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Abstract: The past twenty years have witnessed an explosion of biological data in diverse database formats governed by 
heterogeneous infrastructures. Not only are semantics (attribute terms) different in meaning across databases, but their 
organization varies widely. Ontologies are a concept imported from computing science to describe different conceptual 
frameworks that guide the collection, organization and publication of biological data. An ontology is similar to a paradigm 
but has very strict implications for formatting and meaning in a computational context. The use of ontologies is a means of 
communicating and resolving semantic and organizational differences between biological databases in order to enhance 
their integration. The purpose of interoperability (or sharing between divergent storage and semantic protocols) is to allow 
scientists from around the world to share and communicate with each other. This paper describes the rapid accumulation of 
biological data, its various organizational structures, and the role that ontologies play in interoperability.
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Introduction
During the 1960s, there was a simultaneous evolution of digital protein and taxonomic inventories. By 
the 1980s, these had matured and were institutionalized with an attendant proliferation of biological 
data. These datasets were, however, maintained in closely-guarded proprietary repositories or ‘silos’ 
with little or no communication between them (Bisby, 2000; Boguski and McIntosh, 2003; Pennisi, 
2000). The 1990s were marked by a shift in emphasis from accumulating vast volumes of data to reduc-
ing overlap between databases and making use of extant data across various repository locations (Boguski 
and McIntosh, 2003). This process of increasing communication between databases is known as 
interoperability—the focus of which is to enable data sharing and comparison.

As the cumulative body of biological knowledge increases, generating a comprehensive and con-
sistent account of biology hinges upon the ability of scientists to draw upon and synthesize vast 
datasets across distributed digital resources. The ultimate objective of biodiversity informatics is to 
generate a “global inventory of [all] life on Earth” (Blackmore, 2002, p 365), and is premised on the 
seamless digital accumulation of distributed taxonomies. Because contemporary biological—
particularly ‘omics’ and model organism—databases stress data at the molecular scale, they do not 
adequately represent the physiology they describe (Boguski and McIntosh, 2003). There is thus a 
need to compile the cellular features of those organisms into discernible representations of those 
organisms themselves.

The rise of ‘omics’ science—genomics, proteomics, and metabolomics for the identifi cation and 
prediction of genetic product components, signatures, and processes (Sauer et al. 2007, p 550)—has 
contributed the molecular-level information upon which a systems view of biology is predicated. Cer-
tainly the complexity of biology resides at the level of gene products (Sauer et al. 2007). In this way 
biodiversity can be understood as the compendium of the biology of organisms (Chicurel, 2002b). In 
a computational environment, biodiversity is the hereditary information encapsulated within genetic 
products and identifi ed via the collective of mappings of several model organism genomes. While the 
maturation of ‘omics’ has been facilitated in large part by the capacity to seamlessly make divergent 
data sources interoperable, it has presented a new set of engineering challenges. These include the need 
to integrate diverse and remote data sources as well as to extract knowledge from digital information 
post-integration (Thomas and Ganji, 2006).
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The paradigm shift the ‘omics’ revolution has 
created within biology is best exemplifi ed by gene 
prediction (also known as gene fi nding), and func-
tional prediction tasks. New technologies such as 
micro arrays generate huge and ever-changing 
volumes of data (Buetow, 2005). The rapid growth 
of genome mapping necessitates the ability to 
automate gene-calling, or the identifi cation of the 
individual genes of a genome. Gene finding 
involves algorithms for the identifi cation of bio-
logically functional regions—or exons—of 
sequences which explicitly code for proteins 
(Saeys et al. 2007). These are referred to as coding 
regions. The objective of automated gene predic-
tion is thus to determine the “coding potential” of 
genetic sequences (Saeys et al. 2007, p 414). This 
process uses self-learning algorithms which predict 
unique signatures of the genetic spectrum that 
indicate distinct clusters of material (Boguski and 
McIntosh, 2003; Chicurel, 2002b). Where genes 
have been located, the biological functions of many 
protein sequences are as yet undetermined (Carroll 
and Pavlovic, 2006). Gene fi nding and functional 
prediction go hand in hand and are rarely treated 
separately as researchers often desire to discern 
the roles of newly identifi ed gene products (Camon 
et al. 2004). The potential for predicting protein 
function similarly rests on its inference over incom-
pletely annotated sequences on the basis of homo-
logues in other species (Carroll and Pavlovic, 
2006). However, neither is an easy feat as the cod-
ing regions of eukaryotic organisms are both sparse 
and small, making the identifi cation of exon/intron 
boundaries—and thereby the identifi cation of pro-
tein function—diffi cult, resulting in erroneous gene 
annotation (Saeys et al. 2007). In the present era 
of functional genomics, knowledge production is 
however dependent on the ability to recover genes 
and proteins on the basis of their (correctly) anno-
tated functionality, pathways, and/or protein-
protein interactions (Boguski and McIntosh, 2003). 
This is no trivial task; indeed it necessitates the 
resolution of semantics, or differences in meaning 
and naming conventions between distributed data 
resources (Bowker, 2000).

Unlike systems architectures, the integration of 
which constitutes an ‘IT problem’ (Searls, 2005), 
data are not semantically transparent. Although a 
structural linkage can now be easily defined 
between data sources such that a user can retrieve 
data on the basis of standardized queries across 
data sources with confl icting database schemas, 

this does not render the results of those queries 
meaningful. A prime example is the notion of 
‘gene’—the primitive of modern biology. While 
the concept of ‘gene’ is still evolving, two dominant 
concepts exist: the Human Genome Database 
defi nes a gene as a DNA fragment that can be 
interpreted as (analogous to) a protein; whereas 
GenBank and the Genome Sequence Database 
(GSDB) consider a gene to be a “ ‘region of bio-
logical interest with a name and that carries a 
genetic trait’ ” (Schulze-Kremer, 2002, p 180). Two 
databases can be developed based on different 
understandings of ‘gene.’ As a result, retrieving 
data from semantically orthogonal databases on 
the basis of a ‘gene’ keyword search can initiate 
error propagation—in this case in the form of false 
analogues—in the analysis and subsequent results 
(Searls, 2005). The complexity of biological terms 
exacerbates this problem. Even where two vari-
ables in disparate databases are semantically 
equivalent, their relations to other knowledge 
objects in the data repository may not be. This is 
referred to as schematic incompatibility and refers 
to the relative position of the term in a taxonomic 
hierarchy.

