source.

Figure 6A illustrates the relationship between the aver-
age code rates and the different maximum local offsets in 
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syndrome coding based on all five chromosomes. In Figure 6A, 
we can see that the code rates decrease as the maximum local 
offsets increase, due to the fact that a larger maximum local 
offset offers a wider search region for exploring the reference. 
However, a larger maximum local offset may also result in 

a higher decoding complexity. Figure 6B shows the overall 
compression performance (ie, hash bits + syndromes) for all 
five chromosomes in terms of compressed file size. Moreover, 
Figure 7 shows a side-by-side comparison of the compression 
rate and compression time. We can see that both the proposed 
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Compared with traditional reference-based DNA com-
pression algorithm (eg, GRS), the proposed framework 
offers ultra-low encoding complexity (nonrepeated sub-
sequences are encoded using low-complexity DSC encod-
ing), while (exactly) repeated subsequences are compressed 
through adaptive length hash coding based on the decoder 
feedback. The customized factor graph-based decoder 
tackles the challenges of detecting insertion, deletion, 
and substitution between the reference and the original 
source, and it recovers the nonrepeated subsequences based 
on received syndromes. Last but not least, our proposed 
genome compression framework incorporates LDPCA 
codes for rate adaptive decoding. Experimental results 
show that the proposed architecture could achieve an eff i-
cient compression performance with significantly lower 
encoding complexity when compared to the benchmark  
compressor GRS.
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tIGr5 (35.8 mB).
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ENCoDING TIME 
(SECoNDS)

DECoDING TIME 
(SECoNDS)

528 3.68 0.04 298

1056 4.58 0.009 596

1584 5.67 0.01 787

2112 6.97 0.01 1102

2640 6.72 0.08 1374

Table 2. Performance of Grs on chromosome 4 of tIGr5 
(35.8 mB).

CoMPRESSIoN  
SIzE (Kb)

ENCoDING  
TIME (SECoNDS)

DECoDING TIME 
(SECoNDS)

26.34 12 6

method and GRS algorithm achieve significant file size reduc-
tions (ie, up to 8252 × file size reduction).

For the TIGR data, we tested the chromosome 4 
(35.8MB) of the TIGR5 dataset using the chromosome 4 of 
the TIGR6 as the reference by varying the LDPC code length 
(ie, 528, 1056, 1584, 2112, and 2640) as shown in Table 1. 
Moreover, we also implemented GRS method on this dataset, 
and the result was also listed in Table 2 as reference. We can 
see that the compression performance decreases as the LDPC 
code length increases. In this case, the proposed algorithm 
achieved better compression performance when compared 
with GRS. It is because that the reference chromosome 4 in 
TIGR6 includes a significant amount of insertions when 
compared with the same chromosome in TIGR5, where the 
insertion information in the reference chromosome has no 
contribution to the size of DSC compressed data.

Our proposed encoder shows a significantly lower encod-
ing complexity. It is worth mentioning that the proposed 
codec is implemented by MATLAB, where a potential 
performance boost is highly expected by using more effi-
cient programing languages eg, C/C++. To the best of our 
knowledge, this is the first study of DSC-based genome 
compression. There is no doubt that it opens many possi-
bilities for the portable miniaturized applications in which 
energy consumption and bandwidth usage are of paramount 
importance.

conclusion
In this study, we present a DSC-based genome compression 
architecture. To the best of our knowledge, the proposed 
framework is the f irst study of its kind: specially targeted 
at the low-complexity genome encoding for miniaturized 
devices, which have limited processing capabilities, power 
budget, storage space, and communication bandwidth. 
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