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ABSTR ACT: Glutamate-rich protein is a Plasmodium falciparum (Pf ) antigen found in all stages of the parasite and has been reported to induce clinical 
immunity. The R0 and R2 regions have been found to exhibit a high degree of conservation, therefore serving as a good vaccine design material. We assayed 
the genetic diversity of Pf glurp genes in the R0 and R2 regions, as well as evaluated the role of seasonality on allelic frequency. A total of 402 genomic 
DNA samples, extracted from filter paper blood samples, were screened by nested polymerase chain reaction (PCR) analysis of Pf glurp R0 and R2 regions, 
in addition to fragment analysis of the polymorphic regions to identify allelic diversity of the parasite population. We found an extensive heterogeneity 
in the R2 region in general, and this heterogeneity is seasonally dependent, indicative of region plasticity. The R0 region displayed genetic conservation, 
as expected. We conclude that positive genotyping results with glurp R0 region should be seen as indicative of an active Pf infection, requiring adequate 
treatment. In addition, we advocate extending the possibility that an R0 region genotypic positivity could serve as diagnostic tool, thereby reducing cases of 
untreated or poorly treated infection, contributory to recrudescence or treatment failure.
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Introduction
Plasmodium falciparum (Pf ) remains the most infectious human 
parasitic agent, afflicting millions globally while imposing 
significant hardships on individuals and nations.1,2 Ongo-
ing control efforts are targeted toward integrated approaches, 
including the design of vaccines with potential to reduce dis-
ease burden, especially for non-immune travelers to endemic 
locations and secondarily local control programs. Multiple 
vaccine design efforts utilizing malaria proteins are under-
way, including those utilizing parasite surface proteins from 
developmental stages of the parasite life cycle in humans such 
as circumsporozoite surface proteins (CSP), merozoite sur-
face proteins (MSPs 1–5), glutamate-rich protein (GLURP), 
apical membrane antigen 1 (AMA1), and erythrocyte binding 

antigen 175 (EBA-175).3,4 Such efforts, however, are ham-
pered by extensive antigenic diversity of these proteins, with 
the degree of diversity directly related to geography and trans-
mission intensities in such locations.5–7

In many endemic countries, the biggest problem is self- 
or inadequate treatment, thereby building drug pressure, and 
the added challenge of resistance to available chemothera-
peutic agents. Polymerase chain reaction (PCR) genotyping 
methods, utilizing nested allelic type-specific amplification of 
surface proteins, have become mainstays in this field. These 
tools have facilitated the definition of allelic variability in an 
individual or within a population to deconvolute recurrent or 
recrudescent infection, as well as to clarify effectiveness of 
prescribed therapy or drug resistance.8–11 It is an important 
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investigative tool to delineate effectiveness of therapeutic 
agents during clinical trials or efficacy studies.

To assist vaccine design efforts and overcome the chal-
lenge imposed by antigenic diversity, Pf proteins that can 
induce clinical immunity, common in the parasite life cycle, 
and can be expressed on merozoites released into peripheral 
circulation would be significantly important, of which the 
glurp gene is an example. It is composed of an N-terminal 
nonrepetitive region (R0 region) and a C-terminal repetitive 
(R2 region) region. The R0 region has been shown in previous 
studies to be highly conserved and elicits an antibody response 
that is very stable over time,12–16 with the added potential of 
possessing antimalarial parasitic activity.17–19 In fact, one such 
study showed that glurp-specific immunoglobulin G antibod-
ies in an endemic region significantly contribute to clearance 
of drug-resistant parasites, thereby enhancing the efficacy of 
antimalarial therapy.20 These observations, in various field 
studies, have been corroborated by in vitro assays, further vali-
dating the results and the conclusion that glurp R0 region is 
conserved while the R2 region is heterogeneous.

This conclusion, however, is challenged by recent reports 
showing that the Pf glurp gene displays some antigenic diver-
sity, with differing allelic variants depending on geography 
and transmission intensity.7,21,22 If the former is the case, can 
the R0 region serve as a confirmatory tool in unknown cases of 
infection or as a marker of recurrent or recrudescent infection 
in endemic domains? Second, is this conservation stable by 
seasonality? Third, how widespread is the allelic heterogene-
ity of the R2 region viz-à-viz geography and seasonality, con-
sidering the diversity of other malaria genes in sub-Saharan 
Africa? We present evidence of genetic diversity in the R0 and 
R2 regions of Pf glurp gene from Nigeria, as well as allelic 
frequency by season, and show its utilization as a diagnostic 
tool for malaria infection.

