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ABSTR ACT: Osteoarthritis (OA) is the most prevalent musculoskeletal disease in humans and domestic animals. It causes significant clinical problems 
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Introduction
Musculoskeletal diseases are a significant healthcare expense,1–3 
and osteoarthritis (OA) is the most prevalent among them.4,5 
As the population ages, the incidence of OA increases.6 The 
pathophysiology of OA is incompletely understood and con-
ventional drugs do not modify the disease. Palliative therapies 
include analgesics such as acetaminophen;7–9 nonsteroidal anti-
inflammatories such as cox-2 inhibitors;10–13 topical applications 
such as diclofenac and capsaicin;14,15 intra-articular medica-
tions such as hyaluronic acid (HA),16,17 corticosteroids,18,19 and 
prolotherapy compounds.20,21 Dietary supplements such as glu-
cosamine and chondroitin22,23 are used in poorly documented 
attempts to rebuild cartilage. Acupuncture,24,25 transcutaneous 
electrical nerve stimulation,26–28 and orthotic devices29–31 are 
used on occasion as well. Therapy is further complicated by a 
variety of presentations, structural and symptomatic stages, 

co-morbidities, as well as individual factors including gender, 
age,32,33 and genetics.34,35

OA is the result of cartilage degradation with loss of tensile 
and compressive strength, bone-on-bone contact, and inflam-
mation. Cartilage preservation, together with regenerative 
therapies directed toward subchondral bone and synovia,36–41 
is a logical treatment goal. The immune system and a host of 
cytokines are operative in the disease process and ultimately 
must be considered in any therapeutic approach.42

Bone Cartilage and Synovium
Figure 1A displays the knee, a synovial or diarthrodial joint. 
Apposing ends of the femur and tibia are covered by hyaline 
cartilage with intervening meniscal tissue. The joint is bathed 
in synovial fluid contained within the capsule (Fig. 1B) con-
sisting of an inner synovial membrane and an outer collagenous 
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fibrous layer, ie, the synovium (Fig. 1C). Blood vessels in the 
fibrous layer supply fluid and nutrients to synovium and carti-
lage.43 Four major ligaments, anterior and posterior cruciate and 
medial and lateral collateral ligaments, hold the bones together 
(Fig. 1A).

The synovial blood vessels (Fig. 1C) provide most of the 
oxygen found within the synovial fluid bathing the chon-
drocytes, the cells largely responsible for the production of 
cartilaginous tissue.44 Chondrocytes thrive in a medium that 
is avascular, hyperosmotic, and relatively hypoxic.45 Gene 
transcription factors including Sox9 and hypoxia-inducible 
factor 1-alpha (HIF-1α)46 facilitate the hypoxic adaption.47,48

The synovium comprises two layers, the intima and sub-
intima (Fig. 1C). The subintima is composed of collagenous 
fibers and contains macrophages, fibroblasts, adipocytes, and 
tissue molecules like elastin (Fig. 1C).49 The synovium when 
challenged by disease responds with an increase in the inti-
mal thickness and an influx of macrophages, fibroblasts, and 
blood-derived leukocytes. Damage to all of these joint struc-
tures is a feature of OA.50–54

Bone comprises an external compact surface, cortical 
bone, and an inner porous structure, trabecular or cancellous 
bone. Dense cortical bone provides strength and offers a rich 
vascular supply. It is an important source of mesenchymal and 
hematopoietic stem cells55 for bone remodeling.

Both the osteocytes and osteoblasts function in the mod-
ulation of mineral deposition.56 Calcium crystal deposition is 
a common feature of OA, which is of interest in the study of 

the articular cartilage mineralization and a therapeutic target 
for OA.57

Osteoclasts demineralize bone through the action of 
acid proteases, like cathepsin K. Remodeling consists of both 
resorption by osteoclasts and bone formation by osteoblasts 
and osteocytes.58 In addition, remodeling is, in part, governed 
by bone morphogenic protein (BMP)-259 and transforming 
growth factor (TGF)-b, which also play a role in the patho-
genesis of OA.60

Articular and fibrous cartilages afford tensile strength 
and resistance to shear forces; however, their chemical com-
positions differ. Type II collagen (CII) normally present in 
the articular cartilage is often replaced by other types of col-
lagen in joints affected by OA. This alteration decreases tensile 
strength.61,62 The meniscus and joint capsule contain type I 
collagen, which together with fibrochondrocytes is arranged in 
layers that allows for a distribution of radial stress.63 Collagen 
types provide a platform for HA polymers to which aggrecan 
molecules are affixed through a linker protein.64–66

Aggrecan itself comprises a core protein, chondroitin 
sulfate (CS), and keratin sulfate (KS) molecules (Fig. 2). CS 
and KS are negatively charged polysulfated glycosamino-
glycans (GAG)67 and provide for water retention within the 
extracellular matrix (ECM). HA or hyaluranon serves as a 
thread to which aggrecans attach.

