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Introduction
Gene expression profiling has been an important component 
of biomedical research. Gene expression is the appearance of 
a characteristic or effect in the phenotype that can be attrib-
uted to a certain gene. For over a decade, microarray tech-
nology was the dominating technology for high-throughput 
gene expression profiling until the introduction of RNAseq 
technology. RNAseq technology is a form of next-generation 
sequencing (NGS) technology, sometimes referred to as high-
throughput sequencing technology. Since its introduction, 
NGS technology has revolutionized genetic and biomedical 
research. RNAseq is the use of NGS technology to sequence 
cDNA (reversed transcribed from RNA) in order to obtain 
information about RNA. Compared to microarray technology, 

RNAseq technology offers several obvious advantages. First, 
RNAseq allows the detection of all isoforms of a gene, even 
novel ones. Microarray, on the other hand, relies purely on 
previous knowledge regarding genes to design probes for 
detection, thus it cannot be used for novel detection. Second, 
the resolution of microarray usually stays at the gene and exon 
level, but the resolution of RNAseq can reach the level of a 
single nucleotide, which allows detection of single nucleotide 
variance and structural variants, such as small insertions, dele-
tions, alternative splicing, and gene fusion. Although the cost 
of RNAseq has become comparable to microarray, researchers 
have unanimously agreed that RNAseq has replaced microar-
ray as the go to technology of high-throughput gene expres-
sion profiling.1–4
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Although RNAseq technology has introduced exciting 
opportunities to biomedical researchers, it has also created 
several challenges for analysts. For example, the data storage 
cost is significantly higher compared to microarray. And the 
lack of consensus on the best statistical method for detecting 
differentially expressed genes5 is really noticeable. Another 
easily overlooked area is sample size and power calculation for 
RNAseq-based experiment designs. Experiment design is a 
pivotal step and the first step of any successful study, and one 
of the most important questions to address during experiment 
design is what sample size is needed to achieve the desired 
statistical power within the financial budget. Sample size and 
power analyses are required for most National Institutes of 
Health (NIH) funding applications. For microarray-based 
studies, sample size and power calculation has been well 
established.6–8 The sample size and power for microarray-
based studies are relatively easy to compute, because gene 
expression of microarray data follows a normal distribution. 
However, RNAseq data are count based, which is usually 
modeled as a Poisson9,10 or negative binomial distribution.11,12 
Several studies have attempted to produce methods to esti-
mate sample size and power based on Poisson and negative 
binomial distributions for RNAseq-based experiment design. 
For example, Fang and Cui13 derived a sample size calculation 
formula based on the Wald test for a single-gene differential 
expression test. Busby et al.14 introduced Scotty, a web tool for 
computed sample size using a t-test for RNAseq data based 
on a Poisson-lognormal distribution. Hart et al.15 introduced 
RNAseqPower, a method for sample size calculation using the 
score test based on a negative binomial distribution. R code  
and the excel worksheet for this method were provided by 
the authors. In reality, RNAseq experiment is capable of 
detecting thousands of genes, and those genes are tested for 
the significance of differential expression simultaneously. In 
such cases, the correction of error rates for multiple compari-
sons is required. However, both Scotty and RNAseqPower 
fail to discuss how to calculate sample size under multiple 
comparison testing. To address this issue, Li et al.16 derived 
a sample size calculation formula based on the Poisson dis-
tribution. Later, Li et al.17 proposed a sample size calcula-
tion method based on the exact test.18 Of all the developed 
methods, only Scotty has a web-based graphical user inter-
face. The other proposed methods require running R code. 
A convenient, user-friendly RNAseq sample size and power 
calculation tool is highly desirable.

Here, we present RNAseqPS, a web-based power and 
sample size calculation tool, based on both the Poisson and 
negative binomial distributions. RNAseqPS is based on the 
methods16,17 developed by Li et al. RNAseqPS distinguishes 
itself from other RNAseq sample size and power calculation 
methods in several aspects. First, the graphical user interface of 
RNAseqPS is highly interactive and intuitive. It offers several 
different sample size and power calculation methods within 
in one interface. Also, it does not require the skill of running 

R code, a person without any previous experience in R can 
operate it with ease. There are other features of RNAseq PS 
which are discussed in detail in the Method section.

Method
For the Poisson distribution, we considered six different 
methods: (1) Wald test; (2) score test; (3) likelihood ratio test; 
(4) log transformation of Wald statistic; (5) log transforma-
tion of score statistic; and (6) transformation of Poisson for 
calculating sample size under both single- and multiple-gene 
comparison scenarios. The detail of the implementation of 
these tests can be found.16 Under the Poisson distribution, we 
assume that mean equals variance. When biological replicates 
are used, RNAseq data could exhibit variation significantly 
greater than the mean (over-dispersion). In such scenario, the 
Poisson distribution cannot model the data properly with over-
dispersion. The negative binomial distribution can be used as 
a natural extension of the Poisson model. For the negative 
binomial distribution, we provide a method to calculate power 
for the exact test proposed.18 based on a given P value under 
the single-gene comparison scenario. The detail of the imple-
mentation of this test can be found.17 To address the multiple 
comparison issue, we further incorporated false discovery 
rate (FDR)19 controlling into our methods described.16,17 
RNAseq PS implements sample size and power calculation 
from both Poisson and negative binomial distributions based 
on the methods proposed.16,17

results
RNAseqPS is written using the Shiny package in R. Shiny 
is a powerful web framework for building interactive web 
applications using R. It combines the computation power of 
R with the interactivity of modern web. Applications built 
using Shiny can automatically react with the input and output 
parameters of an application. Thus, when new parameters are 
input into RNAseqPS, sample size or power is automatically 
recomputed and displayed on the screen. RNAseqPS has a 
very interactive and dynamic graphical user interface (Fig. 1). 
Users without any experiences in statistics and programing 
languages can navigate through it without trouble.

