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Introduction
Cancer is a disease involving unregulated cell growth, 
a process in which cells divide and grow uncontrollably, 
forming malignant tumors that invade other parts of the 
body.1 There are many different types of cancers affect-
ing humans, such as breast cancer, lung cancer, and blad-
der cancer. The causes of cancer are diverse and complex. 
A signaling pathway is a series of actions among molecules 
occurring within a cell. Such pathways are important biolog-
ical mechanisms in cell growth.2 Determining how pathways 
and the genes therein are related to cancer is one of most 
essential problems investigated by cancer researchers in the 
past couple of decades.3–5

With the rapid development of information technology 
and medical equipment comes the ability to collect more and 

more data, including clinical and genomic information that 
can be used to improve medical knowledge and treatment.6–9 
One of the growing types of data is that obtained from DNA 
microarray, a collection of microscopic DNA spots attached 
to a solid surface.6,7 Microarray data are used to measure the 
expression levels of large numbers of genes simultaneously. 
What biological insights can be gleaned from the data? How 
are the gene expression data related to disease phenotypes 
(especially cancer phenotypes)? How does the expression of 
genes in different pathways function in cancer and what path-
ways might be targeted for cancer drug treatment? These are all 
important and challenging questions that are driving current 
genomics research.

Techniques for analyzing gene expression data. Of the 
many methods employed to analyze gene expression data for 
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insight into the biology of diseases (especially cancers),6,7,9,10 
most can be classified into two types: single-gene analysis 
and gene set analysis.10,11 The single-gene analysis method is 
a conventional statistical analysis of the gene expression data 
that examines one gene at a time. The method determines 
the differentially expressed (DE) levels of the gene in differ-
ent phenotypes and then makes adjustments to the levels for 
multiple gene testing. This method, however, possesses sev-
eral limitations: high-ranking genes may score highly simply 
by chance, given the large number of hypotheses involved; 
significant genes may show distressingly little overlap among 
different studies of the same biological system; and analysis 
may miss important effects of sets of genes in pathways.7,11,12 
Because of the limitations of single-gene analysis, research-
ers have increasingly turned to the development of gene set 
analysis methods,10–21 which consider a set of genes as a whole 
and determine its correlation with disease phenotypes based 
on the differing levels of the genes’ expression. Different gene 
set analysis methods, which either find gene sets that were 
previously unknown or select gene sets in a known collection 
(such as known pathways), have been proposed for genomic 
data analysis.12–24

Gene Set Enrichment Analysis (GSEA) uses overrepre-
sentation analysis to determine if given sets of genes are DE 
in different disease phenotypes and has been widely adopted 
to analyze data in biological experiments.11,14 The goal of 
GSEA is to determine if members of a gene set tend to occur 
toward the top of the gene list because of the genes’ correla-
tion with the phenotypic class distinction.12 The given gene 
set can be a set of genes in a pathway, a set of genes in a gene 
ontology category, or any user-defined set. A preliminary ver-
sion of GSEA13 was proposed and designed to detect mod-
est but coordinate changes in the expression of groups of 
functionally related genes using data from muscle biopsies 
from diabetics and healthy controls. An improved version of 
GSEA,12 designed to interpret gene expression data includ-
ing that derived from leukemia and lung cancer, has been 
developed; results demonstrate GSEA’s effectiveness for rela-
tionship analysis of gene sets and phenotypes. Bioinformatics 
researchers (including the original inventors themselves) have 
also developed different GSEA extensions for genomic data 
analysis.11,12,14,22,25

GSEA ignore the topology of the pathway and so does 
not account for key biological information. Signaling pathway 
impact analysis (SPIA)15–20 analyzes gene expression data to 
identify whether a pathway is implicated by combining over-
representation analysis with a measurement of the perturba-
tion measured in a pathway.