In order to accommodate both semantic and 
schematic differences between biological data-
bases, ‘omics’ research requires a method of 
expressing the contexts from which biological 
concepts emerge—at the database level. This is 
because functional prediction hinges upon the 
identifi cation not just of sequence homologues but 
similar cellular components participating in a 
similar biological process. The component cellular, 
molecular, and biological details are often located 
in separate data sources, a function of the narrow 
scope of biological information produced by any 
given laboratory (Lewis, 2005). Exploiting the vast 
digital resources of biological data for prediction 
services requires that the cellular, molecular, and 
biological contexts of proteins be adequately 
encoded and furthermore machine-readable.

Ontologies—or the use of a singular taxonomic 
and knowledge representation schema—are a way 
of resolving these semantic issues between data-
bases. The bioinformatics literature has been heav-
ily promoting ontologies as an operational solution 
for biological interoperability since the turn of the 
millennium (Ashburner et al. 2000, p 25–9, Blake, 
2004; Boguski and McIntosh, 2003; Buckingham, 
2004a; Buckingham, 2004b; Buetow, 2007; 
Buetow, 2005; Camon et al. 2004; Carroll and 
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Pavlovic, 2006; Castro et al. 2006; Chicurel, 
2002a; Chicurel, 2002b; Galperin, 2006; Giles, 
2007; Hill et al. 2002; Kohler et al. 2003; Kohler 
and Schulze-Kremer, 2002; Lewis, 2005; Peters 
and Sette, 2007; Schulze-Kremer, 2002; Searls, 
2005; Wolstencroft et al. 2005). Much of this lit-
erature assumes that the reader has a prior under-
standing of computing and is delivered in 
impenetrable technical language or emphasizes a 
singular aspect of ontologies in biology.

The power of ontologies lies in their capacity 
to provide context for biological semantics. This 
paper presents the molecular biologist—rather than 
the computing scientist—with a detailed, compre-
hensive review of ontologies in biology. We begin 
with a defi nition of formal ontology in order to 
clarify the role that ontologies play with respect to 
interoperability (or the exchange of data). We 
describe ontological concepts—and their role bio-
informatics—using the examples of two pre-
eminent ontological efforts in biology: the Gene 
Ontology (GO), which is itself part of the umbrella 
Open Biomedical Ontologies (OBO) initiative. 
Subsequently we explain how ontologies can be 
exploited to facilitate information sharing and data 
integration efforts for bioinformatics with refer-
ence to real-world, large-scale biological informa-
tion portals, namely the cancer Biomedical 
Informatics Grid (caBIG), and WikiProteins, a 
proprietary knowledge commons for proteins.

Furthermore, we describe a methodology for 
using ontologies as a basis for comparing semantics 
across health registries in order to illustrate how 
medical informaticians have imposed interopera-
bility on disjunct datasets. Once semantic and 
schematic heterogeneity is resolved between data-
sets, we explain how ontologies can be used to 
facilitate knowledge creation tasks in biology, such 
as automating gene/protein annotation and func-
tional prediction.

To provide a global overview of ontologies for 
biology, we also draw upon a related community of 
research—health/medical informatics—which uses 
and shares with bioinformatics a series of knowledge 
representation constructs for the capture of bio-
logical information. Both use genetic information 
in the era of “ ‘post-genome’ science” (Boguski and 
McIntosh, 2003, p 233). For instance, knowledge 
sharing protocols developed in the fi eld of health 
informatics are shared by bioinformatics researchers 
for resolving semantic heterogeneity in databases. 
Wang et al. (2005) for example use Protégé—an 

open-source ontology editing and knowledge 
acquisition software authored by Stanford Medical 
Informatics (2005)—as the knowledge representa-
tion platform for their mediation architecture. There 
are similarly links between bioinformatics and 
biodiversity communities. The tools of bioinfor- 
matics—many of which emerge from health infor-
matics—are ideally suited to the objectives of 
biodiversity research, particularly conservation sci-
ence (Sugden and Pennisi, 2000). This paper nev-
ertheless emphasizes bioinformatics.

Ontologies
In philosophy, ontology has traditionally been 
understood to be the essence of being—or what 
something really is (Schuurman, 2006). In the 
information sciences, an ontology is a fixed 
universe of discourse in which each element 
(e.g. fi eld name or column in a database) is pre-
cisely defi ned (Gruber, 1993). In addition, each 
possible relationship between data elements is 
parametized or constrained. For example, DNA 
may comprise chromosomes but not the reverse. 
In an ontology, these relationships are made 
explicit formally.

The prefi x ‘formal’ refers to the property of 
machine-readability (Agarwal, 2005). In other 
words, a formal ontology is a machine-readable 
model of the objects allowed into a formal universe 
and their associations or relationships between 
them upon which some automated reasoning tasks 
can be performed. In a formal environment, an 
ontology constitutes a surrogate of knowledge 
abstracted from the real world—in this case, the 
cumulative body of biological science—in a coded 
form that can be translated into a programming 
language (Smith et al. 2003; Sowa, 2000).

Scientifi c or systems ontologies contain three 
levels of formalization. The fi rst is the conceptual, 
which is then translated into a formal model of the 
data elements in the ontology (e.g. proteins) and 
the possible relationships between them. The fi nal 
stage or level is the development of code that can 
be run by computers (Schuurman, 2006). Ontolo-
gies are structured much like a biological taxonomy 
with general concepts appearing at the top of the 
tree and becoming more general as one traverses 
down. The hierarchical schema, however, is only 
a ‘shell’ that can accommodate the concepts and 
their relations particular to a domain (Rector, 1999; 
Schulze-Kremer, 2002). It must be populated 
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by domain knowledge expressed in a formal 
semantics—a computing syntax such as a markup 
language—that allows all entities declared into the 
ontology to be precisely defi ned and their inter-
relationships given strict parameters with the goal 
of enabling realistic biological models.