Cartilage also contains other non-collagenous proteins 
including cartilage oligomeric matrix protein (COMP),68 
often used as a marker of disease progression.69–71

Articular cartilage zones

V
calcified

zone
Tidemark

IVB
IVA

III II I

su
bc

ho
nd

ra
l

bo
ne

Synovial
fluid

Arteriolar
capillary

Type A
synovial macrophage

Type B
synovial
fibroblast

Collagen
fibrous
capsule

CB

Meniscus

Quadriceps tendon

Patella ligament

Joint capsule
Synovial fluid

ACL

PCL
LCL

MCL

Patella
Epiphyseal plate

Joint
capsule

men
isc

us

ar
e

su
bc

ho
nd

ra
l

bo
ne

Blood vessel Blood capillary

D

Cartilage

Cancellous bone

Patella ligament
subchondral bone

Joint capsule 
border

Calcified zone of 
articular cartilage

Epiphyseal plate

Epiphyseal blood 
vessel

Hypertrophic
chondrocyte

Osteocyte
Osteoblast

Chondroblast

Osteoclast

Subchondral bone

Collagen/aggrecan

E

Blood vessel
Extravasating WBC

IVB
IVA

III II I

su
bc

ho
nd

ra
l

bo
ne

IVB
IVA

III II I

men
isc

us

e

su
bc

ho
dr

al
bo

ne

A

TibiaFibula

Femur
Articular

cartila
ge

Jointcapsule

Su
bc

ho
nd

ra
l

bo
ne

Synovial
fluid

Su
bc

ho
nd

ra
l

bo
ne

Ar
tic

ula
r c

ar
tila

ge

Artic
ula

r 

ca
rtil

ag
e

Men
isc

us

Subchonral

bond

Figure 1. Conceptual drawing of a diarthrodial (knee) joint depicting varying levels of detail.
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HA complexes with a glycoprotein, lubricin, which pro-
vides lubrication.72 The recent data that support HA therapy 
in OA are not compelling,52,73–75 however, lubricin ther-
apy shows promise.76,77 CS with or without glucosamine or 
N-acetlyglucosamine are nutraceuticals, which vary widely in 
type but lack prospective randomized trial data.78,79

The degradation of collagen and aggrecan is largely the 
result of proteolytic enzymes, metzincins.80 Catabolism of 
collagen and ECM proteins is mediated by matrix metallopro-
teinases (MMP). Aggrecan breakdown is caused by enzymes 
known as a disintegrin and metalloproteinase with thrombo-
spondin motif (ADAMTS). There are at least 23 MMP81,82 

expressed in human tissue, and at least 18 ADAMTS.83 There 
are also at least four known endogenous tissue inhibitors of 
metalloproteinase (TIMP 1–4).84,85

The MMP and ADAMTS not only cleave ECM proteins 
but also activate other MMP, establishing an interdependence 
in function.86–89 Statistical data combined with protein microar-
ray analyses reveal that MMP-7 is a good biomarker for the early 
detection of OA, preceding symptoms by as much as 10 years.90

The action of aggrecanases may be required prior to col-
lagen cleavage by MMPs, making anti-aggrecanase strategies 
an area of therapeutic interest.91,92 Of particular interest is 
MMP-13 as it appears to be the most prominent MMP in the 
breakdown of aggrecans and CII.93,94

Joint and tissue inflammation is the result of a cascade of 
proteolytic enzymes and cytokines. Cytokines are categorized 
as interleukins (IL), lymphokines, and chemokines.95 Among 
the IL are IL-1 to IL-6 and granulocyte-macrophage colony 
stimulating factor (GM-CSF). Lymphokines include GM-CSF 
and interferon-gamma (IFN-γ). Chemokines such as IL-8 are 
cytokines that are chemoattractants, which cause leukocytes to 
migrate toward areas in which they eventually concentrate. Syno-
vial tissue contains a variety of cells that produce pro-inflamma-
tory cytokines present in patients with OA, although the precise 
source of these cytokines is incompletely understood.48

Pro-inflammatory cytokines are recognized as an impor-
tant part of the pathophysiologic process of OA resulting in 
the receptor-mediated stimulation of downstream biological 
response modifiers.42,96,97 TNFa appears to drive the inflam-
matory cascade that suppresses synthesis of proteoglycan, link 
protein, and CII. IL-1b effects cartilage destruction by inhib-
iting collagen and aggrecan levels and stimulates the release of 
MMP-1, -3, and -13 as well as IL-6, IL-8, monocyte chemoat-
tractant protein (MCP)-1, and regulated on activation, normal 
T cell expressed and secreted (RANTES). Major research 
regarding the role of cytokines in OA and potential therapeutic 
intervention has been focused on the pro-inflammatory cyto-
kines, tumor necrosis factor-alpha (TNFa), and IL-1b.98–100