Related work on discovery of aberrant pathways in 
cancer. The complex procedure of finding pathway abnor-
malities in lung cancer could have many steps involved, such 
as information extraction from biological data, simulation 
verification, biological experimental testing, and clinical 
trials. Among these steps, analysis based on biological data 

to determine the relationship of pathways (and the gene sets 
therein) to lung cancer is one of the most important steps and 
has been investigated in different ways.21,26–31 For example, 
the relationship of signaling pathways and squamous cell lung 
carcinoma was investigated by Shi et  al,21 in which Fisher’s 
exact test was used to identify the related pathways based on 
the significance level of DE genes. The study showed that 
over 100  signaling pathways, including the cell cycle regu-
lation pathway and the p53 tumor-suppressor pathway, were 
implicated in squamous cell lung carcinoma. The study used 
only the selected and altered genes in the pathway to find the 
lung cancer–related pathways. Another study by Qian et al.26 
investigated several single-nucleotide polymorphisms (SNPs), 
the loci of genes that encode proteins on the DNA repair path-
ways (including the both excision repair [BER] pathway and 
the nucleotide excision repair [NER] pathway), to determine 
whether these SNPs are associated with non–small-cell lung 
cancer. The study, which considered only some of the SNPs 
related to the pathways, instead of all the genes involved in 
the pathway, showed that the NER pathway seems to have a 
greater influence on lung cancer than the BER pathway.

Another study on PI3K pathway activity in lung cancer 
development used computational and biochemical mea-
surements to show their close relationship.27 In the work of 
Toonke et  al.28, the supervised analysis of messenger RNA 
microarray data from human tumors identified the trans-
forming growth factor-β signaling pathway as an important 
mediator of tumor invasion. As described by Ekman et al.29, 
aberrant activation of the Akt/mTOR pathway is commonly 
observed in lung cancer, while deregulated PI3K/Akt/mTOR 
activity is known to contribute to the development and main-
tenance of lung cancer.

Most these studies were based on analysis of selected 
biological features (eg, SNP or the expression level of genes) 
rather than all the features in the pathways, and many of them 
focused on studying one or a few pathways rather than many 
pathways. More closely related to the work presented here, 
Neapolitan et  al.32 and Neapolitan and Jiang33 developed a 
new method for learning aberrant signal pathways from data 
called causal analysis of signal transduction pathway aberra-
tions (CASA) and used both CASA and SPIA to analyze the 
The Cancer Genome Atlas (TCGA) breast cancer data set32 
and the TCGA ovarian cancer data set.33

Application of GSEA and SPIA to TCGA lung cancer 
data. This paper applies the GSEA and SPIA methods to a 
well-known data set (TCGA18 lung squamous cell carcinoma 
[LUSC]30 expression data set). Specifically, one of our main 
purposes is to mine interesting biological information from 
TCGA LUSC expression data related to pathway impli-
cations in lung cancer. We also hope to obtain information 
from the data to confirm some existing knowledge, espe-
cially pathway abnormalities in LUSC. We further hope to 
reveal new possible LUSC-related pathway implications for 
subsequent biological testing. Therefore, we investigated the 
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implications of a rich set of pathways in lung cancer by mining 
the microarray gene expression data. GSEA was employed to 
rank the pathways based on their correlations with the phe-
notypes. Experiments employed the LUSC expression data 
from the TCGA project,18 as well as data (especially gene set 
data) on 26 pathways from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG),33 a database resource for understand-
ing high-level functions and utilities of the biological system, 
especially large-scale molecular data sets generated by genome 
sequencing and other high-throughput experimental technol-
ogies. Our experiments compared results in the form of path-
way rankings that revealed that some pathways may be highly 
implicated in LUSC.

The remainder of this paper is organized in five sections: 
Section 2  introduces data sets and data-processing methods; 
Section  3 describes the experiment’s approach of applying 
GSEA and SPIA to pathway analysis for lung cancer; in 
Section  4, experimental results are described, analyzed and 
compared; Section 5 discusses our results; and Section 6 pro-
vides final remarks.

Data Sets
This paper investigates the implications of biological pathways 
in LUSC using gene expression data obtained from the data 
portal of TCGA.18 Pathway information was gathered from 
the KEGG.34

TCGA gene expression data. TCGA is a well-known 
project in cancer research that collects and analyzes high-
quality tumor samples and makes the related data available to 
researchers. At the TCGA data portal, researchers can search, 
download, and analyze data from approximately 30 different 
tumor types. Our research explored the LUSC Level 3 gene 
expression data set, which encompasses 17,814 genes/features 
and 256 tumor samples, including 101 normal tissue samples 
and 155 LUSC tumor samples.