Formal semantics permit the distinction of con-
cepts declared into the model (Sowa, 2000). To 
satisfy the strict criteria of formal ontology build-
ing, the formal semantics used to instantiate an 
ontology should be premised on a formal logics 
particular to some logical algebra (Smith et al. 
2005)—such as description logics (DL)—which 
contain predetermined rules for “when two con-
cepts are the same, when one is a kind another, or 
how they differ” (Rector, 1999, p 239–52, p. 10). 
These rules must furthermore be expressed in some 
machine-readable syntax—in this case, a knowl-
edge representation language such as the Web 
Ontology Language (OWL). Such rules govern the 

expression and processing of relations between 
concepts in the hierarchy. Relational expressions 
are the implementation basis for all subsequent 
computing and modeling tasks in a software envi-
ronment. Figure 1 illustrates the progress from 
concept to code. Formalization is the basis for the 
transition from a conceptual entity to a machine-
readableform.

The ability to define relationships between 
concepts distinguishes formal ontologies from 
earlier integration and interoperability approaches. 
How they are expressed are detailed in the subse-
quent sections on the GO and OBO efforts. Rela-
tionships are an expression of the context—akin 
to usage in natural language—in which concepts 
are used or from which they emerge. The utility of 
capturing relationships between concepts is thus 
that they convey semantics; content semantics are 
expressed by identifying how concepts relate to 
each other in the hierarchical knowledge space. 

Figure 1. The formalization process. Moving from a concept of a particular gene to its encoded reifi cation and ontological representation. 
Note how the entity (fruit fl y) becomes increasingly represented in digital database format as it is formalized, or abstracted from its real-world 
form. The entity loses dimensionality, while researchers gain the advantage of computational function. Figure 3 illustrates in more detail the 
role that entity descriptions—or annotations—play in creating a larger standardized digital knowledge environment for bioinformatics. Note 
that any gene product many have more than one annotation in the same branch (see Molecular Function this example), and can be annotated 
in three different branches of GO (Cellular Component, Biological Process, and Molecular Function) (FlyBase 2007, The Gene Ontology 
Consortium 2077).
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This hierarchical knowledge space is a parent-child 
structure that conveys the semantic granularity of 
the relation between any two concepts by rendering 
entities to be either more specifi c of more general 
than each other (Smith et al. 2003). This formal 
ontological structure implies at least one kind of 
relation: a hyponymic (is-a) relationship is implied 
by the hierarchical nesting of terms and denoted 
by their position relative to each other in the fam-
ily tree on the basis of their subsumption (where a 
concept is a subclass or member of another) and 
specialization (where one concept is the superclass 
of or contains another) (Kohler et al. 2003). Addi-
tional relationships can be asserted between con-
cepts as a directional association (i.e. the 
relationship proceeds from one concept to another). 
Relationships—referred to as properties—are akin 
to ‘semantic edges’ which depict the meaning of 
data elements by providing the context of their 
usage (where context is analogous to how concepts 
participate in class membership).

Formal ontological expressions are stated as 
propositional triplets consisting of concepts (real-
world entities that populate the model), their prop-
erties (or relationships between said entities), and 
instances (particular occurrences of a concept; for 
example, a particular gene with its own unique 
identifi er in a database) in a hierarchical model 
(Gardner, 2005; Schulze-Kremer, 2002; Sowa, 
2000). A triplet (concept + property + instance) 
constitutes a proposition, or “[defi nitive] statement 
about (part of) the world” (Gardner, 2005; Schulze-
Kremer, 2002, p 187). Where an ontology is formal 
in the sense that it is underwritten on an axiomatic 
logic such as Desription Logics (DL), the axioms 
of the logic can be applied to impose restrictions 
that defi ne conditions under which concepts in a 
domain logically participate in relationships with 
each other (Gardner, 2005). For example, we can 
impose a cardinality restriction to specify that, 
following the series of generic examples provided 
by Aranguren et al. (2007), a “man” must have at 
least one testes.

In a strict defi nition of formal ontology, the 
axiomatic logics serve to underwrite a formal nota-
tion for content specifi cation. For example, DL 
comprise the logical semantics for knowledge 
representation which constitute the basis of onto-
logical encoding specifi cally designed for a group 
of knowledge representation languages which 
include OWL, the standard language for ontologies 
over the Web. The eXtensible Markup Language 

provides the tag-based syntax for OWL, whereas 
its schema is defi ned by the Resource Description 
Framework (RDF), which specifi es what the ‘trip-
let’ structure (concepts + properties + instances 
described above) of ontological expression. A 
standard schema ensures that when OWL state-
ments are parsed or transformed into the compo-
nent data structure of the target formal ontology, 
the parser knows which part of the expression 
constitutes the concept, which section the relation, 
and which the instance. It is this structure which 
makes the grammar of an ontology meaningful—in 
the case of bioinformatics, for example, it anchors 
annotations to the gene products they characterize 
(Berman, 2005; Berman and Bhatia, 2005).

This structure moreover makes the ontological 
model amenable to implementation in a software 
environment (Smith et al. 2003) in order to allow 
for the kind of intelligence described using the 
example of a cardinality restriction in the instance, 
‘a man must have at least one tests’. The taxonomic 
structure of formal ontologies captured using 
logical notation and expressed in a knowledge 
representation language allows the semantics of 
concepts to be computed on the basis of concept 
inheritance. This is known as reasoning, where an 
application infers non-explicit (not directly stated) 
relationships between concepts (Rector, 1999). For 
example, where two proteins identifi ed using dif-
ferent unique identifi ers in disparate databases are 
described as participating in the same biological 
function, being part of the same sequence, having 
the same cellular location, etc., they can be recog-
nized as referring to the same concept and can thus 
be extracted from separate databases on the basis 
of these functional characteristics rather than 
nominal IDs. The ability for each term to relate to 
every other term in the hierarchy is a way of 
capturing—and expressing—the complexity of 
biology (Hill et al. 2002). Reasoning can therefore 
be thought of as supporting both inference and 
query (Aranguren et al. 2007). Inference consists 
of computing the hierarchy—for example, it will 
reveal multiple inheritance amongst classes as 
mentioned aboved. Query consists of the ability to 
interrogate the concept hierarchy on the basis of 
object associations or, conversely, to reveal object 
associations amongst selected concepts or classes. 
Imposing the above cardinality restriction therefore 
has two implications. The fi rst is that any data 
object labeled or identifi ed “man” in a data repos-
itory mapped to an ontology with the above 
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property restriction imposed upon the man-testes 
relation will be recognized as a (likely person) with 
at least one testes. Conversely, the execution of 
reasoning tasks on the ontology or any data 
structure mapped to it will compute whether all 
instances of man are consistent with (a person) 
having at least one testes.