Materials and Methods
Subjects and genomic DNA samples. A total of 402 

individuals, recruited from the Awoyaya Medical Center, 
Lagos, Nigeria, during the rainy (July 2012) and dry 
(December 2013) seasons, served as subjects for this study. 
These individuals presented at the hospital with complaints 
of feeling unwell or persistent fever for the last three days, and 
were referred to the laboratory for diagnostic sample collection 
and further analyses. Discarded EDTA-anticoagulated blood 
samples, collected during this process, were spotted onto 
Whatman filter papers (GE Healthcare Life Sciences), and 
well-characterized genomic DNA samples were extracted 
from the dried blood spots with the Qiagen Parasite Blood 
Mini Kit (Qiagen Inc), with some changes in the manufactur-
er’s instruction, as described previously.23 Final elution volume 
was 100 μL, and DNA samples were stored at -20°C until 
further analysis. As the study involved existing pathological 
specimens, with the relevant information recorded in such 
a manner that subjects could not be identified, the research 

was exempt from the requirement for ethical approval under 
exemption 4 of the US Department of Health and Human 
Services regulations §46.101 (b).

Multiplex PCR assay. A multiplex PCR assay for differential 
diagnosis was carried out, utilizing the 18S rRNA gene, with 
primers, protocols, and reaction setup following established meth-
ods,24 as described previously and amended.11

Genotyping for diversity of glutamate-rich protein 
(glurp) R0 and R2 regions. We assayed for the genetic diver-
sity of the glutamate-rich protein R0 and R2 regions with 
respective nested PCR assay, utilizing previously published 
protocol.14 Briefly, the R0 region was amplified with the 
primer pairs, DA153 (ATGAGAAACCTTTTCCATAT) and 
PF55 (TGCTTCATGCTCGCTTTTTTCCGAT) for the 
primary PCR and PF61 (TACAAGTGAGAATAGAAATA-
AAC) and PF62 (CACAGTTTCTTCATGTTCGA-
CAGT) for the secondary step PCR. Similar protocol but a 
different primer pair was utilized for the glurp R2 region with 
primers PF3 (ACATGCAAGTGTTGATCCTGAAG) and 
PF2 (ATATTACTATATCCTTTGCTATTCC) as well as 
PF5 (TGAATTTGAAGATGTTCACACTGAAC) and 
PF4 (TGTAGGTACCACGGGTTCTTGTGG) serving for 
first and second round amplifications, respectively. PCR was 
performed on an Eppendorf Mastercycler Gradient machine 
(Harlow Scientific) in a total volume of 25 μL and amplified 
using the Lucigen EconoTaq PLUS GREEN 2X Master Mix 
PCR system (Lucigen Corporation). Reactions were carried 
out with the same program-initial denaturation at 95°C for 
5 minutes; followed by 35 cycles of 94°C for 1 minute, 48°C 
for 1 minute, and 72°C for 2 minutes; and a final cycle of 72°C 
for 10 minutes. In all, 10 μL of PCR products were loaded on 
a 2% ethidium bromide-stained agarose gel (SeaKem Agarose) 
and band size determined, as described previously.11 Represen-
tative gel images are as shown below.

Results
Out of 402 samples collected, 19 (4.7%) were successfully ampli-
fied for Pf glurp gene indicating the presence of active malaria 
infection (Table 1). Analyzing for glurp regions, we found 18 
(94.7%) glurp-positive samples were amplified for the R0 and R2 
regions, respectively. Surprisingly, more glurp-positive samples 
were amplified during the dry season (73.7%) than during the 
rainy season (26.3%). Per region breakdown, each was amplified 
similarly during both seasons—100% for R0 and R2 regions dur-
ing the dry season and 80.0% for the rainy season, respectively.

Genetic diversity and allelic frequency. The degree of 
genetic diversity observed in the glurp-positive samples was 
dependent on the region analyzed. For the R0 region, all posi-
tive samples had a single genotype of sizes 380 and 1301 base 
pairs (Fig. 1). This observation is potentially indicative of gene 
conservation across regions and seasons, and possible evidence 
of a single Pf strain.

However, the R2 region displayed widespread and exten-
sive genetic diversity. We found a total of 18 different genotypes 
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among glurp-positive samples (Fig. 2), with allelic variants rang-
ing from 660 to 1090 base pairs, the majority (55.5%) occurring 
at more than 10% (Fig. 3). Two genotypes (981–1000 bp and 
1021–1040 bp) had the highest frequencies (16.7%) in our study, 
followed by bin sizes 841–860  bp and 881–900  bp (11.1%). 
There was more diversity in the glurp gene during the dry sea-
son than during the rainy season. Fewer genotypes—4 out of 
18 (22.2%)—were observed during the rainy season with the 
majority of variants found during the dry season (77.8%). Sea-
sonally, the highest frequencies of allelic variants (841–860 bp, 
881–900 bp, and 981–1000 bp) were observed during the rainy 
season (25%), while the variant with the highest frequency 
during the dry season was 981–1000 bp (21.5%). Seasonally, 
majority of the genotypes (64.3%) encountered during the dry 
season occurred at less than 10%. In all, 18 individuals had 
multiple alleles of R0 and R2 regions amplified.