The many studies employing TCGA LUSC data include 
more than 80 recent publications.18,30,35–38 For instance, Liu 
et  al.35 analyzed the TCGA LUSC data to identify both 
common and unique mutation spectra and pathway activa-
tion, which used whole-exome sequencing technology rather 
than the GSEA method. Győrffy et  al.36 developed a real-
time meta-analysis tool for the TCGA microarray data sets to 
identify biomarkers related to survival, which was an analysis 
based on signal gene rather than gene set in our paper. Deng 
et al.37 used the TCGA LUSC data to determine the prog-
nostic value of BCAR1 expression and its associations with 
clinical–demographical characteristics, which is different 
from the purpose of this paper to mine information of path-
way implication. Barrett et al.38 analyzed the TCGA LUSC 
transcriptome data to identify potential therapeutic strategies 
for squamous cell lung carcinoma, which used TCGA LUSC 
RNA-seq data rather than gene expression data in this paper. 
Jiang et al.39 used GSEA to indicate enriched genes in order 
to evaluate the messenger RNA expression of insulin receptor 

isoform A and insulin receptor isoform B, which used the 
TCGA LUSC RNA-seq data rather than the gene expression 
data in our paper. Ylipää et al.40 analyzed the TCGA LUSC 
gene expression data for the similarities with other types of 
cancers based on a GSEA-inspiring method of computing 
the pathway aberration profile for each tumor sample, which 
was to study the similarities of different cancers rather than 
to analyze the pathway implication in LUSC in this paper. 
Above all, to our knowledge, the TCGA LUSC gene expres-
sion data, together with the whole set of genes in the pathway, 
might not have been used to analyze the pathway implications 
in LUSC via GSEA.

KEGG pathway gene set data. In this research, 26 Homo 
sapiens pathways were selected from pathways previously 
known to be related to different types of cancers (eg, bladder 
cancer, chronic myeloid leukemia, colorectal cancer, lung 
cancer, pancreatic cancer, skin cancer, and thyroid cancer), 
as well as from noncancer-associated pathways. Pathways 
previously identified as being related to LUSC (eg, the cell 
cycle pathway,30 the p53 tumor-suppressor pathway,21 and the 
mTOR pathway29) were also included. The map data and gene 
sets of the 26 pathways are from KEGG.34 The selected 26 
pathways and the number of genes on the pathways are listed 
in Table 1.

Data preprocessing method. The LUSC Level 3  gene 
expression data, downloaded from TCGA’s portal, were col-
lected by UNC (University of North Carolina at Chapel Hill) 
using the AgilentG45502A_07 platform. The downloaded 
data consist of many individual files, including one for each 
tissue sample. We extracted the relevant information from 
these individual files and generated a single file that contains 
gene expression profiles for all the tissue samples. In this 
regenerated file, a row contains gene expression information 
for a particular gene in all samples and a column contains gene 
expression information for a tissue sample. The first column 
contains the gene names and the first row contains the TCGA 
sample IDs.

Because there are missing values in the downloaded 
data, imputation was conducted to handle the missing value 
problem based on the known data. We used a mean impu-
tation program (available at http://www.bioconductor.org/ 
packages/release/bioc/html/impute.html) to compute the 
missing values.

Methods
This section describes our application of GSEA and SPIA to 
performing pathway abnormality analysis using gene expres-
sion data.

GSEA. GSEA was developed to determine DE levels of a 
predefined gene set in two different phenotypes. Genome-wide 
expression profiles from two-class samples were used to rank all 
genes in the data set, and the ranking list was then used to calcu-
late enrichment score (ES) and P value. The procedure included 
obtaining the gene-ranking list, calculating an ES, estimating 
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the significance level of the ES, and correcting the significance 
level for multiple gene sets.11–13 Details of the steps of the GSEA 
procedure appear in.11–13 GSEA has been implemented in JAVA 
and R, and different versions of GSEA packages can be down-
loaded at www.broadinstitute.org/gsea/index.jsp.

