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Introduction
RNA-Seq provides a revolutionary way to unveil transcrip-
tome details by using ultra-high-throughput sequencing 
technologies to generate hundreds of million short reads 
from RNA molecules.1 The short reads are a type of big data 
that usually need several or more gigabytes storage. They 
are usually aligned against a reference genome (eg, human 
genome) by using alignment tools such as Bowtie,2 SOAP3,3 
or Cufflinks4 to produce a genome-scale transcription map that 
consists of the expression level for all genes in transcription. 
The expression of each gene is represented by the number of 
short reads mapped to the gene in the alignment, which is 
believed to be linearly proportional to its abundance level in 
transcription.1,5,6

The transcription map can be represented by a non-
negative integer read count matrix X ∈ ℤn × p $ 0, by collect-
ing the number of short reads mapped to each gene across 
all samples. Each row and column in the matrix represents a 
gene and sample, respectively. The terminology gene actually 
refers to a more general biological feature such as a gene, exon, 
or transcript in context. Alternatively, each sample refers to 
a biological or technical replicate, where the biological rep-
licates are all samples under a same biological condition and 
the technical replicates are alternative sequencing results of a 
same biological sample. Given an RNA-Seq count data (read 
count matrix), the number of variables (genes) is generally 
much greater than the number of samples (observations), ie, 
n .. p, where n ∼ 104 and P ,, 102.
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From a translational bioinformatics viewpoint, an 
essential issue in RNA-Seq data analysis is to answer the fol-
lowing two related queries. First, given a read count matrix, 
how to robustly determine whether the observed difference in 
read counts for a gene across two or more conditions is statisti-
cally significant? Second, how to retrieve disease biomarkers  
from RNA-Seq count data to provide a possible guide for 
disease diagnosis and prognosis? It is noted that we use ter-
minologies “RNA-Seq data” and “RNA-Seq count data” 
interchangeably for the convenience of following description, 
unless there is a special notation.

Quite a few differential expression (DE) analysis methods 
have been proposed to answer the first query from different 
standing points.7–12 They can be categorized as parametric and 
nonparametric approaches according to whether they rely on 
statistical parameter estimation modeling approaches. The 
parametric methods assume that read counts subject to a prob-
ability distribution and estimate corresponding parameters for 
the distribution before conducting a corresponding hypoth-
esis test to rank genes.7,8,10,12 For example, DESeq and edgeR 
methods both model read counts by a negative binomial (NB) 
distribution and employ a variation of Fisher’s exact test to cal-
culate P-values to rank each gene, whereas they estimate mean 
and variance parameters from different models.7,12 Alterna-
tively, the nonparametric methods, such as NOISeq, do not 
assume count data subject to any distribution.13 Instead, their 
DE calls are based on an empirical distribution of some statis-
tic derived from input data. For example, NOISeq determines 
differentially expressed (DE) genes by employing an odds 
ratio derived from two count statistics: log fold change and 
absolute expression difference.13

Unlike the first query, there was no previous work in 
the literature on RNA-Seq data biomarker discovery. How-
ever, compared with traditional microarray data, RNA-Seq 
data can provide a more reproducible, high-resolution digital 
expression for monitoring RNA transcription.5 Especially, it 
makes each gene’s expression in a single sample comparable 
with those of others.7,14 On the other hand, it is almost impos-
sible to compare the expression levels of genes within a sample 
for microarray data because of the strong background signals 
generated from the hybridization process of the microarray. 
Thus, it will be desirable to seek disease biomarker discovery 
from RNA-Seq count data for the sake of disease diagnosis and 
prognosis by taking advantage of these properties. However, 
RNA-Seq data biomarker discovery remains a challenging  
problem for the following major reasons.

First, the special characteristics of RNA-Seq count data 
present hurdles from reusing those biomarker discovery algo-
rithms developed from traditional omics data, ie, microarray 
or proteomics data. For example, RNA-Seq count data have 
much fewer number of samples (eg, P , 7) compared with the 
traditional omics data, which challenges the effectiveness of the 
parameter estimation-oriented biomarker discovery methods  
(eg, Bayesian methods).7

Moreover, different from traditional omics data, which 
are usually normally distributed after normalization, RNA-
Seq count data are usually modeled as the NB distribution 
or Poisson distribution.7,14 The biomarker discovery methods 
developed under the normal distribution assumption usu-
ally cannot apply to RNA-Seq count data directly. In addi-
tion, most genes in RNA-Seq count data have quite good 
discriminative abilities under classification compared with 
microarray data. This is due to the built-in ultra-high resolu-
tion of RNA-Seq that leads to more accurate measurement 
and higher dynamic range for gene expression under different 
conditions.1,15

For example, we have found that the widely employed 
filter-wrapper biomarker discovery method in the microarray 
community16 cannot work well for RNA-Seq count data. This 
is probably due to the fact that most genes have almost perfect 
performance under a classifier (eg, SVM),17,18 with a leave one-
out cross validation (LOOCV) in the wrapping process. In 
addition, there are no appropriate feature selection algorithms 
available for RNA-Seq count data in the filtering process, 
because most of widely used statistical testing-based feature 
selection methods in the filter-wrapper method assume that 
population data are normally distributed (eg, t-test), which 
cannot apply to RNA-Seq read count data.

Second, quite a lot biomarker discovery methods require 
an accurate P-value calculation to rank each gene in DE anal-
ysis. However, current DE analysis methods do not achieve it 
very well. Instead, quite a lot methods even suffer from high 
false positives in the P-value calculation with the increase 
of sequencing depth (SD).13 A key reason is that all existing 
DE analysis methods usually invite almost all genes into DE 
calls without conducting a serious feature selection for high-
dimensional RNA-Seq count data, although some of them 
simply filter genes with low count numbers before analysis. As 
such, the redundant or noise-contained genes will get involved 
and act as outliers in DE analysis, which inevitably leads to the 
increase of the false positive ratios in the hypothesis testing.

For example, some genes with low counts or same level 
high counts in two conditions are actually due to the artifacts of 
library preparation protocols, sequencing inaccuracy, or align-
ment imprecision, instead of reaction to treatment.5,13 In fact, 
those genes, which do not have real contributions to data varia-
tions under a treatment, should not enter the DE call for the 
sake of the sensitivity of DE analysis, because they will distract 
the focus of DE analysis by increasing false positive ratios.

Moreover, almost all parametric DE analysis methods 
are SD-dependent methods13 and they would falsely detect 
some non-DE gene as a DE gene, when the SD increases in 
a condition. That is, the count increases in the condition will 
be falsely diagnosed as a statistically significant DE change. 
Thus, a serious feature selection with an aim to remove the 
genes with no real contributions to data variations will con-
tribute to the SD independence of these methods by decreas-
ing false positive ratios in the DE call.
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In this study, we presented a novel biomarker discov-
ery algorithm: SEQ-Marker for RNA-Seq data from a net-
work discovery standing point. The proposed SEQ-Marker 
algorithm is built on a proposed data-driven feature selec-
tion algorithm, nonnegative singular value approximation 
(NSVA), proposed in this study. As a feature selection algo-
rithm to select genes according to its contribution to the whole 
data variance, it does not require any probability distribution 
assumption about count data. It also demonstrated a good 
consistency in identifying large variance genes (eg, long genes) 
as DE genes when integrated with classic DE analysis meth-
ods. Moreover, we compared our NSVA feature selection with 
two competing methods, count-based naive feature selection 
(NFS) and principal component analysis (PCA), to demon-
strate its advantages in selecting meaningful genes.