Ontologies—with their hierarchical struc-
tures—capture the semantic granularity of bio-
logical databases. The property of inheritance 
allows the computer to process, for example, that 
the concepts used to annotate two respective 
sequences are both ‘children’ of the same meta-
concepts (i.e. they are a kind or part of a the same 
overarching concept; alternatively, members of the 
came class) (Lord et al. 2003). This permits 
researchers to locate regions of exact correspon-
dence as well as those with a high degree of similar-
ity. Entities may relate but are not synonymous—for 
example, where ‘protein’ is a subclass of another 
concept, ‘gene products’ (Ahlqvist, 2004; Ahlqvist, 
2005). This does not dictate that proteins and 
genetic products are one and the same, but rather 
allows the expression of a membership relation at 
a much fi ner semantic resolution such that proteins 
can be understood as one, but not the sole, kind of 
gene product (which also includes RNA).

Thus far, we have described the problem of 
semantic and schematic heterogeneity and 
introduced ontologies as a means of mitigating the 
problem. The formal implementation of ontolo-
gies—as well as necessary conditions for formal-
ity—has also been discussed as well as its 
advantages for promoting computer reasoning. In 
the next section, we describe in detail the genesis 
and development of a bioinformatics portals, GO 
and its role in biological data interoperability. In 
addition, we briefl y illustrate the implementation 
of ontologies in two database as well as an ontol-
ogy-based method for comparing data from differ-
ent registries or jurisdictions.

GO: Ontology in Practice
The use of ontologies for bioinformatics is being 
driven by the proliferation of genome-scale data-
sets and the diffusion of the Internet and its proto-
cols for data sharing and exchange (Blake, 2004). 
Bio-ontologies fulfi ll two central functions for the 
biological domain—fi rst, they “clarify scientifi c 
discussions” by providing the vocabulary and 
terms under—and with which—such discussions 

take place, and second, they enable data discovery 
across distributed data resources (Blake, 2004, 
p 773). The pre-eminent bio-ontology is the (GO), 
a Web-based, open source knowledge resource for 
bioinformatics and the second-most cited biologi-
cal data resource after UniProt (Galperin, 2006).

The GO project evolved as a joint endeavor 
between three model organism databases: FlyBase, 
Mouse Genome Informatics Database (MGI), and 
the Saccharymyces (yeast) Genome Database in 
1999 (Ashburner et al. 2000; Blake, 2004). The 
formation of the Gene Ontology Consortium 
(GOC) coincided with the successful completion 
of the mappings of several eukaryotic genomes. 
The key to associating these model databases was 
the genetic structure of organisms (Lewis, 2005). 
A potential problem lay in that these databases had 
been designed and populated with competing con-
cepts for gene. Moreover, there was still limited 
understanding as to how the located genes were 
controlled and more importantly what functions 
many of these served (Lewis, 2005). As there is a 
high degree of functional conservation in homolo-
gous organisms, gene function can be reasonably 
inferred through probable genetic orthologues 
(Ashburner et al. 2000). In other words, rather than 
‘reinventing the wheel’, biologists and bioinfor-
maticians could transfer functional attributes 
describing the cellular behaviors of gene products 
between these databases thereby significantly 
reducing workload.

The chief impediment to this task were not the 
unique identifi ers for the gene products themselves 
as researchers had been tapping into protein and 
gene databases such as GenBank and Swiss-Prot, 
TrEMBL and PIR for decades (the latter three 
joined to form the Universal Protein or UniProt 
protein repository in 2002). Because sequences are 
unique, they could be easily accessed on the basis 
of sequence characteristics (though there was 
sequence redundancy between protein reposito-
ries). Computationally, because sequences can be 
quantifi ed, this is a trivial integration task that 
simply requires the normalization of unique codes 
(Schuurman et al. 2006). Rather, it was the func-
tional descriptions of gene products that proved 
challenging. Integration had to proceed within the 
context of the molecular and biological character-
istics of each gene product identified (Lewis, 
2005). In an attempt to solve the problem, infor-
matics experts from the three original participating 
model organism databases devised functional 
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classification systems in the hopes that these 
precursors to the GO would facilitate interoperabil-
ity. What soon became apparent, however, was that 
these functional classifi cations were not common 
between organisms (Lewis, 2005).

In other words, the annotation was not consis-
tent from one database to the next. Gene annotation 
is defi ned as the “task of adding layers of analysis 
and interpretation to … raw sequences” (2002, 
p 755). This includes information about their func-
tion, position relative to coding/non-coding bound-
aries, participating process, etc. (Chicurel, 2002b). 
Annotations constitute a set of metadata, or ‘data 
about data’ Historically, annotation has been stored 
as free-text or at best semi-structured descriptions 
semantically particular to the terminological or 
classifi cation systems unique to many of the data-
bases (Hill et al. 2002; Lord et al. 2003). There 
were two challenges. First the use of competing 
nomenclatures precluded the linear association of 
database semantics. Second, the expression of 
these annotations in natural language provided 
little context for data mining because they were 
not machine-readable. Returning to the example 
of functional prediction, protein functions are 
inherently dependent upon context, particularly 
cellular context (Carroll and Pavlovic, 2006). This 
is exacerbated in the case of proteins particularly 
as many sequences often have multiple functions 
(Carroll and Pavlovic, 2006).

The GO Consortium formed as a response to 
the pervasive semantic heterogeneity of biomedi-
cal data and its lack of formality. Indeed the GO 
was designed for making historically free-text 
based annotations tractable (Lord et al. 2003). The 
three participating database programs agreed to 
work in concert to provide the biological commu-
nity with a consensus-driven framework to guide 
the annotation of gene products such that their 
structure (e.g. how molecular function is described 
and which part of the description occurs in what 
syntactic order) and semantics (the terms and con-
cepts) are consistent. The result was the GO—a 
“structured, precisely defi ned, common, controlled 
vocabulary for describing the roles of genes and 
gene products in any organism” (Ashburner et al. 
2000, p 26). The GO is not a taxonomy or index 
of all known proteins and gene products, but rather 
provides a standardized set of names for genes and 
proteins and the terms for characterizing—or 
‘annotating’—their behaviors (Gene Ontology 
Consortium 2007).