We used the javaGSEA desktop application with graphical 
user interface from the GSEA Web site (www.broadinstitute. 
org/gsea/index.jsp). Different special types of data files are 
required for gene set analysis. In our analysis, we used the 
following three types of file formats for gene expression data, 
phenotype data, and gene set data.

1.	 TXT gene expression data file: The expression data CSV 
file is converted to tab-delimited TXT file format, and 
a column of gene description is added as the second col-
umn in the data set. The added column is used to describe 
each gene. If there is no description for a gene, the value 
can be simply set to “na.”

2.	 CLS phenotype data file: The phenotype of each tissue 
sample is formatted in the CLS phenotype file. The 
first row of the CLS is the total number of samples 
and total number of phenotypes, separated by a space 
and terminated by the constant 1. The second row 
is the visible names of the phenotypes, such as case 
and control. The third row is the phonotype of each 
sample, separated by a space. For the LUSC gene set 
analysis, we have two phenotypes, ie, control-normal 
sample and case-tumor sample. There are 101 normal 
control samples and 155 tumor case samples. The con-
trol sample is set to 0 and the case sample is set to 1 in 
the third row of the CLS file.

3.	 GMT gene set data file: All gene sets are combined in 
one tab-delimited GMT file. Each row represents one 
gene set, with the name of the gene set in the first col-
umn, the description of the gene set in the second, and 
genes in the gene set in the subsequent columns (one gene 
per column). Our analysis generated 26 rows, with the 
names of the 26 pathways (listed in the second column of 
Table 1) placed in the first columns. The list of genes in 
each pathway is from the KEGG Web site.34

Finally, we imported the data into the GSEA applica-
tion and set the following parameters. The parameter “Num-
ber of permutations” is set as default (ie, 1000, based on the 
GSEA theory discussed in12). The parameter “Collapse data 
set to gene symbols” is set to “false,” as we use gene symbols 
in gene expression data and do not need to do any mapping 
from probe ID to gene. The parameter “Enrichment statis-
tic” is set to “weighted,” as we use the improved version of 
GSEA (see12). The parameter “Metric for ranking genes” is set 
to “Singal2Noise,” while “Gene list of sorting mode” is set to 
“abs.” Other parameters are set to their default values.

The ES, normalized ES (NES), P value, and false discov-
ery rate (FDR) Q value were obtained from the GSEA output 
reports, which were then used to rank the gene sets. Defini-
tions of these output variables can be found in.12

SPIA. SPIA combines the evidence obtained from data 
on differential expression of genes with measurement of the 
actual perturbation on a given pathway under a given condi-
tion. SPIA calculates a global pathway significance P value 
combining the DE and perturbation P values.15 The main 
steps of SPIA include calculating DE probability, perturba-
tion probability, and global probability.15 For detailed theo-
retical analysis and procedures, please refer to Tarca et  al.15 
SPIA has been implemented as a standard R library and can 
be downloaded at http://www.bioconductor.org/packages/
release/bioc/html/SPIA.html.

We used the SPIA R Library to analyze the 26 pathways 
in LUSC by following these procedures:

1.	 Reprocessing the gene expression data: The first row of 
sample ID was deleted from the expression CSV file 

Table 1. List of pathways and the number of genes in each pathway.

No. Name of pathway Number of  
genes

1 Bladder cancer 38

2 Cell cycle 124

3 Chronic myeloid leukemia 73

4 Colorectal cancer 62

5 Complement and coagulation  
cascades

68

6 ErbB signaling pathway 88

7 Glioma 65

8 Hedgehog signaling pathway 51

9 Melanoma 71

10 mTOR signaling pathway 60

11 Non–small-cell lung cancer 56

12 Notch signaling pathway 48

13 p53 signaling pathway 68

14 Pancreatic cancer 66

15 PI3K-Akt signaling pathway 344

16 Protein processing in endoplasmic  
reticulum

167

17 Ras signaling pathway 226

18 Salivary secretion 90

19 Small-cell lung cancer 86

20 Transforming growth factor-beta  
signaling pathway

80

21 Thyroid cancer 29

22 Type I diabetes mellitus 47

23 Type II diabetes mellitus 48

24 Viral carcinogenesis 207

25 Viral myocarditis 74

26 Wnt signaling pathway 141
 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10
www.broadinstitute.org/gsea/index.jsp
www.broadinstitute.org/gsea/index.jsp


Revealing biological pathways implicated in lung cancer

117Cancer Informatics 2014:13(S1)

generated in Section 2, according to the file-formatting 
requirements of SPIA.