Unlike the traditional biomarker discovery methods 
in the microarray community, the proposed SEQ-Marker 
employed a novel strategy to identify biomarkers from network 
markers. That is, it searched an inferred network marker at 
first for RNA-Seq count data and then identified meaningful  
biomarkers from the network marker by retrieving gene inter-
action and gene mutation information. The proposed bio-
marker discovery algorithm aimed at finding biomarkers by 
novelly viewing an inferred network marker as a small data-
base. The database not only unveiled interaction information 
between genes but also made it possible to explore real disease 
biomarkers along an interaction “path”. Such a search scheme 
is especially helpful to avoid the tissue-specific expression 
biomarkers and identify those real disease biomarkers, which 
may not express themselves in omics experiments.

It is worthwhile to point out that our biomarker search 
mechanism is specially designed according to the properties of 
the real disease biomarkers by answering the following queries:  
“which genes’ mutations will affect most genes in the network 
marker?” and “which genes have the highest proximities with a 
most likely gene marker?”. Obviously, such a biomarker search 
mechanism will have advantages to capture real disease mark-
ers by overcoming the weakness of traditional P-value-based 
tissue-specific expression biomarker discovery.

On the other hand, our proposed biomarker discovery 
model overcame the weakness of the traditional network marker 
and individual gene marker discovery. The former has been 
facing the difficulties in biomarker validation, because it could 
be prohibitive or impossible to conduct a biomarker validation 
for a network marker with more than hundreds of genes. The 
latter suffers from the poor reproducibility caused by adhocness 
of P-values, in addition to failing to provide information on 
significant molecular mechanism such as gene–gene interac-
tion. In fact, the biomarkers from our model were convenient 
and less expensive for validation from a clinical viewpoint for 
its quantity. Alternatively, the proposed gene interaction-ori-
ented search scheme in our model overcame the limitations of 
P-values and enabled the identification of biomarkers without 
strong P-values. To our knowledge, the proposed SEQ-Marker  

algorithm is the first work on RNA-Seq biomarker discovery 
that not only bridges transcriptomics and systems biology, but 
also contributes to clinical diagnosis.

Biomarker Discovery for RNA-Seq Count Data
As we pointed out before, quite a lot biomarker discovery 
methods on traditional omics data cannot be applied to RNA-
Seq count data directly, because of the special characteristics 
of RNA-Seq count data. The question is “what kind of bio-
marker discovery algorithms of RNA-Seq count data should 
be?” We believe a desirable RNA-Seq biomarker discovery 
should satisfy at least the following criteria.

First, only a portion of meaningful genes instead of all 
genes should participate biomarker discovery, because a lot 
of genes are not informative enough to contribute to disease 
diagnosis. For example, some genes with very low variances 
in two conditions are actually not reaction to treatment but 
results of the artifacts of library preparations or relaxed align-
ment constraints. Alternatively, it is computationally expensive 
or even prohibitive to include all genes of a read count data-
set in biomarker discovery. As such, we need a feature selec-
tion algorithm to filter the genes before starting biomarker  
discovery officially.

Second, a robust DE analysis model to accurately calcu-
late P-values for each gene is needed in biomarker discovery. 
The DE analysis model should demonstrate capabilities to 
avoid high false positive rates in a conservative approach com-
pared to its peers, no matter it is a parametric or nonpara
metric DE analysis model.

Third, the biomarker discovery algorithm should demon-
strate some potential to overcome the weakness of traditional 
omics biomarker discovery methods by enhancing identi-
fied biomarkers’ reproducibility and validation. For example, 
gene–gene (protein–protein) interaction information should 
be included in the biomarker discovery to improve the repro-
ducibility of biomarkers. In particular, checking the interac-
tion information of identified biomarkers would help to bridge 
the gap between biomedical research and clinical practice 
by identifying “real” or new markers.19 This is because that 
some identified biomarkers with strong statistical support (eg, 
P-values) may not be found “useful” in real clinical diagnosis. 
In contrast, some well-known gene markers (eg, BRCA1 for 
breast cancer) widely employed in clinical practice may not be 
identified as biomarkers due to the complexity of disease, and 
limitations of existing technologies and mathematical model-
ing.19 However, including gene–gene interaction information 
for biomarkers will contribute to fixing such a gap and improv-
ing the biomarkers’ validation in clinical diagnostics. In this 
study, we presented a novel biomarker discovery algorithm, 
SEQ-Marker, for RNA-Seq count data to meet the three stan-
dards described previously. Our proposed SEQ-Marker has 
the following main components: a proposed data-driven fea-
ture selection algorithm: NSVA; a “new” DE analysis method: 
NSVA-DESeq by integrating our NSVA feature selection 
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with the parametric DESeq analysis; and a novel network-
marker-oriented biomarker identification search strategy. In 
the following sections, we focus on NSVA feature selection 
before unveiling the SEQ-Marker algorithm.

Feature Selection for RNA-Seq Count Data
Although various feature selection algorithms are available in 
traditional omics data communities, most of these statistical 
testing-based methods may not be applied to RNA-Seq count 
data directly, because they usually assume that population data 
are normally distributed (eg, t-test).8–10 On the other hand, 
traditional transform-based feature selection methods, such 
as PCA, ICA, or NMF,16,20 also face difficulties in ranking 
each gene effectively. This is because they have to transform 
RNA-Seq count data to a subspace generated by principal 
components (PCs), independent components, or nonnegative 
bases to seek the meaningful linear combinations of features 
(genes). However, it is hard to distinguish an individual gene’s 
contribution to the linear combination of all genes because of 
the nature of these transforms.16,20

As such, it is believed that a desirable feature selection 
for RNA-Seq count data should satisfy the following criteria. 
First, it should be a data-driven method that does not have 
any prior assumption about data distribution to avoid possible 
biases from the distribution itself. Second, it should avoid 
evaluating each gene’s significance from the linear combina-
tions of all genes in a subspace induced by a linear or non-
linear transform. Third, it should take consideration of the 
nonnegative characteristic of RNA-Seq count data instead of 
treating them as generic data. As such, we presented a novel 
data-driven feature selection method, NSVA, which did not 
have any prior data distribution assumption and enables the 
gene-significant ranking by fully taking advantages of non-
negativity of RNA-Seq count data. To some degree, it can 
be viewed as a special singular value decomposition (SVD) 
for nonnegative data. However, the characteristics related to 
SVD applied to nonnegative data are first unveiled and pro-
posed in this work. We describe the classic SVD as follows 
before introducing NSVA.

Singular value decomposition. Given matrix A ∈ ℜn × p 
with a rank r = min(n, p), it has the following SVD:

	
A U V s u vt

j j j
T

j

r
= =

=
∑Σ

1

	 (1)

where U = [u1, u2, …, un] ∈ ℜn×n and V = [v1, v2, …, vp] ∈ ℜp×p are 
orthogonal matrices, and Σ ∈ ℜn × p is a diagonal matrix mainly 
consisting of singular values, ie, ∑ = diag(s1, s2, … sr, …, 0),  
s1 $ s2 $ … sr . 0.