RNAseqPS also has the ability to plot the relationship 
of any parameter with power. For example, a user can specify 
sample size as the X-axis and selects a reasonable range for 
sample size. RNAseqPS can plot relationship of the sample 
size with power while other parameters stay unchanged. Such 
plots help users visualize the intrinsic relationship between 
the parameters and power and can be easily exported as high-
resolution figures that can be used for NIH grant funding 
applications. Several examples of such plots can be seen in 
Figure 2.

Each computation of sample size or power takes up 
to 30 seconds to 1 minute of time. To reduce the user wait 
time, we have implemented a database lookup function with 
RNAseqPS. The database lookup function works as follows. 
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figure 1. example of the graphical interface of rnaseqPs.
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figure 2. examples of the power curves produced by rnaseqPs.
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To estimate the power of the RNAseq experiment under 
the Poisson distribution, the following eight parameters are 
required as input: (1) sample size; (2) expected fold change; 
(3) average reads per gene; (4) read count ratio between two 
conditions; (5) FDR threshold; (6) total number of genes; 
(7) expected number of significant genes and (8) dispersion 
(only required when using negative binomial distribution). 
The details of these parameters are explained in Table 1. For 
each of these parameters, there are certain likely ranges. For 
example, for expected fold change parameter, the range is usu-
ally between absolute value 1 to 10 because the absolute value 
of the fold change cannot be less than 1 and fold change 10 is 
a reasonable assumption of the high ceiling. To produce the 
database, we pre-computed the power and sample size using 
the parameter values within these most likely ranges for all 
parameters and stored them in a My SQL database. For each 
round of input parameters, RNAseqPS first queries the data-
base to see if samples size or power for such set of param-
eters has already been entered into the database. If the input 
parameters match the existing parameters in the database, 
the power or sample size is automatically returned, otherwise 
power or sample size will be computed on the fly. RNAseqPS 
allows two ways to input parameters: slide bar and text box. 
When using slide bar, the input is guaranteed to match an 
input in the database. Using the text box input, user can input 
any values as desired. In such cases, the sample size and power 
will be computed on the fly. By using the look up function, 
we have instant feedback for most of the common RNAseq 
experiment designs.

discussion
The dominance of RNAseq over microarray in gene expres-
sion research has been documented by multiple studies.1–4 Even 
though the price of RNAseq has matched that of microarray, 
large studies can still be costly. Insufficient sample size may lead 

to underpowered studies and produce unreliable results. Sample 
size estimation is a critical issue for any biological studies, 
including RNAseq-based studies. Better management of the 
tradeoff between cost and sample size is key to a successful study. 
Sample size and power analysis for RNAseq is an underdevel-
oped area when compared with microarray. In comparison, sam-
ple size and power is easier to calculate for microarray, because 
microarray follows a normal distribution, while RNAseq data 
are count based and follow a Poisson or negative binomial dis-
tribution. We have discussed several sample size and power 
calculation methods developed previously. These methods 
adequately address the sample size and power calculation needs 
for an RNAseq experiment design but still have two issues. 
First, some of them do not adjust for the multiple comparisons 
problem. Second, a majority of them lack an intuitive graphical 
user interface.

We address these two issues with RNAseqPS. RNAseqPS 
addresses the multiple comparisons problem by implementing 
the methods introduced by Li et al., which incorporate FDR 
controls. Also, RNAseqPS implements methods based on 
both the Poisson and negative binomial distributions. Over-
all, there are seven methods implemented in RNAseqPS. 
Users can select appropriate methods based on the experi-
ment design. Finally, RNAseqPS offers a highly interactive 
and user-friendly graphical user interface. This graphical 
user interface helps users input the parameters with ease and 
greatly enhances users’ abilities to understand the sample size 
and power analysis with the help of visualization. Overall, 
RNAseqPS addresses major issues currently lacking in sample 
size and power analysis for RNAseq experiment design. It 
greatly benefits researchers who plan to use RNAseq as the 
primary technology for their study.
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Table 1. rnaseqPs input parameters.

PARAMETERS LoWER BoUNd UPPER BoUNd INTERvAL NoTE

sample size 1 500 1 required when computing power

Desired power 0.8 0.95 0.05 required when computing sample size. the minimum power  
should be no less than 80%

expected fold change 1.4 10 0.2 the expected fold change between differentially expressed  
genes. this value is based on prior experience. If no previous  
data is available, a best guess is given by rnaseqPs

average reads per gene 1 100 10 this can be computed as r/G, where r is the total number of  
reads sequenced and G is the total number of genes detected

total number genes 100 20000 100 this is usually dependent on the gene transfer format (Gtf)  
file used. A GTF file contains the annotation information  
regarding genes, and it is required for rnaseq analysis

expected number of  
differentially expressed genes

5 2000 50 this is the number of genes you expect to see between the  
two conditions. It is also based on prior knowledge. When  
prior knowledge is unavailable, a best guess is provided by  
rnaseqPs

Dispersion 0.1 2 0.1 this parameter is used in the negative binomial model
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