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Introduction
Antimicrobial peptides (AMPs), also called host defense 
peptides, are biologically active molecules produced by a wide 
variety of organisms as an essential component of their innate 
immune response.1 The major part of AMPs is formed from 
high molecular precursors as a result of post-translational 
modification.2 AMPs can be classified according to their 
structure, origin, biosynthesis mechanism, localization, 
biological function, mechanism of action, activity, and 
specificity. In the vast majority of cases, AMPs have the cat-
ionic structure1,3 but anionic AMPs have also been described 
in literature.4 Based on their structures, AMPs can be 
grouped into four classes: α-helical peptides, β-sheet pep-
tides, extended peptides, and loop peptides.5 The α-helical 
AMPs constitute a representative class of antibacterial pep-
tides that have the most well-determined structure–activ-
ity relationships. Lack of cysteine residues in the molecule 
is characteristic of peptides of this group. These peptides 
have a disordered structure in aqueous solutions, but in the 

presence of trifluoroethanol or liposomes, these molecules are 
converted into α-helix forms.2 The β-sheet AMPs are stabi-
lized by disulfide bridges and form relatively rigid structures. 
The extended AMPs, which are predominantly rich in spe-
cific amino acids, such as proline, tryptophan, arginine, and 
histidine, have no regular secondary structure elements. The 
loop AMPs adopt a loop formation with one disulfide bridge 
(Table  1). AMPs show great structural diversity, but some 
features common to most of them are: a relatively small size 
(generally between 12 and 50 amino acid residues), their cat-
ionic nature because of multiple Arg or/and Lys residues, and 
the amphipathic structure because of the presence of both 
hydrophobic and hydrophilic regions.

Mechanism of Action
AMPs show a broad spectrum of antimicrobial activities 
against various microorganisms. Many of these peptides are 
effective against multidrug-resistant bacteria and possess a 
low propensity for developing resistance.
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The precise mechanism of the action of AMPs is yet to 
be explained. The electrostatic interaction of cationic AMPs 
with negatively charged molecules on the membrane of 
bacteria cells seems to be the primary mechanism for anti-
microbial activity. Currently, there are three most popular 
models explaining the increase in membrane permeability 
because of AMP action: the barrel-stave model, the toroidal 
pore model, and the carpet model (Fig. 1).16–19 According to 

the barrel-stave model, a variable number of channel-form-
ing peptides are positioned in a “barrel-like” ring around 
an aqueous pore. In the toroidal pore model, the peptides 
induce membrane depolarization and form toroidal-shaped 
transmembrane pores. According to the carpet model, the 
peptides first bind to the target membrane and cover it in a 
“carpet-like” manner, then they disintegrate the membrane 
by disrupting the bilayer curvature.

Table 1. Examples of antibacterial peptides isolated from different sources.

Peptides Origin Number of amino  
acids in molecule

Literature

α-helical
magainin 2
cecropin A
LL-37 (cathelicidin)

 
frog
insects
human

 
23
37
37

 
6
7
8

β-sheet
α-defensins and β-defensins (containing three disulphide bonds)
protegrin 1 (containing two disulphide bonds)

 
human
pig

 
29–35 and 36–47
18

 
9, 10
11, 12

extended structure
indolicin (tryptophan and proline rich peptide)

 
bovine

 
13

 
13

loop
(containing one disulphide bond)
bactenecin
lactoferricin

 
 
bovine
bovine

 
 
12
25

 
 
14
15

 

A

B

C

Figure 1. Three most popular modes of action of antimicrobial peptides against cytoplasmic membranes. (A) Barrel-stave model; (B) carpet model (C) 
toroidal pore model according to Ref. 19.
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Owing to a high level of cholesterol and low anionic 
charge, eukaryotic cells become out of the target range of 
many AMPs.20 Understanding the selectivity of different 
AMPs for mammalian and bacterial membranes is of obvious 
interest in the development of these peptides as novel antibac-
terial agents. Molecular dynamic simulations are used to visu-
alize in detail the interactions between AMPs and a variety 
of membrane mimics. This helps to understand the molecular 
mechanisms of the antimicrobial activity of these compounds 
and their toxicity.21–23 Several reviews connected with the 
structures, potential mechanisms of action, and biological 
activities of AMPs have recently been published.24–34

The AMPs have been considered promising and potential 
drug candidates for the future because of their broad range of 
activity, lesser toxicity, and decreased resistance development 
by their target cells.