Different from SVD that treats nonnegative read count 
data as genetic data, our proposed NSVA is a more data-
driven algorithm that assumes the non-negativity of input 
data to match the key characteristic of RNA-Seq count data. 
Our NSVA is built upon the Perron–Frobenius theorem, 

which has been widely used in Google webpage ranking,21 
as follows.

Perron–Frobenius theorem. Given a nonnegative square 
matrix A = (aij) $ 0, A ∈ ℜn × n, let λm be the largest eigenvalue 
of A and νm be its corresponding eigenvector (ie, Aνm = λmνm), 
then it has the following properties:

1.	 λm . 0  and  νm ∈ ℜn has only nonnegative entries, ie, νm $ 0,  
or Pr(νm , 0) = 0.

2.	 Given Aν = λν and λ ≠ λm, then the eigenvector ν ∈ ℜn 
must contain at least one negative entry.

Applying it to the SVD decomposition of a nonnegative 
matrix, we have our NSVA, whose proof details are skipped 
for the conciseness of description.

Nonnegative singular value approximation. Given a 
nonnegative matrix A ∈ ℜn × p, A $ 0 with a rank r = min(n, p),  
and its SVD decomposition A s u vj j j

T
j
r=

=∑ 1
, we have the 

following results:

1.	 Both vectors u1 ∈ ℜn and v1 ∈ ℜp contain only nonnegative  
entries, ie, u j i

1 10 0( ) ( ), ,≥ ≥ν  j = 1, 2, …, n, i = 1, 2, … ,p.
2.	 The vectors uj ∈ ℜn and νk ∈ ℜp contain at least one 

negative entry for 2  j # n, and 2  k # p.
3.	 Matrix A has the following approximation along the first 

singular value direction: 

		  A s u s u vT j k
k
p

j
n∼ 1 1 1 1 1 111

ν =
== ∑∑ ( ) ( ) .

It is noted that NSVA guarantees a purely additive decom-
position of a nonnegative matrix A, which is an RNA-Seq read 
count matrix in our context, A s u v s u vT i k

k
p

i
n∼ 1 1 1 1 1 111

=
== ∑∑ ( ) ( ) 

ie, there are no negative components in the decomposition 
along the first singular value direction ν1 ∈ ℜp. In fact, each 
nonnegative entry u i

1
( ) in u1 can be viewed as a correspond-

ing coefficient of the row Ai
T , which represents the ith gene 

of input data, in the “space” spanned by all entries of ν1, ie, 
S p= span( , , , )( ) ( ) ( )ν ν ν1

1
1

2
1  with a weight s1.

From a single gene viewpoint, NSVA means that each 
gene is approximated by the projection of its corresponding  
entry in vector u1 on the singular value direction ν1, ie, 
A s ui

T i T∼ 1 1 1
( ) ,ν  i = 1, 2, ,…, n. It is worthwhile to point out that 

such an approximation makes it possible to rank each gene by 
using its coefficient in the spanned space S, where each ν1

( )k  
can be viewed as the meta-sample corresponding to the kth 
sample, and u i

1
( ) indicates the ith gene ’sT

iA  contribution to 
all the meta-samples. We describe the detailed NSVA feature 
selection in the following section.

NSVA feature selection for RNA-Seq count data. Our 
proposed NSVA makes it possible to represent each gene Ai

T   by its 
contribution u i

1
( ) to all meta-samples [ , , , ].( ) ( ) ( )ν ν ν1

1
1

2
1… n  Since 

each meta-sample is the prototype of its original sample in the 
direction corresponding to the largest singular value s1, it is 
natural to define a gene distribution score to quantify a gene’s 
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contribution to all original samples of RNA-Seq count data by 
evaluating each gene’s contribution to all meta-samples.

A gene contribution score measures a gene’s contribution 
to all samples of an RNA-Seq count data A ∈ ℜn × p by evalu-
ating its contribution to all meta-samples in the low dimen-
sional space S. Since it is positive or at least nonnegative for 
each gene according to our proposed NSVA algorithm, it 
guarantees the comparability for all genes. The gene con-
tribution score of the ith gene to all samples is defined as 

( )( ) – –p ji T
j ij iu s a s Aν ν== =∑1 1

1 1 1 1 1 1  by applying NSVA, that is

	

( )

( )

( ) –

( )

i T
i

p

u s A

ν

ν

ν

 
 
 
 =  
 
   



1
1

2
1

1
1 1

1

	 (2)

As a measure to rank each gene’s contribution to all 
samples of an RNA-Seq count dataset, the gene contribution 
score is independent of data distribution. In other words, 
such a property guarantees that it will integrate with any 
data analysis methods smoothly, no matter they are param-
eter estimation methods or not. Moreover, it avoids the 
technical difficulty faced by the traditional transform-based 
feature selection methods (eg, PCA) to evaluate each gene’s 
significance from the linear combinations of all genes by 
taking advantage of the non-negativity of RNA-Seq count 
data. Thus, as a measure induced by NSVA, it appears as 
a desirable way to conduct feature selection for RNA-Seq 
count data. We call such a gene contribution score-based 
feature selection as NSVA feature selection and describe it 
as follows.

The NSVA feature selection has the following two steps. 
The first is to conduct NSVA for input RNA-Seq count data 
and compute the gene contribute score for each gene. The 
second is to employ the gene contribution scores to rank the 
importance of each gene and filter the genes with small gene 
contribution scores. For instance, sort all gene contribution 
scores and pick the top 2000 genes with largest scores. The 
genes with large gene contribution scores, which are poten-
tially “good” genes, will enter the following data analysis (eg, 
DE analysis). It is noted that the gene contribution score is 
a weight to evaluate each gene’s contribution to all samples 
instead of a percentage value, that is the summation of all gene 
contribution scores is not equal to 1.

It is worthwhile to point out that NSVA feature selection 
is actually a variance-based feature selection, where NSVA 
filters the genes according to their gene contribution scores, 
which is equivalent to filtering genes by the count vari-
ance. Each gene, A i ni

T , , , ,= 1 2 , can be decomposed as 
A s ui

T i T∼ 1 1 1
( ) ν  along the first singular value direction ν1, where 

the gene contribution score u i
1
( ) can be viewed as the variance 

term for the gene. It is obvious that the gene count variance is 
linearly proportional to its gene contribution score.

Data variation explanation ratios. It is noted that the 
first singular value s1 is usually quite large for RNA-Seq count 
data compared with the other singular values. To evaluate the 
percentage of information that can be represented in NSVA, 
we define ρ = =∑s si

r
i1 1/  as the data variation explanation 

ratio, which is the ratio between the first singular value and 
the sum of singular values. Because each singular value is 
the square root of the corresponding eigenvalue of AAt, the 
ratio actually represents the percentage of the data variances 
along the maximum eigenvector direction of AAt among total 
data variances, ie, first singular value direction. Unlike other 
omics data, we found that the data variation explanation ratio 
of most RNA-Seq count data can reach 60% or higher (eg 
the ratio is 60.49% for the Kidney-Liver data), which means 
our NSVA is a reasonable approximation of the original count 
data. Similarly, the data variation explanation ratio is 85.60% 
for another Prostate data used in this study.