2.	 Getting the list of DE genes: Linear model fitting and 
empirical Bayes statistics were used in our experiments. We 
used “limma,” an R package employed for the analysis of 
gene expression data arising from microarray technologies.41 
The functions “lmFit” (implementation of linear model fit-
ting) and “eBayes” (implementation of empirical Bayes sta-
tistics) are used to estimate the fold changes and standard 
errors by fitting a linear model for each gene. The list of DE 
genes is obtained by using the function “topTable” in the 
“limma” package. Note that phenotypes of all samples (ie, 
case and control) are reformatted as a design matrix in the 
“limma” R package and input into “lmFit.” For details and 
to download the “limma” package, please visit http://www.
bioconductor.org/packages/release/bioc/html/limma.html.

3.	 Getting the pathway topology: The topologies of 26 
pathways were downloaded from the KEGG Web site 
in the file format XML.34 The XML files were formatted 
using KGML (KEGG Markup Language) to represent 
the pathway maps.

4.	 Running SPIA: The list of all genes, the list of all DE 
genes, and the 26 pathway KGML files were input into 
the SPIA function in its R library.

The numbers of DE genes (NDE), DE probability (PN), 
perturbation probability (PP), global probability (PG), and 
global probability of FDR (PGFDR) were obtained from the 
SPIA output reports and then used to rank the pathways.

All experiments were run on a high-performance com-
puter that has two AMD Opteron™ 4280 2.80-GHz 8-core 
processors, 128 GB of memory, and a Windows Server 2008 
R2 Enterprise operating system.

Results
The results of using GSEA and SPIA to discover implicated 
pathways in LUSC are shown in Tables 2–4 and Figure 1.

Table 2 shows results from GSEA including ES, NES, 
P values, and FDR Q values. The ranking of each pathway is 
derived from the NES values. The cell cycle pathway is ranked 
first, with an extremely small P value (rounded to 0). The next 
three top-ranked pathways, ie, the p53  signaling pathway, 

Table 2. Results from GSEA (column NES is the ranking metric).