Structure Modification
The widespread use of antibiotics has led to the development 
of numerous multidrug resistant strains, resulting in an urgent 
need to develop new effective antimicrobial agents capable of 
being established as therapies for bacterial infections. The 
AMPs have a proven ability to avoid antimicrobial resistance, 
a phenomenon that has rendered many pharmacologically 
derived antibiotics ineffective. Probably one advantage of 
AMPs is the generality of their mechanism of action, which 
involves either breaking the bacterial membrane integrity or 
disrupting their essential components inside their cells.35,36 
This differs from the specific receptors targeted by conven-
tional antibiotics, which allows the pathogenic bacteria to 
develop resistance more rapidly. AMPs are also fast-acting 
and potent compounds. They can be metabolically and rap-
idly cleared from the body. Although AMPs possess consid-
erable benefits, their clinical and commercial developments 
have some limitations. The disadvantage of the AMPs is the 
fact that most peptides cannot be administered orally as they 
are rapidly inactivated by gastrointestinal enzymes, so that 
subcutaneous or intravenous administration is required.37–39 
Although peptides exhibit significant in vitro activity against 
bacteria, for many peptides this activity appears to be lost 
under physiological salt and serum conditions. Salt-dependent 

inactivation of human β-defensins is an example.40 Another 
problem is the size of molecules. They are small in comparison 
with proteins but large from the point of view of the chemical 
peptide synthesis. This is connected with high costs of their 
production. The price of synthetic peptides is considerably 
higher in comparison with conventional antibiotics. It can be 
a reason that the pharmaceutical industry has been reluctant 
to promote the clinical use of this class of antibacterial thera-
peutics.33,40 Because of this problem, the investigations have 
been centered on searching for smaller peptides with antimi-
crobial activity.

Lactoferrin Derivatives
An example of an approach to this problem was the investi-
gation of short fragments of complex AMP, lactoferrin or its 
25-residue N-terminal fragment, lactoferricin41 (Fig. 2),  for 
establishing minimal structural requirements for antimicro-
bial activity (Table 2).42–48 An 11-residue linear peptide por-
tion of bovine lactoferricin has been reported to have similar 
antimicrobial activity to lactoferricin itself, but with lower 
hemolytic activity.47 The synthetic AMP hLF1–11, derived 
from the first 11 amino acids of human lactoferrin, was eval-
uated in both preclinical and clinical trials (Table 3), and it is 
an interesting candidate for further exploration.49 The anti-
bacterial active fragment of bovine lactoferricin, hexapeptide 
RRWQWR, was determined by Tomita et al.42 Many frag-
ments of lactoferricin were synthesized and examined,43–50 
from the 15 residue peptide LFB, consisted of 17–31 resi-
dues of bovine lactoferrin,43 to the modified dipeptides.44 
According to the pharmacophore model of short AMPs,51 
cationic charged as well as bulky and lipophilic moieties are 
necessary in the structure of such compounds. Charged moi-
eties generally consisted of a side chain of arginine or lysine. 
Bulk units were represented by an indol, phenol, or phenyl 
group. Other studies suggest that the antimicrobial activ-
ity of peptides containing arginine is higher than those of 
peptides containing lysine, while peptides containing tryp-
tophan are more potent than those with either phenylalanine 
or tyrosine.