SEQ-Marker Algorithm
The proposed SEQ-Marker consists of the following three 
major procedures. First, it employed NSVA feature selection to 
obtain a gene set G, with the largest gene contribution scores 
from RNA-Seq count data X ∈ ℜn×p, |G| , n. It is noted that 
we employed DESeq analysis normalization to normalize input 
RNA-Seq data before applying NSVA feature selection to miti-
gate the biases from SD and gene length on gene counts. As a 
normalization method developed in DESeq analysis package,7 
the DESeq analysis normalization calculated a scaling factor (size 
factor) for each sample by using a pseudo-reference sample that 
consisted of geometric means of all genes, which was reported as 
one of the two best normalization methods for RNA-Seq data 
according to Dillies et al’s work.22

Second, it applied DESeq analysis to the gene set G to cal-
culate P-values for all genes. The reason we employed DESeq 
analysis was because it was the most robust parametric DE 
analysis method that demonstrated strong advantages over 
other parametric methods (eg, edgeR) to achieve low false-
positive ratios.7,12 Since such DESeq analysis was applied to 
the genes selected by NSVA feature selection instead of all 
original genes, we distinguished it with the original DESeq 
analysis applied to the whole data set by naming it as NSVA-
DESeq for the convenience of description. We will demon-
strate that the NSVA-DESeq would produce more meaningful 
P-values than applying DESeq analysis to the original data for 
benchmark RNA-Seq datasets (see Results section).

Third, it implemented a novel biomarker search strategy 
by searching biomarkers from an inferred network marker 
rather than from RNA-Seq count data directly. The proposed 
SEQ-Marker algorithm at first employed jActiveModule to 
seek several network marker candidates and merged them to 
a “final” network marker under a threshold. Then, it searched 
the inferred “final” network marker to identify “core genes” 
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with the largest interactions, and clustered the network 
marker to find densely connected gene regions. Finally, it 
further collected biomarkers by identifying those genes 
with the closest correlation distances with the core genes in 
the clusters.

The reason we identified the core genes in the network 
marker was to answer the query: “which genes will most likely 
act as key genes in the network marker and its mutations will 
affect other genes mostly?” Previous studies reported that the 
genes with the largest interactions will play an essential role in 
identifying disease molecular signatures and their mutations 
will have most impacts on those of other genes in the net-
work marker.19,23,24 Moreover, collecting genes with closest  
correlations with identified core genes will identify those 
genes with highest proximities with the key genes. That is, 
their mutations may trigger those of the identified core genes 
or vice versa. It is equivalent to answering the query: “which 
gene will most likely mutate with the key genes in the net-
work marker?”

The reason we picked jActiveModule to infer network 
markers was mainly because it only required the expression 
data and P-values and did not have specific data distribution 
assumption, although it was developed for normally distrib-
uted gene expression array data, in addition to the fact that it 
has more robust support from Cytoscape and its related plugins 
than other peers.25,26 It is noted that we employed jActive-
Module 1.8 in Cytoscape 3.02 in our network marker inference. 
Figure  1 illustrated the flowchart of the proposed SEQ-
Marker algorithm, which consisted of the following steps.

1.	 NSVA feature selection: conduct NSVA feature selec-
tion to calculates a gene set G  =  {g1, g2, …, gk} from 
the normalized read count data X ∈ ℜn  ×  p, such that 
|G| , [n/2]. For instance, |G| = 2000, which means the 
top 2000 genes with the largest gene contribution scores 
were used to seek the network marker. It is noted that 
each gene is assumed to have its Ensemble ID or obtain it 
from BioMart or other databases.

2.	 NSVA-DESeq analysis: conduct DESeq analysis for the 
gene set G to calculate the P-value for each gene, where 
each P-value is adjusted by using Benjamini–Hochbert 
procedure by choosing false discovery ratio (FDR) 
threshold 0.001.27

3.	 Network marker inference: input each gene in G with its 
Ensemble ID and its P-value to jActiveModule, along 
with corresponding read count data,25 to seek k (eg, k = 5) 
in DE network markers Mk, k = 1, 2, …, 5, by using the 
BioGrid human PPI network,28 which has 17,580 pro-
teins and 217,217 interactions, as the global network in 
our context.

4.	 Merge the network markers M Mk
l

k= ∪ = 1 , provided 
their scores are greater than a threshold value of 5, which 
is set as 70th percentile of all network marker scores in 
our experiment, and drop the others with low scores.

5.	 Search the network marker to identify the first l core 
genes (eg l = 5) with largest interactions in the merged 
network marker M.

6.	 Cluster the network marker with a degree threshold (eg, 2)  
and seek an associative gene for each core gene that has 
the nearest correlation distances with the core gene with 
adjusted P-value  ,  0.001  in the clusters to collect the 
biomarkers left under a correlation threshold τc =  85%. 
If a cluster includes a core gene, then the associate  
gene will be searched in the cluster. Otherwise, the 
search will be done for the whole network marker. Simi-
larly, if the nearest gene from the cluster has a correlation 
value less than the threshold, it will be dropped and a 
new search will be conducted for all the other genes in 
the network marker.
It is noted that we could have more than one associative 

gene for each core gene theoretically. However, we preferred 
to implement only one associative gene search in our imple-
mentation for the sake of biomarker validation. Moreover, 
the network marker acted as a small database that provides 
interaction information for biomarker identified. On the other 

NSVA feature selection

RNA-Seq data

Network marker analysis

Collect biomarkers
from clusters

Merged network marker
and core genes

RNA-Seq data

D. E. Analysis

2000 D.E. genes

Clustering 

Figure  1. The flowchart of the proposed SEQ-Marker algorithm. The 
SEQ-Marker algorithm consists of the following main components:  
a data-driven feature selection algorithm: NSVA; a “new” DE analysis 
method: NSVA-DESeq, by integrating our NSVA feature selection with 
the parametric DESeq analysis; and a novel network marker-oriented 
biomarker identification search strategy.
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hand, the biomarkers identified will reveal the essential genes 
in the network marker, both of which contribute to unveiling 
the disease signature in a comprehensive approach.

Results
We presented our results on RNA-Seq count data biomarker 
discovery by applying our SEQ-Marker algorithm to two 
benchmark datasets: Kidney–Liver and Prostate in this study. 
The former is a dataset evolved from the original Marioni 
data by filtering genes with counts less than 5.5 The latter is a 
dataset aligned and preprocessed by ourselves. We introduce 
the detailed information about these two datasets as follows 
before presenting our results.

Kidney–Liver data originally consist of 32,000  genes 
across 14 samples after Illuminasupplied alignment algorithm 
ELAND.5 The samples are composed of two groups: the seven 
technical replicates from a kidney sample and another seven 
technical replicates from a liver sample, both of which are from 
a single human male. We filtered the genes with counts #5  
and obtained a dataset with 15,514 genes for the sake of mean-
ingful DE analysis.