Gene product semantics are organized into three 
categories which capture the primary ‘aspects’ of 
genes: i) biological process, which captures the 
larger process in which the gene product is active; 
ii) molecular function, the biochemical function a 
gene product contributes to that process, and iii) 
cellular component, the location in the cell where 
that particular function is fulfi lled or expressed 
(Ashburner et al. 2000; Gene Ontology Consor-
tium 2007; Hill et al. 2002; Lord et al. 2003). 
Concepts or terms constitute nodes, and vectors 
referred to as edges represent relationships between 
concepts (Hill et al. 2002; Lord et al. 2003). These 
three sub-ontologies are maintained independently 
because the one-to-many relationships between 
process, function and cellular location would make 
a singular graph representation intractable 
(Ashburner et al. 2000). Annotations for the same 
term in each ‘view’ are cross-referenced on the 
basis of a unique identifier or serial number 
assigned to each term in the GO. Increasingly, these 
identifi ers are being used to refer to concepts in 
other protein and gene-oriented databases and 
constitute a linear and direct means of mapping 
databases to the GO (Gene Ontology Consortium 
2007). A 2005 fi gure estimates the GO as consist-
ing of more than 17, 500 terms distributed amongst 
the three subgraphs (Wolstencroft et al. 2005). All 
possible annotations for a protein can be repre-
sented using these concepts (Carroll and Pavlovic, 
2006).

Each of these three separate annotation 
categories—biological process, molecular func-
tion, and cellular component—is represented as its 
own directed acylic graph, or DAG (Ashburner 
et al. 2000; Hill et al. 2002; Lord et al. 2003). A 
DAG is a data structure similar to a tree which 
represents knowledge hierarchically, mirroring the 
taxonomic structure of biological knowledge. Any 
entity can point to any other entity in the mathe-
matical space; this is, however, a direction, and 
non-recursive, encoding. In other words, concepts 
can point to other entities in the model, but those 
entities do not ‘point back’ as in OWL. Indeed the 
DAG can be considered to be the native knowledge 
representation (KR) language of the GO (Aran-
guren et al. 2007). Unlike the KR languages intro-
duced above, however, DAG semantics are not 
predicated on a formal logic as they are in the case 
of OWL. Rather, machine readability is instructed 
by the directional links between pairs of concepts. 
Semantic ‘edges’ (relationships) in the DAG are 



194

Schuurman and Leszczynski

Bioinformatics and Biology Insights 2008:2 

simply “ordered pairs of nodes” (Aranguren et al. 
2007, p 61). Pointers are like edges in the sense 
that their semantics are directed, and are labeled 
with the relationship that associates related classes. 
These associations are of only two relations: is-a, 
which denotes that concepts are kinds of entities, 
and part-of, which can signify the participation or 
contribution of a concept in a sequence or process 
(Smith et al. 2003).

The DAG is available in many fi le formats—
XML, OWL—but the most common formal nota-
tion in which GO ontologies are rendered is the 
Open Biomedical Ontology (OBO; described in 
more detail below) fl at fi le structure which is 
underwritten by a modifi ed subset of Web Ontol-
ogy Language (OWL) description logics (DL) 
concepts for content specifi cation (Gene Ontology 
Consortium 2007).

Like OWL, OBO is an ontology language, and 
standard ‘fi le format’ for GO annotations. It is 
however less expressive than OWL. These rela-
tions are unidirectional and linear as per the DAG 
data model and do not require the recursive rela-
tional declarations (where the reciprocal or inverse 
of a relationship is also encoded) characteristic of 
OWL statements. Thus a fl at fi le structure that only 
supports sequential reading is appropriate for the 
GO because relations are read from broader or 
general to more specifi c or precise concepts.

At the level of the database, the GO is repre-
sented as a structured vocabulary; more specifi -
cally, as gene product annotations expressed using 
concepts and their tripartite (biological, molecular, 
and cellular) structure defi ned in the GO (Hill et al. 
2002). The GO is not considered an informatics 
ontology in the full sense of the term because it 
has not been designed to be deployed within soft-
ware environments which execute semantic infer-
ence on the basis of logical semantics (Smith et al. 
2003). Moreover it does not fulfi ll the conditions 
of formality identified by Smith et al. (2005). 
Rather it is considered and referred to by its engi-
neers as a “controlled vocabulary” (Ashburner 
et al. 2000, p 26). The nevertheless has many of 
the characteristics of a formal ontology: machine-
readability, formal notation, a hierarchical knowl-
edge structure, and relational associations between 
concepts. In other words, the GO may be consid-
ered a partial implementation that uses many 
concepts of formal ontology. Part of the reason, 
however, that the GO is only a partial implementa-
tion is that it was designed to be operational within 

existing infrastructures, requiring no changes to 
existing architectures.

Notwithstanding, the GO provides the standard 
vocabulary for semantic integration and automated 
tasks for bioinformatics. As such it is more than 
merely a sophisticated data dictionary. Whereas 
controlled vocabularies or data dictionaries provide 
a defi nition of the terms used by a community of 
practice and these may indeed be machine-readable 
and thereby formal, a nomenclature does not cap-
ture the hierarchical representation of knowledge 
nor the corresponding relations between all con-
cepts in the data space, and thereby does not support 
computational reasoning (Schulze-Kremer, 2002). 
Several terminological systems such as SNOMED 
(Systematized Nomenclature for Medicine) and 
MeSH (Medical Subject Headings) have, however, 
been mapped to the GO (Searls, 2005).