The series of peptides containing simple repeating 
sequence: (RW)n-NH2 (where n  =  1–5) were synthesized, 
and their antimicrobial and hemolytic activity was deter-
mined. The hexapeptide (n  =  3) represents an optimal 
chain length in terms of the efficacy of peptide synthesis 
and antibacterial activity and selectivity (evaluated by the 
hemolytic index).52 According to the authors,51 the mini-
mal anti-staphylococcal motif can be defined as a combi-
nation of two bulky moieties and two charged groups. An 
example of such a peptide is RW-OBzl (Fig. 3), where the 
bulky units are the indole side chain of tryptophan and the 
benzyl ester group, and where the charged units are the 
guanidinium group of arginine and the free N-terminal 
amino group.51 To improve the properties of the synthe-
sized peptides, different bulky aromatic amino acids were 

Table 2. Antibacterial activity of lactoferricin and its truncated 
analogs, reported as minimal inhibitory concentration (MIC) 
according to Ref. 48.

Peptide Number of  
amino acids

MIC [µM]

S. aureus E. coli

Cyclic lactoferricin 25 2–10 2–10

Lactoferricin 1–15 15 48–150 20–14

RWRNHBn 3 124 .150

RBipRNHBn 3 16 .150

Abbreviation: Bip, 4,4′-biphenylalanine.
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tryptophan-rich hexapeptides called by the authors combi-1 
(Ac-RRWWRF-NH2) and combi-2 (Ac-FRWWHR-NH2). 
These hexapeptides possess antibacterial activities similar to 
natural peptides.35 Smaller AMPs like cationic containing 
13 amino acid peptide amide – indolicin59 or dodecapep-
tide – bactenecin60,61 were used as a lead structure to develop 
potential new antimicrobial drugs, for example, omiganan 
(ILRWPWWPWRRK-NH2) (Table 3), a synthetic cationic 
peptide derived from indolicin.62,63 To obtain short cationic 
peptides with enhanced antimicrobial activity, fluorine atoms 
or trifluoromethyl groups were introduced in the structure.64 
Another reason for the structure modification of AMPs is 
searching for compounds with a potential for oral administra-
tion. It is connected with the problem of their stability toward 
the enzymatic degradation. Series of short cationic peptides 
(generally, tripeptides), with the presence of unnatural amino 
acids in the structure, were synthesized by the application of 
combinatorial libraries and its antibacterial activity, and their 
stability for tryptic65,66 and chymotryptic67 degradation was 
examined. The use of Trp and Arg analogs can minimize the 
interaction of antimicrobial tripeptides with binding pockets 
of proteolytic enzymes and increase their stability.48 The 
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Figure 2. Amino acid sequence of cyclic bovine lactoferricin according to Ref. 46.

Table 3. Selective antimicrobial peptides in clinical trial according to Refs. 5, 92, and 93.

Name Number of  
Amino Acids

Description Intended Use Company Trial Phase

Omiganan (MBI-226,  
MX-226, CSL-001)

12 Synthetic analog of  
indolicidin

Topical antiseptic prevention of  
catheter infection, severe acne  
and rosacea

Migenix/BioWest  
therapeutics
Cutanea Life Sciences

III/II

Pexiganan (MSI-78) 22 Synthetic analog of  
magainin 2

Topical antibiotic – diabetic  
ulcers

MacroChem III

Iseganan (IB-367) 17 Protegrin 1 derivative Prevention of oral mucositis Ardea Biosciences III

LTX-109 3 Peptidomimetic Topical antibiotic Lytic Biopharma I/II

hLF1–11 11 Lactoferrin derivative Prevention of bacteraemia and  
fungal infections

AM Pharma I/II

OP-145 24 LL-37 derivative Treatment of chronic middle  
ear infection

Octoplus I/II

used instead of tryptophan.43,44,48,53 Replacing the indole 
side chain of Trp with bulkier, more hydrophobic groups has 
shown to yield peptides with increased antibacterial activ-
ity. Antimicrobial tripeptides with a modified structure such 
as l-arginyl-l-4,4′-biphenylalanyl-l-arginine benzylamide, 
where l-4,4′-biphenylalanine was used to replace tryptophan 
residue (Fig.  3, Table  2),48 belong to extremely truncated 
versions of lactoferrin. The modified tryptophan molecule 
(2,5,7-tri(tert-butyl)tryptophan-Tbt) was also applied in the 
synthesis of the modified tripeptides with general structure 
RTbtR-X, where X was –OMe, unsubstituted and substi-
tuted amides.54,55 The most promising structure seems to  
be the tripeptide with C-terminal amide substituted by the 
ethylphenyl group (LTX-109) (Fig. 3, Table 3).55