Rank Name of pathway ES NES p value FDR q value

1 Cell cycle 0.561028 1.742564 0.000000 0.003000

2 p53 signaling pathway 0.535046 1.599214 0.001000 0.011000

3 Bladder cancer 0.516461 1.478080 0.012012 0.040013

4 Thyroid cancer 0.477446 1.317630 0.040120 0.215370

5 Type I diabetes mellitus 0.488248 1.313840 0.082996 0.178696

6 Viral carcinogenesis 0.408460 1.301336 0.024000 0.172586

7 Type II diabetes mellitus 0.448148 1.286026 0.064000 0.172811

8 Notch signaling pathway 0.430467 1.243207 0.082000 0.234539

9 ErbB signaling pathway 0.410243 1.241607 0.063000 0.211702

10 Wnt signaling pathway 0.373434 1.173343 0.090000 0.366271

11 mTOR signaling pathway 0.388213 1.142176 0.213000 0.443047

12 Transforming growth factor-beta signaling pathway 0.373428 1.120824 0.200000 0.482590

13 Melanoma 0.371462 1.107658 0.252000 0.491501

14 Colorectal cancer 0.375154 1.106625 0.235000 0.459683

15 Salivary secretion 0.360758 1.089830 0.268000 0.486541

16 Protein processing in endoplasmic reticulum 0.347418 1.084794 0.249000 0.471890

17 Hedgehog signaling pathway 0.363243 1.064658 0.352000 0.506981

18 Glioma 0.350125 1.035410 0.398000 0.578538

19 Non–small-cell lung cancer 0.347019 1.023491 0.420000 0.586171

20 Pancreatic cancer 0.336510 0.993367 0.522000 0.656374

21 Ras signaling pathway 0.313613 0.991516 0.518000 0.631262

22 PI3K-Akt signaling pathway 0.298414 0.962014 0.624000 0.687766

23 Complement and coagulation cascades 0.319877 0.960393 0.537000 0.662823

24 Chronic myeloid leukemia 0.319337 0.956266 0.603000 0.645878

25 Viral myocarditis 0.291712 0.854560 0.797000 0.849612

26 Small-cell lung cancer 0.264050 0.802581 0.899000 0.889872
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Table 3. Results from SPIA (column PG is the ranking metric).

Rank Name of pathway Nde PN PP PG Pgfdr

1 Viral carcinogenesis 159 0.002331 0.992 0.016347 0.267259

2 Melanoma 55 0.559829 0.010 0.034627 0.267259

3 Protein processing in endoplasmic reticulum 126 0.225201 0.027 0.037107 0.267259

4 PI3K-Akt signaling pathway 259 0.212714 0.040 0.049066 0.267259

5 Cell cycle 96 0.079648 0.113 0.051396 0.267259

6 Transforming growth factor-beta signaling pathway 66 0.074211 0.618 0.187216 0.631745

7 Bladder cancer 30 0.440452 0.109 0.193783 0.631745

8 Type I diabetes mellitus 18 0.626067 0.077 0.194383 0.631745

9 Thyroid cancer 24 0.383301 0.154 0.226063 0.653071

10 Viral myocarditis 39 0.611114 0.113 0.253631 0.659441

11 Wnt signaling pathway 106 0.607008 0.153 0.313586 0.741203

12 Small-cell lung cancer 66 0.553092 0.207 0.362621 0.753911

13 Colorectal cancer 48 0.648092 0.187 0.376956 0.753911

14 p53 signaling pathway 54 0.158231 0.942 0.432769 0.788239

15 Ras signaling pathway 172 0.424384 0.379 0.454753 0.788239

16 Non–small-cell lung cancer 44 0.467202 0.408 0.506565 0.789732

17 Notch signaling pathway 37 0.343326 0.598 0.530363 0.789732

18 Salivary secretion 69 0.249502 0.865 0.546737 0.789732

19 ErbB signaling pathway 63 0.865496 0.313 0.624697 0.818210

20 Chronic myeloid leukemia 57 0.510093 0.599 0.667818 0.818210

21 mTOR signaling pathway 40 0.830403 0.381 0.680478 0.818210

22 Hedgehog signaling pathway 41 0.447103 0.731 0.692331 0.818210

23 Glioma 45 0.931147 0.487 0.812085 0.917039

24 Pancreatic cancer 52 0.545290 0.925 0.849599 0.917039

25 Complement and coagulation cascades 46 0.966263 0.639 0.915154 0.917039

26 Type II diabetes mellitus 34 0.750456 0.828 0.917039 0.917039
 

bladder cancer pathway, and thyroid cancer pathway, also 
exhibit small P values (,0.05). The small P values suggest that 
their rankings are not the result of random chance, but are 
significantly linked to their relationship with LUSC.

Table 3 shows results from SPIA, including the number 
of DE genes, the DE probability, accumulated perturbation, 
perturbation probability, global probability, and the global 
probability of FDR. The rankings are based on the values 
of global probability. The top 5 pathways, ie, the viral car-
cinogenesis, melanoma, protein processing in endoplasmic 
reticulum, PI3K-Akt signaling, and cell cycle pathways, 
exhibit significantly small global probabilities (around 0.05 
or smaller) and the same global probability of FDR. Because 
these five pathways are significantly high ranked, rather than 
ranked highly by chance in views of small P values (ie, global 
probabilities), the rankings could indicate that these path-
ways are more closely implicated in LUSC than the other 21 
pathways.