The GO is a global ontology (Lord et al. 2003). 
In other words, it is a central knowledge proxy to 
which other ontologies or knowledge representa-
tions may be aligned. Ontology mapping is the 
process of defi ning associations between ontolo-
gies. This involves the formal declaration of 
relational links between entities, much like that 
involved in relating concepts in a hierarchical 
ontological structure. Ontologies can either be 
aligned whereby the formalisms remain separate 
entities but are related, or merged wherein a sin-
gular ontology is generated from the crossprod-
ucts of two input ontologies (Choi et al. 2006). 
‘Mapping’ is thus unidirectional and always from 
the constituent database to the GO. Figure 2 illus-
trates the role that GO plays in development of 
global biological ontology and the mechanics 
involved.

A global ontology paradigm is appropriate for the 
domain because there is a fi nite, though as yet not 
fully discovered or known, body of genetic informa-
tion shared between all life on Earth (Ashburner et al. 
2000). Accordingly there is no need to build local 
ontologies each capturing a competing account or 
version of a biological universe. Such a scenario 
would be much more intensive, requiring the defi ni-
tion of linkages between each participating ontology. 
A global ontology serves as a proxy context which 
interfaces all participating knowledge formalisms 
are translated to the unique semantic points of the 
proxy and then compared on the basis of this trans-
lation (Ahlqvist, 2005).

The alignment of currently non-compatible 
ontologies to the GO is one avenue for its curation 
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or the process of developing and contributing 
content or adding value to digital knowledge rep-
resentation systems such as databases or ontolo-
gies. For the GO to serve as a comprehensive 
knowledge resource for the biological community, 
it must refl ect the continuously increasing body of 
biological, specifi cally genetic-level, knowledge. 
In other words, it must expand to keep pace with 
the identifi cation of new genes, sequences, func-
tional determinations, etc. Rather than being the 
responsibility of the Consortium, GO curation has 
been user driven from inception (Hill et al. 2002). 
GO expansion efforts are supported by the scien-
tific publication process, with several leading 
periodicals and sequencing initiatives mandating 
that newly identifi ed sequences be deposited into 
GO-compliant databases and any new annotations 
be added to the GO (Chicurel, 2002b; Peters and 

Sette, 2007). Early curation was characteristically 
on a need-be basis with concepts added to the GO 
when authors were annotating genes, etc. (Hill 
et al. 2002). Such ad hoc practices, however, 
resulted in logical problems in the DAG and indeed 
soon became ineffi cient as the scope and scale of 
the GO has steadily grown (Hill et al. 2002). 
Increasingly, methods for contributing annotations 
to the GO are based on the automatic generation 
of annotation concept defi nitions on the basis of 
cross-products between databases (as local ontol-
ogies) and the GO itself (Hill et al. 2002).

The GO was designed specifi cally to account 
for molecular function, biological process, and 
cellular components of gene products. It lacks the 
semantics to describe the physical attributes of 
genes, to describe a protein family, or to account 
for experimental processes and diagnostic 

Figure 2. The Gene Ontology as a global ontology for bioinformatics. Smaller scale bioinformatics ontologies almost invariably map to the 
GO (a). Several large databases, such as FlyBase (b), contribute annotation to the GO using its semantics such that there is a direct map-
ping between genes/gene products at the database level and their participation in the ontology. (FlyBase annotation is explained in greater 
detail in Fig. 1). Where annotation is unique to the database, a translation program can transform annotation into a tractable GO represen-
tation (c) (Camon et al. 2004). The GO provides a standardized vocabulary for the description of genes and gene product across not only 
databases but also in emerging bioinformatics infrastructures, such as WikiProteins (d). The consistency of semantics reduces ambiguity 
in the query of bioinformatics resources, and allows genes and gene products to be retrieved on the basis of common biology rather than 
lexical coincidence (e).
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procedures (Wolstencroft et al. 2005). There are 
both proprietary and open ontologies with richer 
semantics for more specifi c description tasks for 
biology either being developed or presently avail-
able (for examples, see Chicurel, 2002; Peters and 
Sette, 2007; Schulze-Kremer, 2002). The majority, 
however, are designed with mapping to the GO in 
mind (Buckingham, 2004b; Chicurel, 2002b).

Open Biomedical Ontologies
GO is thus not the sole ontology for biology. 
Indeed there is a need for ontologies to parallel 
the GO programme. The GO is only one—but 
certainly the most prominent—ontology effort 
which contributes to the Open Biomedical Ontol-
ogies (OBO) initiative (Gene Ontology Consor-
tium 2007). The OBO Foundry is an umbrella for 
over 60 bio-ontologies (Smith et al. 2007, The 
Open Biomedical Ontologies 2007). It provides 
guidelines for ontology development, and indeed 
ontologies such as GO have been restructured in 
line with OBO specifi cations. As indicated above 
in the detailed discussion of GO, OBO is also its 
own ontology format (although OBO does pro-
vide an extensive suite of translation schema for 
mapping OBO representations to, for example, 
OWL) (The Open Biomedical Ontologies 2007). 
The benefi t of this is that, given domain consen-
sus, it provides for uniform representation and 
thereby increased interoperability. For example, 
disparate cell-type ontologies including the GO 
are now integrated into a single ontology that is 
itself being aligned to a singular implementation. 
OBO participates in the National Center for Bio-
medical Ontology and is slated to become a cen-
tralized resource of its emergent BioPortal in 
support of bioinformatics knowledge discovery 
and sharing.

Ontologies in Support 
of Bioinformatics
The largest public contributor of annotations to the 
GO project is the Gene Ontology Annotation Data-
base (GOA) (Camon et al. 2004). While annotation 
is the central organizing principle and raison d’etre 
of the GO, the potential of their ontological encod-
ing is not to have a hierarchically structured record 
of concepts used to annotate the data of biology, 
but rather to exploit the ontology for a series of 
bioinformatics services which remove the burden 
of data-intensive tasks from molecular biologists 

and moreover produce knowledge over and above 
facilitating its reuse.