AMPs Derivatives
Another possibility to design small peptides with antimicrobial 
activity was using combinatorial libraries for the examination 
of potential short active peptide sequences.56–58 These libraries 
were not only used to discover novel short AMPs56 but also 
to improve the activity of already known compounds.58 The 
result of such investigations was the synthesis of arginine and 
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replacement of arginine with Agp (α-amino-3-guanidino-
propionic acid) in AMP Sub-3 (NH2-RRWRIVVIRVRR-
CONH2) protects this compound from its fast degradation in 
serum.68 Also the cyclization of short tryptophan and argin-
ine-rich AMPs generally brings about significant stabilization 
against serum proteases.50

Another Antibacterial Compounds with Peptide 
Structure
Antibacterial activity was also observed in the case of peptides 
that are not fragments or analogs of natural AMPs. Several com-
pounds with the linear or cyclic dipeptide structure belong to 
this group. Antimicrobial dipeptide β-alanyl-tyrosine was iso-
lated from insects.69 Series of antimicrobial analogs of Trp-His 

and His-Arg70 as well as dipeptide-based amphiphiles71 were 
synthesized. Antimicrobial cyclic dipeptides (diketopipera-
zines) were isolated from a Bacillus sp. strain.72,73 Peptide den-
drimers – branched polymers with peptides attached centrally 
to the core matrix – were developed for a number of different 
applications.74 Antimicrobial activity was observed in the case 
of dendrimeric peptides containing a lysine core with attached 
two or eight copies of tetrapeptide R4 (RLYR) or octapeptide 
R8 (RLYRKVYG).75 Low molecular dendrimers contain-
ing basic amino acid lysine and hydrophobic fragments also 
showed antibacterial activity. According to the authors,76 such 
amphiphilic dendrimeric peptides can be non-sequential phar-
macophores, which mimic the active conformation of linear 
AMPs. Lipopeptides are native antimicrobial agents produced 

Arg-Trp-OBzl (R-W-OBzl) Arg-Bip-Arg-benzylamide (R-Bip-R-NH-Bn), 
Bip = 4,4’-biphenylalanine 
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Figure 3. Short peptides derived from lactoferrin with minimal antibacterial motif.
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in bacteria and fungi. They are composed of aliphatic fatty acid 
attached to N-terminus of a short peptide.74 While searching for 
new antibacterial compounds, a series of short lipopeptides con-
structed from natural l and d amino acids was synthesized.77,78  
A non-genetically coded amino acid ornithine was also used to 
synthesize short peptides covalently attached to fatty acids of 
different chain lengths.79,80 The obtained results demonstrate a 
strong potential of lipopeptides as a class of novel antimicrobial 
therapeutics.80

Peptoids and Peptidomimetics
The antimicrobial β-peptides have been designed as oli-
gomers mimicking the structure of AMP magainin.81 
They can adopt a variety of different helical conforma-
tions and are resistant toward the degradation by trypsin 
and chymotrypsin.82 A series of short, highly potent 
β-peptidomimetics based on the pharmacophore model of 
short AMPs51 were obtained by coupling of achiral lipo-
philic 3-amino-2,2-disubstituted propionic acid to a C-ter-
minal l-arginine amide residue.83