Discussion
There is a serious imperative for the elucidation of the population 
genetic profile of Pf glurp gene, owing to its basis as a candidate 

for malaria vaccine design. Despite documented reports of its 
stability over time and the capacity to induce clinical immunity, 
other reports of heterogeneity, especially in the R2 region, 
would be of huge concern if the expected outcome is a vac-
cine capable to restrain the current trend for malaria infection. 
Nigeria, like many countries in West Africa, is a malaria-
endemic country with many individuals with asymptomatic or 
sub-clinical infections,11 and as such taking advantage of the 
glurp gene R0 region conservation as a diagnostic tool would 
be a positive development. In other words, genotyping results 
with glurp R0 region positivity should count as an active infec-
tion, and adequate antimalarial therapy is administered. In fact, 
the observation that even less variation is found in similar geo-
graphical locations when field isolates are examined14 extends 
the possibility of this region as a diagnostic tool. The stabil-
ity of the R0 region in our study confirms previous findings 
elsewhere14,25 and could potentially serve as another tool in the 
battle against malaria. The two glurp R0 genotypes found in 
our study confirm the possibility of multiple infections, which 
is not unexpected in an endemic region.

Table 1. Characteristics of glurp-positive genotyping analysis.

glurp GENE  
AMPLIFIED

FREQUENCY (%) R0 REGION  
AMPLIFIED

FREQUENCY (%) R2 REGION  
AMPLIFIED

FREQUENCY (%)

Total 19/402 4.7 18/19 94.7 18/19 94.7

Rainy season 5/19 26.3 4/5 80.0 4/5 80.0

Dry season 14/19 73.7 14/14 100.0 14/14 100.0
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Figure 1. Agarose gel electrophoresis analysis showing genetic 
diversity detected in the Plasmodium falciparum glurp gene R0 region. 
All glurp-positive samples had one genotype, with band sizes of 380 
and 1301 bp. Marker: 100 bp ladder, where the 500 bp band stains 
most intensely (New England Biolabs). Lanes 1–5: individual samples 
amplified for the glurp R0 region.
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Figure 2. Agarose gel electrophoresis analysis showing genetic 
diversity detected with the Plasmodium falciparum glurp gene R2 
region. PCR products were categorized into molecular weight groups 
differing by 20 bp. The glurp alleles ranged in size from 660 to 1,090 bp. 
Marker: 100 bp ladder, where the 500 bp band stains most intensely 
(New England Biolabs). Lanes 1–6: individual samples amplified for the 
glurp R2 region.
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The evidence for multiple genotypes of R2 region 
found in our study indicates the heterogeneity and diversity 
of this region. Despite the significant reports on the diver-
sity of other malaria surface proteins, reports on glurp gene 
diversity are very few and limited. This present observation 
probably reflects the degree of ongoing diversification of this 
gene, potentially ruling out its worthiness of consideration as 
an antimalarial agent. Previous reports have concluded that 
the Pf glurp gene in the R2 region is very heterogeneous with 
extensive diversity within and between regions and is related 
to transmission intensity.14,26,27

The difference between the glurp R0 and R2 region 
diversity in our study as it relates to seasonality is a very sig-
nificant observation. In many endemic countries, majority of 
individuals with active malaria infections are encountered dur-
ing the rainy season, wholly because of the preponderance of 
mosquito and environmental conditions that facilitate infec-
tion. Our current observation confirms previous reports that 
residents of malaria-endemic regions assume malaria infection 
associated with fever, during the rainy season and self-treat 
than during the dry season. The fact that a handful of glurp-
positive cases were recorded during the rainy season indicates 
these are potentially recrudescent cases arising from treat-
ment failures, and as such sought medical attention. A recent 
study from Tanzania28 clearly exemplifies the challenge faced 
in many sub-Saharan African countries on the presumption 
that malaria infection is responsible for the majority of febrile 
illness.29–34 According to Crump et al, there was a 60.7% fre-
quency of presumptive malaria diagnosis, but true malaria 
infection was 1.6%, determined after laboratory examination 
of blood samples. If the percentage of presumptive diagnosis 
made by medical personnel is this high, we can extrapolate that 
the population would probably be higher, potentially leading 
to self-treatment. Unfortunately, many other infections34 that 

probably were the cause of febrile illness that requires urgent 
and immediate attention are left untreated with serious and 
potentially tragic consequences.

We conclude that PCR-positivity of this gene could 
potentially serve as evidence of failed or inadequate treat-
ment and assist in proper treatment when patients present at 
the hospital. In a newly published report evaluating parasite 
subpopulations and genetic diversity of the msp1, msp2 and 
glurp genes during and following artesunate treatment, it was 
reported that most cases of positive malaria but failed treatment 
were recrudescent rather than recurrent or new infections.22 
The major challenge, though, is the major concern that such 
self-treatments could contribute to or advance the development 
of resistance to currently available antimalarial medications.

List of Abbreviations
Pf, Plasmodium falciparum; glurp, glutamate-rich protein; 
PCR-RFLP, polymerase chain reaction-restriction fragment 
length polymorphism.
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