One of the primary objectives for bioinformat-
ics to realize is the automation of annotating cross-
matches between databases (Ashburner et al. 
2000). The electronic generation of annotations 
based on homology is particularly desirable as the 
manual curation of gene-oriented databases is time 
consuming and non-trivial for humans (Chicurel, 
2002b). The GO facilitates the automatic annota-
tion of gene products at the database level. GOA 
for instance uses GO terms to generate annotations 
for the UniProt Knowledgebase (The consortium 
of SwissProt, TrEMBL, and PIR-PSD protein 
databases) (Camon et al. 2004). Existing data held 
in UniProt are electronically associated with or 
translated into GO terms on the basis of a defi ned 
mapping fi le used to facilitate the conversion of 
keywords in the constituent databases to tractable 
GO representations (Camon et al. 2004). Once the 
semantics are consistent between data sources, 
biologists who have identifi ed a new sequence, for 
example, can navigate the GO via an interface 
known as an ontology browser on the basis of these 
common data elements and indeed use the existing 
GO annotations to not only discover sequence 
similarity but to also automatically populate or 
their own database using the existing annotations 
for homologues from other curated data sources. 
Thus the ontology functions as a ‘translation 
schema’ (Buetow, 2005). This is possible because 
GO is underwritten by a structured grammatical 
framework (e.g. RDF) that predetermines the 
occurrence or sequence of description types in a 
proposition, allows the expression to be parsed and 
correctly broken-down such that it can be stored 
according to the structure of the target database.

The GO can be used to automate the following 
services: database annotation, GO extension (auto-
mating the transfer of new annotation concepts to 
the GO), prediction services, and database popula-
tion. Prediction services supported by ontologies 
yield new biological knowledge. Gene location 
using current generation algorithms uses data from 
a pair of genomes to locate areas of genetic affi n-
ity; these areas of ‘overlap’ are often the sites of 
new genes (Chicurel, 2002b). The success of this 
is based on the semantic consistency of annotations 
for the input genomes. In addition, the GO supports 
nuanced data exploration and query (Blake, 2004). 
The hierarchical structure of knowledge afforded 
by ontology allows the isolation of the appropriate 
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concept for query on the basis of its context or 
position relative to other entities in the data space 
(Buckingham, 2004b). This allows users to formu-
late searches using conventional keywords, but 
resolves the meanings of those keywords.

Once the protein or gene of interest is isolated, 
its location confers more information than a binary 
indication of its absence or presence in a database. 
Not only do we know about the occurrence of a 
protein, for example, but we are told something about 
it. The proprietary EnsemblGO Browser is an inter-
face which compiles annotations to generate reports 
or summaries centered on the biological entities 
isolated in the GO such that, for instance, “the previ-
ously unconnected classes Antigen, Immunogen, and 
Adjuvant are now recognized as being objects (for 
example, Proteins), which participate in a certain 
role (as Immunogens) in a specifi c process (such as 
Immunization)” (Buckingham, 2004b; Peters and 
Sette, 2007, p 489).

Ontologies can further be used as a basis for 
exploring datasets. We have devised a methodol-
ogy called ontology-based metadata which uses 
ontologies as a component in a metadata-based 
framework for the comparison of a series of eight 
‘near’ but non-equivalent terms that have been 
identifi ed as an obstacle to integrating perinatal 
(pregnancy and antepartum) health data registries 
across Canada. Our objective is to provide health 
researchers and data stewards with a basis for 
drawing meaningful parallels between data ele-
ments to enable the legitimate integration of peri-
natal data registries. Ontology-based metadata for 
each term is fi rst collected via a series of electronic 
forms which standardize the description of each 
concept. Each constituent database is responsible 
for detailing how these terms are used in their 
particular jurisdiction—or context. This includes 
a specifi cation of the classifi cation standard used 
(e.g. ICD-10), the identifi cation of thresholds for 
measurement specifi cations, and space for free-text 
descriptions of any policy constraints which may 
infl uence how the term is used in a given jurisdic-
tion. In addition to these ‘annotations’, we encode 
each perinatal database as a formal ontology in 
OWL. These ontologies capture the semantic 
structure of database terms. These are then merged 
into a single ontology, with the relationships 
between each and every concept defi ned in the 
product tree. Both the ontology-based metadata 
and the ontologies are inputs to a semantic data 
discovery portal where researchers specify which 

terms in two respective databases are to be 
compared via a graphical user interface (GUI). The 
application returns to the user both the encoded 
relationship between the concepts extracted from 
the OWL code—for example, where pregnancy-
induced hypertension is a KIND-OF hypertension 
complicating pregnancy—and the ontology-based 
metadata for each term in the selected databases. 
Thus the researcher is provided with both a marker 
for the granularity of the semantic relationship 
between two concepts, as well as valuable metadata 
which are used to inform perinatal database deci-
sions.

The gestational hypertension/hypertension 
example above would indicate that hypertension 
experienced during pregnancy is a more general 
concept which includes gestational hypertension 
but also encompass pre-existing hypertension. In 
some databases, hypertension and pregnancy-
induced or gestational hypertension are not dif-
ferentiated from chronic or pre-existing incidences 
of disease. Alternatively, in other databases, these 
concepts are distinguished from each other on the 
basis of the periodicity of disease onset such that 
chronic hypertension and pregnancy-induced or 
gestational hypertension are disjoint (database A). 
In yet other registries, any form of hypertension 
presenting during pregnancy is considered gesta-
tional such that a pre-existing condition which fi rst 
manifests itself during pregnancy is still encoded 
as pregnancy-related (database B).There is thus a 
semantic incommensurability between what ‘ges-
tational hypertension’ represents in databases A 
and B, precluding a direct mapping between these 
concepts indicating semantic equivalence. Rather, 
‘gestational hypertension’ in database A would be 
a kind of gestational hypertension as the concept 
is reifi ed in database B. If a researcher were to 
query ‘gestational hypertension’ across both data-
bases, she would logically accept them as referring 
to the same concept on the basis of lexical coinci-
dence. However, the lack of an encoded equiva-
lence between these two concepts would preclude 
their confl ation. Thus our this approach not only 
provides information regarding how concepts 
should be associated, but also uses formal ontolo-
gies to restrict which concepts may be legitimately 
compared. This nesting of relationships between 
semantic terms is described in Figure 3.