Prostate data consist of 17 million short reads and they 
were sequenced under the Illumina technology for two types 
of samples: four prostate cancer cells treated with androgen/
DHT (DHT treated), and three prostate cancer LNCap cells 
without DHT treatment (Mock treated). We employed Bowtie 
and SAMtools2,29 to align the sequence data, which can be 
found in Li et al’s work,30 with respect to the human genome 
indexes (NCBI version 37), and collected read counts for each 
gene. Finally, we obtained a nonnegative integer matrix with 
four DHT-treated and three Mock-treated samples across 
23,068 genes.

The success of the proposed biomarker discovery algo-
rithm largely relies on DESeq analysis on the gene set obtained 
from the NSVA feature selection, ie, NSVA-DESeq. Thus, we 
need to evaluate its performance on the two datasets to answer 
the query: “what will happen in the first two steps of SEQ-
Marker algorithm, where DESeq analysis is applied to the 
gene set selected by NSVA feature selection?”

Figure  2 answered the query by comparing NSVA-
DESeq with DESeq on the two dataset, where NSVA selected 
2000, 3000, 5000, and 8000  genes from each data and 
DESeq analysis was applied to these selected genes and their 
original datasets, respectively. The FDR cutoff was chosen 
 as 0.001 in all DE analyses. Each horizontal and vertical axis 
in the sub-plots represents the log2 mean of each gene and the 
corresponding log2 fold changes under two different condi-
tions. We had the following interesting findings from these 
results.

First, our NVSA feature selection demonstrated a good 
sensitivity to filter those non-DE genes, no matter that DE 
genes were the majority or not among all the input genes. For 
instance, non-DE genes were the majority among all genes 
in the Prostate data but a minority in the Kidney–Liver data. 

However, the proposed NSVA tended to selectively filter the 
non-DE genes by picking genes with large gene contribution 
scores. Such a mechanism made following DE analysis focused 
more on the potentially “good genes” and actually contributed 
to decreasing false positives.

We compared our NSVA feature selection with its two 
competing methods: count-based naive feature selection 
(NFS) and principal component analysis (PCA) feature selec-
tion to further demonstrate its advantage in picking potential 
DE genes. The count-based NFS selected genes according to 
its counts completely. It consisted of the following two steps. 
The first step selected all genes whose entries are more than or 
equal to the median count of the input data. The second step 
sorted all genes according to its coverage, ie, the sum of its 
counts, and selected the top-ranked genes (eg, 2000 genes).

On the other hand, PCA feature selection ranked each 
gene by using the 2-norm of its projection in the subspace 
spanned by the first three PCs. It represented the gene’s 
contribution to all PCs and reflected its significance in the 
spanned subspace. PCA feature selection consisted of the fol-
lowing three steps. The first step conducted PCA for input 
data and projected it to the first three PCs. The second step 
calculated the 2-norm for the projection data of each gene in 
the subspace spanned by the three PCs. The third step sorted 
the genes according to the calculated 2-norm and selected the 
top-ranked genes. It was interesting to point out that our PCA 
feature selection had very high explanation ratio (.99%) for 
both datasets, compared with NSVA feature selection.

The northeast and northwest plots in Figure 3 compared 
the DE ratios from the three feature selection methods: 
NSVA, PCA, and NFS under DESeq analysis on correspond-
ing 2000, 3000, 5000, and 8000 selected genes from the two 
original RNA-Seq datasets. The DE ratio was defined as the 
ratio of DE genes among all the genes of input data. It was 
interesting to see that the DE ratios from NSVA feature selec-
tion were much higher than those of NFS and PCA feature 
selection for all selection cases of two datasets. Since we only 
employed DESeq for DE analysis for all datasets, it was clear 
that the proposed NSVA feature selection demonstrated its 
advantage in selecting potential DE genes than the NFS and 
PCA feature selection.

All DE ratios showed stable increasing patterns with the 
increase in the number of genes filtered on the Prostate data, 
in which most genes were non-DE. However, the DE ratios 
of PCA feature selection reached only 17.25% on the 8000 
selected genes, which was much lower than 24.30%, the DE 
ratio achieved by the original Prostate data under DESeq analy-
sis without any feature selection. Moreover, it was obvious that 
the DE ratios from PCA were the lowest among the three fea-
ture selection methods. It indicated that the transform-based 
feature selection may not be a good choice for RNA-Seq count 
data, even if it had high data variation explanation ratios.

On the other hand, the largest DE ratios from PCA 
and NFS only reached 83.05% and 87.45% on the selected 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Han and Jiang

88 Cancer Informatics 2014:13(S1)

2000  genes for the Kidney–Liver data. However, the DE 
ratio reached 88.16% for this dataset without any feature 
selection, and the DE ratios from NVSA reached 90.05%, 
89.80%, 91.40%, and 91.90%, respectively, on the selected 
2000, 3000, 5000, and 8000  genes. In other words, NFS 
and PCA feature selection did not demonstrate any advan-
tage in enhancing DE analysis on the Kidney–Liver data, 
where most genes are DE. Alternatively, the DE ratios of 
NSVA kept a slightly increased pattern compared with the 
original DE ratio 88.16%, with the increase in the number of 
genes filtered. It indicated that the false positive ratios were 
forcibly dropped in DE analysis under such a “conservative” 
feature selection.

Second, the proposed NSVA tended to select the DE genes 
with high counts with increase in the number of genes filtered. 
The southeast and southwest plots in Figure 3 compared the 
DE gene median counts from three feature selection methods. 
It was interesting to see that the DE gene median counts from 
NSVA was generally lower than those from NFS and PCA on 
two datasets, except those that were greater than the DE gene 
median counts from PCA at the 5000 and 8000 gene selection 
cases. In other words, NSVA feature selection had the highest 
DE ratios but shortest median counts for DE genes among all 
the three methods. It suggested that DE genes in NSVA-DESeq  
were mostly high-count genes instead of low-count ones, 
which was consistent with the previous results.5,14
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Figure 2. The scatter plots of log2 mean versus log2 fold changes by comparing DESeq and NSVA-DESeq on Kidney–Liver and Prostate data, where 2000, 
3000, 5000, and 8000 genes are selected by NSVA from each data, and DESeq analysis is then applied to these selected genes and their original datasets, 
respectively. It is interesting to see that non-DE genes dropped remarkably when NSVA feature selection is applied to each dataset.
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Figure 3. The comparisons of DE ratios and DE gene median counts for NSVA, PCA, and NFS feature selection methods under DESeq analysis on the 
Kidney–Liver and Prostate data. The proposed NSVA feature selection demonstrated strong advantages in selecting potential DE genes than the two 
competing methods. The DE gene median counts from NSVA are generally lower than those of PCA and NFS.
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However, it does not mean that high-count genes will be 
DE genes because our result demonstrated the DE ratios from 
NFS were much lower than those of NSVA under DESeq 
analysis, especially when more genes were selected in feature 
selection. On the other hand, because the DE gene median 
counts were only 39 and 35 for the original Kidney–Liver and 
Prostate data, there were quite a few false positives removed 
in DE analysis due to NSVA feature selection, because most 
false positive genes were reported as low-count genes.9,13

Third, we found that the DE genes among NSVA-
selected genes tended to be relatively long genes, which was 
also true for NFS- and PCA-selected genes. Figure 4 com-
pared the gene length medians of NSVA-, NFS-, and PCA-
selected genes and DE genes among these selected genes. It 
was interesting to see that PCA selected the shortest genes 
among three of them. For example, the gene length medi-
ans for its DE genes were quite low in the 3000, 5000, and 
8000 gene selection cases. Considering the low DE ratios and 
low counts for PCA-selected methods, it is reasonable to say 
that PCA tends to select those genes with low counts or short 
lengths, most of which are obviously not DE genes.