Table 4 and Figure 1 provide a pathway ranking compari-
son of GSEA with SPIA. Here, we can see that the cell cycle 
pathway (the second pathway in Table 1 and Fig. 1) and the 

viral carcinogenesis pathway (the 24th pathway in Table 1 and 
Fig. 1) are ranked by both GSEA and SPIA at the very top. 
The three pathways ranked highest based on our GSEA results, 
the bladder cancer, thyroid cancer, and type I diabetes melli-
tus pathways, are also ranked among the SPIA results’ top 10. 
This finding increases our confidence that these three pathways 
may be implicated in LUSC. We note that some pathways are 
ranked differently by GSEA as compared with SPIA: for exam-
ple, p53, ranked number 2 according to GSEA, comes in at 13, 
according to SPIA. The type II diabetes mellitus pathway is 
ranked number 7 by GSEA but is ranked last by SPIA. Protein 
processing in the endoplasmic reticulum pathway is ranked only 
number 16 by GSEA but is ranked third by SPIA. GSEA ranks 
the PI3K-Akt signaling pathway at number 22, whereas SPIA 
puts it at fourth. According to the methodologies of GSEA and 
SPIA, the consideration of pathway ontologies in SPIA may be 
an important reason for these differences.

We also calculated the correlation of ranking numbers 
between GSEA and SPIA and determined that the corre-
lation coefficient of all 26 pathways is 0.2855; this finding 
demonstrates that the GSEA and SPIA results share some 
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similar rankings. Moreover, the correlation coefficient of 
GSEA and SPIA rankings of the top 10 pathways is 0.4532 
(bigger than the one for 26 pathways), suggesting that the 
rankings of the top 10 pathways by GSEA and SPIA have 
more common pathways as compared with the ones for all 26 
pathways. That is, the pathways ranked among the top 10 by 
GSEA and SPIA have more in common than the pathways 
ranked lower by both. Thus, pathways ranked at the top by 
SPIA could also be ranked at the top by GSEA, strengthen-
ing our confidence that pathways ranked at the top in GSEA 
(eg, the cell cycle pathway and the viral carcinogenesis path-
way) could be implicated in LUSC.

Above all, GSEA proved useful in extracting informa-
tion from TCGA LUSC gene expression data and showing 
implications of pathways and LUSC, compared to SPIA.

Discussion
The results described above reveal that the ranking scores 
are significantly higher for some pathways than for others 

in LUSC. It is noteworthy that some high-scoring abnormal 
pathways in LUSC have never been reported anywhere 
else based on our best knowledge. A discussion of the  
results follows.

First, according to the results from GSEA and SPIA, 
using TCGA gene expression data reveals that the cell cycle 
pathway is closely related to LUSC. The cell cycle is the pro-
cess leading a cell’s division and duplication/replication, which 
is accomplished through a reproducible sequence of events: 
DNA replication (S phase) and mitosis (M phase), separated 
temporally by gaps known as G1 and G2 phases.34 Cell cycle 
regulation disorder or DNA demand may lead to uncontrol-
lable cell growth and the forming of malignant tumors. In this 
sense, we can see that cell cycle regulation disorder could be 
related to the development of cancer. Moreover, the literature 
reveals that cell cycle pathway has a close relationship with 
cancer.10,21 For example, in the work of Shi et  al.21, the cell 
cycle pathway was ranked first among the altered signaling 
pathways linked with LUSC, based on the analysis of three 
different microarray gene expression data sets and using statis-
tical methods that differed from GSEA and SPIA. This sup-
ports our result that the top-ranking pathway, namely, the cell 
cycle pathway, is implicated in LUSC.

Second, the viral carcinogenesis pathway is also ranked at 
the top by GSEA as well as SPIA, indicating a high-level asso-
ciation with LUSC. According to KEGG,34 there is a strong 
association between viruses and the development of human 
malignancies. Specifically, through the expression of many 
potent oncoproteins, tumor viruses promote an aberrant cell 
proliferation via modulating cellular cell-signaling pathways 
and escape from cellular defense system.34 Human tumor virus 
oncoproteins can also disrupt pathways that are necessary for 
the maintenance of the integrity of the host cellular genome.34 
Viruses that encode such activities can contribute to the ini-
tiation, as well as progression, of human cancers.31,34 In our 

Table 4. Comparisons of rankings from GSEA and SPIA.