Oligoacyllysines (OAKs) are a group of antimicrobial 
compounds, composed of tandem repeats of acyllysines. These 
simple structures were designed to mimic the primary struc-
ture and function of natural AMPs. To study the structure–
activity relationships in OAKs, the library composed of 103 
OAKs have been synthesized. Only few members of this 
library displayed the ability to inhibit bacterial growth. Anti-
microbial activity was observed in the case of short (dimer) 
dodecanoyl-based OAK.84 Further investigations suggested 
that the minimal requirements for potent and selective anti-
bacterial activity with low hemolytic activity represent the 
sequence: aminolauryl-[lysyl-aminolauryl-lysyl]2 (designated 
NC12–2β12).85 Peptoids (N-substituted glycines) are mimics 
of α-peptides in which their side chains are attached to the 
backbone of Nα amide nitrogen instead of the Cα-atom.74,82,86 
A series of peptoids constructed from N-alkylated glycine 
residues were synthesized as potential mimics of antimi-
crobial lipopeptides.87 The head-to-tail macrocyclization of 
linear peptoids was used to enhance the antimicrobial activ-
ity of these compounds.88 The combinations of the peptoid 
subunits with lysine residues were also investigated. Several  
such lysine–peptoid hybrids showed potent antibacterial and 
low hemolytic activities.89,90 For example, N,N-disubstituted 
l-lysine amides were the simplest peptoids with antimicro-
bial activity.91 Two positive charges were contributed by α and 
ε NH3

+ groups of l-lysine; the hydrophobicity was brought 
about by a substituent of amide nitrogen: alkyl chain and 
bulky aromatic core.

Clinical Development
In their search for new antimicrobial therapeutics, several 
pharmaceutical companies have been attempting to introduce 
AMPs into the market.29 Recent investigations generally focus 
on relatively small and cost-effective molecules that contain 

only the biologically active core region of the natural AMP. 
AMPs are in various stages of drug development, from early 
preclinical studies to phase III of clinical studies (Table  3). 
Compounds with different molecular sizes were examined, 
from the peptide containing 24 amino acids, OP-145,67 to 
the modified tripeptide LTX-109 (Fig.  3),55 both in phase 
II of clinical trial (Table  3). There has been limited success 
with those AMPs that were introduced into clinical trials, 
especially when the results were compared to conventional 
antibiotics.92,93 Two indolicin-based AMPs, MBI-226 and 
MX-594AN, which have been developed for the treatment 
of catheter-related infection and acne, respectively, belong to 
the most advanced potential therapeutics.23,29,62,63,92 MBI-226 
(omiganan) has now completed two separate phase III clinical 
trials demonstrating safety and significant efficacy in decreas-
ing catheter colonization and reducing microbiologically con-
firmed tunnel infections (Table 3).93 The other one has been 
less successful. The AMP – pexiganan – a broad-spectrum syn-
thetic analog of the African frog peptide magainin, developed 
for the treatment of diabetic foot ulcers, was denied approval 
for clinical use.23,29 This compound did not demonstrate an 
advantage over existing fluoroquinolone therapy.23,29,92,93 But 
it has recently been announced that pexiganan would re-enter 
phase III trials to enable the resubmission of a new drug appli-
cation. It has also been reported that the second generation of 
AMPs based on pexiganan have been developed.93 None of 
the AMPs have been granted Food and Drug Administration 
(FDA) approval for clinical use.23

Conclusions
Out of thousands of potential synthetic peptides with anti-
microbial activity, only a small number have been systemati-
cally studied and tested. Many AMPs and its analogs have 
been synthesized. Some of them have very small molecules 
(di- and tripeptides) and improved stability against the 
enzyme digestion, so they are devoid of certain disadvan-
tages of natural AMPs and can be more suitable for phar-
maceutical applications. The field is young, and it would 
be premature to conclude if AMPs can be clinically used 
therapeutic agents. Many AMPs have demonstrated antimi-
crobial activity under controlled experimental conditions in 
vitro, but these results have not yet been transformed into 
success as therapeutics in clinical trials. Although some early 
preclinical studies as well as clinical trials have been encour-
aging, no AMP has yet been approved for clinical use. The 
question whether AMPs can be a new class of future drugs 
still remains unanswered.
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