Alternatively, NFS-selected genes and the DE genes 
among them had the longest gene lengths, but the DE ratios 
from NFS were quite low compared with those of NSVA, 
especially under the 5000 and 8000 gene selection cases. It 
strongly suggested that only picking high-count genes would 
not contribute to enhance DE analysis, because a large num-
ber of pseudo high-count genes could be generated from those 
lanes with high SD in RNA-Seq.7,13

On the other hand, the median gene lengths from 
NSVA-selected genes were shorter than those from NFS but 
higher than the DE gene median length (26,445  bp) of all 
genes for the Kidney–Liver data. For example, its DE gene 
median length reached 27,659 bp on the 2000 gene selection 
case, which was much lower than that of NFS (29,328 bp). 

Compared with the results from NFS and PCA, the proposed 
NSVA demonstrated the consistency in identifying meaningful  
genes in DE analysis that consisted of relatively long genes 
with reasonable counts instead of all high-count or long genes. 
It strongly suggested that our NSVA-DESeq would have an 
SD independence property in DE analysis, although the orig-
inal DESeq analysis was dependent on the SD.9,13

In summary, NSVA feature selection seems to make the 
following DESeq analysis more targeted on the genes with 
large gene contribution scores, most of which were proved to 
be DE genes because of their large contributions to the whole 
data variations. Obviously, NSVA will contribute more to the 
decrease in false positives than NFS and PCA, because quite 
a lot of false positive candidates were filtered before the DE 
analysis. In fact, all these results demonstrated that NSVA and 
following DESeq analysis, the first two steps in our biomarker 
discovery algorithm, will prepare meaningful genes for next 
steps of the SEQ-Marker algorithm.

Biomarker Discovery for Kidney–Liver and Prostate 
Data
We applied our SEQ-Marker algorithm to seek biomarkers  
for the Kidney–Liver data. At first, we applied DESeq analysis 
to 2000 genes selected by NSVA, which consisted of 1801 DE 
genes and 199 non-DE genes. Figure 5 illustrated those non-DE 
genes, DE genes, and all 2000 genes in the left, middle, and 
right plots, respectively. It was interesting to see that the non-
DE genes had fold changes in a much smaller range than the 
DE genes, which guaranteed that 90% genes in network marker 
inference were DE genes and leaded to more meaningful net-
work markers.

In addition, we obtained five network markers with 
scores 8.219, 7.922, 7.754, 7.735, and 7.637, respectively from  
jActiveModule, which were further merged to a “single” network 
marker with 102 genes and 194 interactions. We then identified  
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Figure 4. Comparisons of the gene length medians of the genes selected by NSVA, PCA, and NFS methods and DE genes among the selected genes for 
the Kidney–Liver data. The DE genes have longer gene length than those selected genes from each feature selection method. The DE genes from NSVA-
selected genes seem to be shorter than NFS-selected genes but longer than the PCA-selected genes.
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that there are k = 5 core genes FN1, ESR1, HSB90 A, HSPB1, 
and CTNNB1 related to liver and kidney diseases by exam-
ining the genes with the largest interactions in the network 
marker. Figure  6 illustrated the network marker where the 

core genes with the largest interactions (degrees) were empha-
sized in the network topology.

It was interesting to find that these core genes were actu-
ally gene markers closely related to kidney and liver diseases. 
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Figure 6. The network marker with 102 genes and 194 interactions identified by the SEQ-Marker algorithm for Kidney–Liver data. The five core genes with 
the largest interactions (degrees) were emphasized in the network topology.
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For example, the gene FN1 with the largest interactions was 
reported as a gene associated with the development of renal 
cell cancer (RCC), that is a cancer related to kidney.31 The 
gene ESR1 with the second largest interactions in the network 
marker was usually differentially expressed in liver, kidney, and 
other human organism parts and its mutation was reported to 
relate to kidney- and liver-related diseases (eg, osteosarcoma 
of the kidney).32 The gene HSB90AB1 with the third largest 
interactions has usually seen its DE in liver, kidney, and other 
organisms, and its mutations were reported to be associative 
with kidney diseases in the previous studies.33 Alternatively, 
it was easy to enumerate the biological relevance of the other 
two core genes, HSPB1 and CTNNB1, in the network marker 
with respect to kidney or liver diseases in the literature. The 
HSPB1 interacting with p53 directly was reported to inhibit 
the lung and liver tumor progression,34 and the somatic muta-
tion of the CTNNB1 gene was associated with the liver, skin, 
and other cancers.35

Table 1 showed more detailed information about the five 
core genes. Interestingly, the core genes were DE genes with 
strong P-value support, which included both long and short 
genes. In fact, FN1 and ESR1 were up-regulated genes and 
others were down-regulated genes. In addition, only ESR1 
had a relatively low average count number (144) compared 
with other genes, whose average gene numbers were much 
higher than 269  bp, the median count of DE genes among 
2000 NSVA-selected genes.

We conducted clustering for the network marker with a 
degree threshold 2 by employing MCODE26,36 and obtained 
four clusters: {ATP5B, FN1, ATP6V1B2, ATP5C1}, {PIK3R1, 
ERBB2, CTNNB1}, {HSPH1, HSP90  AB1, STK24}, 
and {SNRNP70, PAN2, PRPF8, RPL11, SNRNP200, 

PRKAA1, TUFM}. The first cluster had a cluster score of 
3.33 and the other three had 3. We further found five corre-
sponding associative genes for the core genes, where ATP5B 
and STK24 were the associative genes found in a same cluster 
as their core genes FN1 and HSP90ABf, respectively. More-
over, RPS9, ADH4, and RHOC were the associative genes 
of the core genes CTNNB1, ESR1, and HSPB1, respectively, 
Interestingly, almost all associative genes had high correlation 
values with their corresponding core genes, except RPS9 (core 
gene: CTNNB1, correlation value: 62.16%).

Table 2 showed the details about these associative genes. 
They shared almost the same characteristics as the core genes: 
all genes are DE genes with strong P-value support, where 
RPS9, STK24, and RHOC ADH4 could be viewed as “short-
count” genes compared with the median DE gene counts. We 
further grouped all the 10 biomarkers and conducted diagno-
sis by using a linear support vector machine under Leave-one-
out cross validation (LOOCV) and achieved 100% accuracy 
with 100% sensitivity and specificity, we are not surprised by 
such a result because we found that RNA-Seq count data have 
quite good discrimination ability than traditional omics data.