Name of pathway GSEA SPIA

Cell cycle 1 5

p53 signaling pathway 2 14

Bladder cancer 3 7

Thyroid cancer 4 9

Type I diabetes mellitus 5 8

Viral carcinogenesis 6 1

Type II diabetes mellitus 7 26

Notch signaling pathway 8 17

ErbB signaling pathway 9 19

Wnt signaling pathway 10 11

mTOR signaling pathway 11 21

Transforming growth factor-beta  
signaling pathway

12 6

Melanoma 13 2

Colorectal cancer 14 13

Salivary secretion 15 18

Protein processing in endoplasmic  
reticulum

16 3

Hedgehog signaling pathway 17 22

Glioma 18 23

Non–small-cell lung cancer 19 16

Pancreatic cancer 20 24

Ras signaling pathway 21 15

PI3K-Akt signaling pathway 22 4

Complement and coagulation  
cascades

23 25

Chronic myeloid leukemia 24 20

Viral myocarditis 25 10

Small-cell lung cancer 26 12
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Figure 1. Comparison of pathway rankings from GSEA and SPIA (X-axis 
labels are the indices of pathways, which are in the first column of 
Table 1).
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study, the high ranking of the viral carcinogenesis pathway 
indicates the pathway has a role in LUSC development.

Third, the p53 signaling pathway, well known for its rela-
tionship to cancers,21,30,31 was ranked by GSEA in the second 
place. Another important pathway, the PI3K-Akt signaling 
pathway, which has been found to have an association with 
lung cancer,30,31 was also ranked near the top (in fourth place) 
by SPIA. The established association of these pathways with 
cancers, along with our findings, suggests a close relationship 
of these pathways to LUSC.

Fourth, two other pathways, the bladder cancer and 
thyroid cancer pathways, were also ranked near the top by 
GSEA. As their names suggest, these pathways are known 
to be associated with their own cancer types (ie, bladder can-
cer and thyroid cancer). Our study found that these pathways 
could also be implicated in lung cancer, particularly in LUSC. 
This result suggests that different types of cancers could share 
similar biological mechanisms.

Fifth, our study also highly ranked some pathways no 
one believed to be implicated in cancer. For example, type 
I diabetes mellitus and type II diabetes mellitus pathways 
were ranked number 5 and number 7 by GSEA, respectively. 
Although these pathways were previously known as related 
to their own diseases (eg, diabetes), the fact that our results 
highly ranked pathways already known to be related to LUSC 
increases our confidence that these highly ranked pathways 
may also be implicated in the development of LUSC. The dis-
covery of these possible pathway implications suggests future 
biological experiments and clinical trials for finding new 
LUSC-related pathways.

Finally, in our study, GSEA and SPIA did not highly 
rank some pathways previously known to be related to cancer, 
such as the mTOR signaling pathway and the notch signaling 
pathway.21,29–31 These results may be due to particularities of 
the data set (ie, the TCGA LUSC gene expression data set) 
and cancer type (ie, LUSC) or to the possibility that signals in 
the gene expression data may not be strong enough to uncover 
relationships. Future research might focus on the investiga-
tion of different cancer data for the analysis of different cancer 
types, as well as employing more pathways in gene set analysis 
to find more underlying relationships of pathways to cancers.

Conclusions
We applied GSEA and SPIA to microarray gene expression 
data to investigate pathway implications in lung cancer. In 
particular, we applied them to the analysis of the relationship 
of LUSC and 26 pathways from the KEGG, using the TCGA 
LUSC gene expression data. The results demonstrated that 
some pathways could be related to lung cancer. For example, 
the cell cycle pathway and the viral carcinogenesis pathway 
are highly implicated in LUSC; the p53  signaling pathway 
and the PI3K-Akt signaling pathway also have connections 
to LUSC; and pathways of other cancer types (eg, blad-
der and thyroid cancer pathways) also appear linked to the 

development of lung cancer. Future research could involve the 
investigation of other cancers, the consideration of a greater 
number of pathways for analysis, and the utilization of other 
gene expression data.
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