Another instantiation of the ontology-based 
metadata concept similar to our implementation is 
WikiProteins, a structured semantic space for 
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capturing the context—biological, physiological, 
chemical, etc.—of proteins and then sharing that 
collaborative knowledge with other biologists in 
real-time (Giles, 2007; Wiki For Professionals 
2007). Historically, the problem with metadata has 
been that it is so labor intensive and never updated 
(Schuurman and Leszczynski, 2006). WikiProteins 
provides a mechanism for sharing the labor and 
ongoing maintenance by participants. This col-
laborative Web-based workspace facilitates the 
open curation of protein-specifi c information by 
providing biologists and bioinformaticians with a 
means of contributing to the cumulative body of 
biological knowledge. At the moment, it serves 
UniProt and GO descriptions for the annotation of 
proteins via a series of standardized forms or ‘slots’ 
for their description. This consists of defi nitions, 
attribute-value relations (e.g. a protein can be given 
the attribute “tissue” with the value “[e]xpressed 
in muscle fi bers”), and provisions for disambiguat-
ing sequences or instances of proteins by identify-
ing synonyms, disjoint concepts, alternate 
spellings, etc. (Wiki For Professionals 2007). 
Curators can link their descriptions or proteins to 
other citations, references, and publications 
indexed in PubMed. Moreover, the wiki concept 
ensures that these annotations are self-validating. 
Other users can go in and add or revise the annota-
tions. For example, using the “tissue” example 
above, a subsequent curator can reify this protein 
as “[e]xpressed in muscle fi bers and the brain” 

(Wiki For Professionals 2007). Similar to our 
ontology-based metadata approach, it combines 
both free-text fi elds for open description and more 
restrictive means of disambiguating proteins and 
protein concepts. For instance, it extends the abil-
ity to identify whether these synonyms are 
instances of equivalent meaning, or if they are dif-
ferent. If the latter is the case, curators can further 
annotate—or describe—specifi cally where these 
differences lie. WikiProteins is but one example of 
where the GO is being deployed to provide a stan-
dardized vocabulary for annotation across distrib-
uted data resources.

As our non-automated method for data discovery 
and WikiProteins for protein knowledge exchange 
illustrate, ontologies are not standalone solutions 
for interoperability but rather comprise a compo-
nent of or input to large-scale interoperability 
infrastructures. Indeed ontologies are knowledge 
representations and not software applications, hav-
ing no innate functionality. As such they must be 
deployed within digital architectures where con-
stituent programs can exploit the hierarchical 
structure of formal ontologies to facilitate data 
sharing at the level of semantics. Many such cyber-
infrastructures exist for biology and biomedicine. 
A notable example is the Cancer Biomedical Infor-
matics Grid (caBIG), a Web-based National Insti-
tutes of Health (NIH) data consortium for cancer 
research (National Institutes of Health 2007). 
caBIG is built on an open grid architecture similar 

Figure 3. Ontology mapping. An ontology for hypertension resulting from the merging of hypertension concepts in the British Columbia 
Reproductive Care Program Perinatal Database Registry (BCRCP PRD) and the Canadian Perinatal Database Minimum Dataset. The 
resulting output ontology shows the hirerarchical nesting of hypertension semantics originating in respective databases in relation to each 
other.
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to a federated database environment where users 
are presented with a central interface which seam-
lessly integrates participating databases, but with 
the addition of Web services that provide tools and 
applications. The emphasis of caBIG is on the 
provision of services—such as data analysis tools, 
applications, scripts, algorithms, etc.—relevant to 
cancer research. The grid is organized into a series 
of “workspaces” or virtual communities where 
participants can both access, revise, and upload new 
technologies to that specifi c sub-domain of applica-
tion or interest. The emphasis of caBIG is on 
services, with participants notifying each other of 
the constituent services they make available by 
means of UML (Unified Modeling Language) 
metadata wherein the services are described using 
standardized DL-annotated concepts from a vocab-
ulary service which defi nes terms and concepts in 
biomedical vocabularies. Here, ontologies are uti-
lized as a standardized set of concepts and terms 
across applications and services for their uniform 
description such that researchers can locate and 
access the appropriate technologies on a need-be 
basis. This provides interoperability across 
distributed cancer research centers at the level of 
services.

Conclusion
We have described the challenges inherent in 
semantic integration of biological databases. Many 
of these are common to all semantic integration 
realms and are based on the problem of language 
not being transparent across institutional and user 
environments. In biology and other disciplines, 
ontologies or strict paradigmatic taxonomies have 
been used to mitigate the problems associated with 
semantic integration. Ontologies are a means of 
conveying context associated with semantic terms 
so that their meaning is transparent between mul-
tiple data users. This paper has described in depth 
the use of ontologies for data integration in biology. 
Biology has led the scientifi c world in developing 
a number of unique approaches to semantic integra-
tion. These unique ontology-based integration 
efforts include ontologies such as the Gene Ontol-
ogy (GO), and frameworks that exploit their 
machine-readable semantics to support bioinfor-
matics tasks, such as the cancer Biomedical 
Informatics Grid (caBIG) and the incipient WikiP-
roteins knowledge community. In addition, we 
introduced the concept and early implementation 
of ontology-based metadata in order to demonstrate 

the role that context plays in clarifying hierarchical 
and schematic relationships between like but non-
equivalent semantic terms in different databases. 
Each of these is a unique approach to surpassing 
the problems associated with a lack of congruity in 
language and meaning across scientifi c databases.

Brief Glossary
Ontology has a different meaning in philosophy 
than computing. In the former, it means the essence 
of being. In computing and information sciences, 
an ontology is a formal universe in which each 
entity is precisely defi ned and its relationship with 
every other entity in the specific categorical 
or computing realm is precisely determined. 
Ontologies in this context are the range of what is 
possible—in a computing context. They can be 
thought of as simply a classifi cation system, a map 
legend, or a data dictionary.

Epistemology is the study of “how we know 
what we know.” In other words, epistemology is 
the lense through which we view reality. Episte-
mology refers, in the broadest sense, to the meth-
ods that we use to study the world and the 
perspective that a researcher uses to interpret enti-
ties and phenomena.

Semantics refers to the ways in which language 
is interpreted differently in different context, envi-
ronments or in different institutional cultures.

Gene prediction—also referred to as gene fi nd-
ing—uses algorithms to identify biologically 
functional regions—or exons—of sequences which 
explicitly code for proteins. These are referred to 
as coding regions.

Gene mapping is the creation of a genetic map 
in which DNA fragment are linked to chromo-
somes.
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