Similarly, we applied the SEQ-Marker algorithm to the 
Prostate data and obtained the following network marker with 
203 genes and 730 edges as shown in Figure 7. We identi-
fied five core genes such as APP, HSP90AA1, NEDD8, 
HNRNPA1, and NPM1 from the inferred network marker. 
It was interesting to see that almost all core genes had strong 
P-value support except HSP90AAI. Although it was actually 
not a DE gene because of its P-value, 0.2051 statistically, our 
SEQ-Marker algorithm indicated it as a biomarker for pros-
tate cancer, which was proved as a real prostate cancer marker 
by the previous studies.33,37 In addition, all the five core genes 
were high-count genes whose average gene counts were much 
higher than the median DE gene count: 118 bp. For exam-
ple, the average gene count of APP and HSP90AAI reached 
630 bp and 397 bp, respectively. Interestingly, we found that 
almost all these genes were associated or closely related to pros-
tate cancer from previous studies,37,38 for instances, APP was 
identified as a well-known gene marker to promote prostate 
cancer growth according to Takayama et  al’s work,39 and 
NEDD8 conjugation pathway is essential for understanding 
prostate cancer or other complex cancer diseases.38,40 We iden-
tified the corresponding associative genes for the core genes 
and included their corresponding correlation values: FKBP5 

Table 1. The five core genes identified for Kidney–Liver data.

Gene P-value gene  
length (bp)

avg. gene  
count

fold  
change

FN1 7.0315e-236 75,611 1,185 8.8564

ESR1 7.7471e-175 297,588 144 13.0222

HSP90AB1 1.0320e-105 6,797 965 0.6216

CTNNB1 1.4246e-032 40,939 435 0.9591

HSPB1 1.9217e-141 1,690 223 0.4379

 

Table 2. The five associative genes identified for Kidney–Liver data.

Gene P-value gene length (bp) avg. gene count fold change correlation

ATP5B 3.1498e-224 7,890 1,793 0.2192 99.92%

RPS9 5.0690e-012 6,790 203 1.1434 87.76%

STK24 8.0021e-144 12,6942 204 0.4046 96.88%

ADH4 0.000000000 20,618 1,164 108.0622 99.95%

RHOC 4.1735e-140 6,277 215 0.4379 98.91%
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(99.91%), SPTLC1 (98.57%), NEDD8-MDP1 (99.60%), 
DARS (99.53%), and MY06 (99.54%). It was interesting to 
find that FKBP5, DARS, and MY06 were well-known pros-
tate cancer marker according to previous studies.41–43 Similar 
to the Kidney–Liver data, we achieved 100% accuracy with 
100% sensitivity and specificity by using the 10 biomarkers to 
conduct diagnosis under a linear support vector machine with 
LOOCV.

Discussion
In this study, we proposed a novel biomarker discovery 
algorithm SEQ-Marker for RNA-Seq count data. Our 
biomarker discovery algorithm is based on NSVA algo-
rithm proposed in this work. As a data-driven feature 
selection algorithm, our NSVA algorithm demonstrated 
the advantages in selecting meaningful genes before DE 
analysis by contributing to lowering false positive rates 
and improving the sequence depth independent of DE 
analysis when compared with its peers: PCA and NFS 
feature selection.

Moreover, as a first algorithm to address biomarker dis-
covery for RNA-Seq count data, SEQ-Marker identified bio-
markers by searching an inferred network marker, which acted 
as a database to provide gene interaction for biomarkers. The 
database unveiled essential gene interaction information and 
provided the opportunity to identify real disease biomarkers 
along an interaction “path”. As such, the biomarkers identified 
will reveal more network dynamics and contribute to unveil-
ing disease signatures in a comprehensive approach.

It is worthwhile to point out that our proposed biomarker 
discovery model, SEQ-Marker for RNA-Seq data, overcomes 
the limitations of traditional omics biomarker discovery by 
finding the biomarkers without strong P-value support, in 
addition to contributing to convenient biomarker validation 
from a clinical viewpoint. Just as we pointed out before, our 
work not only bridges transcriptomics and systems biology, 
but also contributes to clinical diagnostics.

An issue of particular importance is that our studies have 
quite different focuses from the previous studies,5,30 although 
almost same data were employed in these studies. For 
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Figure 7. The network marker with 203 genes and 730 interactions identified by SEQ-Marker algorithm for Prostate data. The core genes with the largest 
interactions (degrees) were emphasized in the network topology.
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examples, the original Maroini dataset, which is the source 
data of our Kidney–Liver data, was mainly used to demon-
strate the advantages of reproducibility of RNA-Seq data 
with respect to microarrays.5 Furthermore, the prostate data-
set was employed to analyze alternative splicing and estimate 
the number of short reads (tags) required to detect specific 
genomic features under an androgen-sensitive prostate cancer 
model.30 Thus, our work is the first to address RNA-Seq data 
biomarker discovery.

The proposed NSVA demonstrated a good strategy 
in enhancing the robustness of DESeq analysis by filtering 
less likely DE genes using each gene’s contribution to the 
total data variances. Compared with PCA and NFS feature 
selection, it not only achieved the highest DE ratios for two 
benchmark datasets, but also avoided weakness of selecting 
high-count or long-length-based gene selection. However, 
how to achieve an optimal feature selection to reach a robust 
DE analysis is still a challenge theoretically and practically. 
This is because NSVA may remove some real DE genes 
before DE analysis and lead to the increase of false-negative 
ratios potentially. As such, we plan to employ information 
measures such as entropy to employ its potential in opti-
mal NSVA feature selection.44 On the other hand, our cur-
rent NSVA algorithm only conducts feature selection along 
the first singular value direction, because RNA-Seq count 
data usually reach a high data variation explanation ratio 
(eg, .60%) on it. How to extend the proposed NSVA algo-
rithm to include any specified number of singular value 
directions in feature selection, while maintaining its purely 
additive property for nonnegative RNA-Seq count data, is 
an important problem that deserves more investigation. We 
are developing a multi-resolution data model to decompose 
RNA-Seq count data and recursively conduct NSVA to 
achieve it.

Although we only integrated NSVA with the paramet-
ric method DESeq in our biomarker discovery in this study, 
we are integrating NSVA with nonparametric DE analysis 
algorithms such as NOISeq to investigate its performance 
in biomarker discovery.13 In addition, because our proposed 
SEQ-Marker faces quite a high computing demand due to 
the complexities of identifying DE network markers in jAc-
tiveModule,25 we plan to use Graphics processing unit (GPU)  
computing way to tackle the computing burden in the net-
work marker discovery, in addition to applying it to RNA-Seq 
data-based clinical diagnosis.45

Author Contributions
Conceived and designed the experiments: HH. Analyzed 
the data: HH. Contributed to the writing of the manuscript: 
HH. Agree with manuscript results and conclusions: HH, XJ. 
Jointly developed the structure and arguments for the paper: 
HH, XJ. Made critical revisions and approved final version: 
HH, XJ. Both authors reviewed and approved of the final 
manuscript.

References
	 1.	 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcrip-

tomics. Nat Rev Genet. 2009;10(1):57–63.
	 2.	 Bowtie. 2014. Available at http://bowtie-bio.sourceforge.net/index.
	 3.	 Luo R, Wong T, Zhu J, Liu C-M, Zhu X, et al. (2013) SOAP3-dp: Fast, 

Accurate and Sensitive GPU-Based Short Read Aligner. PLoS ONE 8(5): 
e65632. doi:10.1371/journal.pone.0065632Dillies. 

	 4.	 Trapnell C, Hendrickson DG, Sauvageau M, Go L, Rinn JL, Pachter L. Dif-
ferential analysis of gene regulation at transcript resolution with RNA-seq. Nat 
Biotechnol. 2013;31:46.

	 5.	 Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assess-
ment of technical reproducibility and comparison with gene expression arrays. 
Genome Res. 2008;18(9):1509–17.

	 6.	 Pickrell JK, Marioni JC, Pai AA, et  al. Understanding mechanisms under-
lying human gene expression variation with RNA sequencing. Nature. 
2010;464(7289):768–72.

	 7.	 Anders S, Huber W. Differential expression analysis for sequence count data. 
Genome Biol. 2010;11:R106.

	 8.	 Hardcastle TJ, Kelly KA. baySeq: empirical Bayesian methods for identifying dif-
ferential expression in sequence count data. BMC Bioinformatics. 2010;11:422.

	 9.	 Rapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential 
gene expression analysis methods for RNA-seq data. Genome Biol. 2013;14:R95.

	 10.	 Li J, Witten DM, Johnstone IM, Tibshirani R. Normalization, testing, and false 
discovery rate estimation for RNA-sequencing data. Biostatistics. 2012;13:523–38.

	 11.	 Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Effi-
cient experimental design and analysis strategies for the detection of differential 
expression using RNA-sequencing. BMC Genomics. 2012;13:484.

	 12.	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differen-
tial expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

	 13.	 Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential 
expression in RNA-seq: a matter of depth. Genome Res. 2011;21:2213–23.

	 14.	 Anders S, McCarthy DJ, Chen Y, et al. Count-based differential expression analysis 
of RNA sequencing data using R and Bioconductor. Nat Protoc. 2013;8:1765–86.

	 15.	 Oshlack A, Robinson M, Young M. From RNA-seq reads to differential expres-
sion results. Genome Biol. 2010;11:220.

	 16.	 Han X. Nonnegative principal component analysis for cancer molecular pattern 
discovery. IEEE/ACM Trans Comput Biol Bioinform. 2010;7(3):537–49.

	 17.	 Hus C, Lin C. A comparison of methods for multi-class support vector machines. 
IEEE Trans Neural Netw. 2012;13(2):415–25.

	 18.	 Vapnik V. Statistical Learning Theory. New York: John Wiley; 1998.
	 19.	 Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008;18(4):644–52.
	 20.	 Jolliffe I. Principal Component Analysis. New York: Springer; 2002.
	 21.	 Langville AN, Meyer CD. Google’s PageRank and Beyond: The Science of Search 

Engine Rankings. Princeton, NJ: Princeton University Press; 2002.
	 22.	 MA, Rau A, Aubert J, et al. A comprehensive evaluation of normalization methods 

for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013 
Nov;14(6):671–83. doi: 10.1093/bib/bbs046. Epub 2012 Sep 17.

	 23.	 Kreeger KP, Lauffenburger DA. Cancer systems biology: a network modeling 
perspective. Carcinogenesis. 2010;31(1):2–8.

	 24.	 Han H, Li XL, Ng SK, Ji Z. Multi-resolution-test for consistent phenotype dis-
crimination and biomarker discovery in translational bioinformatics. J Bioinform 
Comput Biol. 2013;11(6):1343010.

	 25.	 Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signalling 
circuits in molecular interaction networks. Bioinformatics. 2002;18(suppl 1):S233–40.

	 26.	 Cytoscape. Available at http://www.cytoscape.org/. 2013.
	 27.	 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
	 28.	 BioGrid. Available at http://thebiogrid.org/. 2013.
	 29.	 Li H, Handsaker B, Wysoker A, et  al. The sequence alignment/map (SAM) 

format and SAMtools. Bioinformatics. 2009;25:2078–9.
	 30.	 Li H, Lovci MT, Kwon Y-S, Rosenfeld MG, Fu X-D, Yeo GW. Determina-

tion of tag density required for digital transcriptome analysis: application to an 
androgen-sensitive prostate cancer model. Proc Natl Acad Sci U S A. 2008;105(51): 
20179–84.

	 31.	 Waalkes S, Atschekzei F, Kramer MW, et al. Fibronectin 1 mRNA expression 
correlates with advanced disease in renal cancer. BMC Cancer. 2010;10:503.

	 32.	 Cioppa T. Primary osteosarcoma of the kidney with retroperitoneal hemorrhage. 
Case report and review of the literature. Tumori. 2007;93(2):213–6.

	 33.	 Koshimizu TA. Inhibition of heat shock protein 90 attenuates adenylate cyclase 
sensitization after chronic morphine treatment. Biochem Biophys Res Commun. 
2007;392(4):603–7.

	 34.	 Choi SH, Lee HJ, Jin YB, et al. MMP9 processing of HSPB1 regulates tumor 
progression. PLoS One. 2014;9(1):e85509.

	 35.	 Kimelman D, Xu W. beta-catenin destruction complex: insights and questions 
from a structural perspective. Oncogene. 2006;25(57):7482–91.

	 36.	 Bader GD, Hogue CW. An automated method for finding molecular complexes 
in large protein interaction networks. BMC Bioinformatics. 2003;4:2.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Han and Jiang

94 Cancer Informatics 2014:13(S1)

	 37.	 Centenera MM, Fitzpatrick AK, Tilley WD, Butler LM. Hsp90: still a viable 
target in prostate cancer. Biochim Biophys Acta. 2013;1835(2):211–8.

	 38.	 Hori T, Osaka F, Chiba T, et al. Covalent modification of all members of human 
cullin family proteins by NEDD8. Oncogene. 1999;18(48):6829–34.

	 39.	 Takayama K, Tsutsumi S, Suzuki T, et al. Amyloid precursor protein is a pri-
mary androgen target gene that promotes prostate cancer growth. Cancer Res. 
2009;69(l):137–42.

	 40.	 Soucy TA, Smith PG, Milhollen MA, et al. An inhibitor of NEDD8-activating 
enzyme as a new approach to treat cancer. Nature. 2009;458(7239):732–6.

	 41.	 Nelson PS, Clegg N, Arnold H, et al. The program of androgen-responsive genes in 
neoplastic prostate epithelium. Proc Natl Acad Sci U S A. 2002;99(18):11890–5.

	 42.	 Wei S, Dunn TA, Isaacs WB, et  al. GOLPH2 and MY06: putative prostate 
cancer markers localized to the Golgi apparatus. Prostate. 2008;68(13):1387–95.

	 43.	 Tu LC, Yan X, Hood L, Lin B. Proteomics analysis of the interactome of N-myc 
downstream regulated gene 1 and its interactions with the androgen response 
program in prostate cancer cells. Mol Cell Proteomics. 2010;6(4):575–88.

	 44.	 Kapur JN, Kesevan HK. Entropy Optimization Principles with Applications. Bos-
ton: Academic Press; 2002.

	 45.	 Dematté L, Prandi D. GPU computing for systems biology. Brief Bioinform. 
2010;11(3):323–33.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