Cytokines modulate the expression of MMP and 
ADAMTS as well as alter cellular mechanisms of induc-
ible nitric oxide synthase (iNOS), soluble phospholipase A2, 
cyclooxygenase-2 (COX-2), and membrane prostaglandin E 
synthase (mPGES) leading to PGE2 expression. Cyclooxy-
genases are selective for the COX-2 isomer in chondrocytes 
and synovial fibroblasts.101 Stimulation by IL-1b and TNFa 
results in the upregulation of mPGES.102 While prostaglan-
din E has been targeted as an anti-inflammatory strategy, the 
approach is limited by gastrointestinal irritation and myo-
cardial damage. Future studies targeting one of the three 
isoforms of mPGES have been suggested as a refinement in 
prostaglandin therapies for OA.103,104

Chondrocyte exposure to pro-inflammatory cytokines 
increases gene expression of iNOS. This in turn facilitates the 
secretion of nitric oxide (NO), and mPGES increasing the release 
of PGE2. PGE2 inhibits collagen and proteoglycan formation 
and also the production of the natural antagonist to IL-1b, the 
IL-1 receptor antagonist (IL-1Ra). The latter has been shown to 
positively affect joint inflammation and OA105 although result-
ing in marginal clinical improvement.106 The recent observation 
of three single nucleotide polymorphisms in the IL-1Ra gene107 
could explain the variable response to IL-1Ra in some studies.

G2G1
IgG

656-7 CO

441-2 CO
PTR

690-1 CLPTR
PTR

PTRIGD

373-4 AC
373-4 MMP8

377-8 MMP3
378-9 LE

384-5 MMP13

KS CS

1545-6 AC
1714-5 AC

1820-1 AC
1920-1 AC

341-2 MMPs
342-5 CB

G3

EGF
CBP

CRD

Figure 2. Aggrecan and sites of proteolytic cleavage.
Note: Figure is derived and modified from a compilation of those published in references 64–66.
Abbreviations: AC, aggrecanase; CB, cathepsin B; CL, cathepsin L; CO, collagenases (MMP-1, -8, -13); LE, leukocyte elastase; MMPs, matrix 
metalloproteinases (MMP-1, -2, -3, -7, -8, -9, -13); IgD, immunoglobulin G-like domain; IGD, interglobular domain; PTR, proteoglycan tandem repeat;  
EGF, epidermal growth factor-like module; CRD, carbohydrate recognition domain; CBP, complement binding protein-like module.
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Both IL-1b and TNFa stimulate the production of 
reactive oxygen species (ROS) including a cascade of oxi-
dants such as NO, peroxynitrites, the superoxide anion, the 
hydroxyl radical, hydrogen peroxide, hypochlorous acid, and 
chloramines. The ROS are highly destructive to living cells 
unless contained or reacted with neutralizing molecules,108 
which are known to be downregulated in OA.109 The result is 
cell damage including programmed cell death or apoptosis of 
chondrocytes.110,111

The molecular mechanism by which several cytokines ini-
tiate inflammation in the OA joint has been studied through 
nuclear transcription.35,96 IL-1b and TNFa appear to mediate 
chondrocyte hypertrophy by modulating several transcription 
pathways including c-Jun N terminal kinase, p38 mitogen-
activated kinase, and nuclear factor kappa B (NF-kB).96,112 
Collagen, MMP, and growth factors like vascular endothe-
lial growth factor (VEGF) mediate effects of the runt-related 
transcription factor 2 (Runx2), parathyroid hormone-related 
protein (PTHrP)/Indian Hedgehog, Wingless/Int (Wnt)/β-
catenin, and TGF-β/Sma and Mad Related Family (Smad) 
pathways,113 and Sox9.114,115 Interfering with transcription 

factor control then becomes another path to develop disease-
modifying treatments for OA.

The complexity of approaches to develop a disease-
modifying therapy for OA is diagrammatically illustrated in 
Figure 3.35 Given the diversity of the paths and the require-
ments for proof of safety and clinical efficacy, it will take 
considerable time for such treatments to become popular 
alternative to conventional therapy.

Stem Cells, Growth Factors, and Platelet Therapy
OA is characterized by intra-articular cartilage loss, osteo-
phyte formation, and capsular thickening. Regenerative 
injection therapies are thought to promote inflammation, 
proliferation, and remodeling.116 Tissue repair by recruitment 
of endogenous stem cells has been demonstrated in humans 
and animal models.117–120 Regenerative therapy is compli-
cated by the selection of cell type, stage of differentiation, 
cell number, pre-conditioning regimens, route of administra-
tion, time of intervention, and many other factors.121 Much 
of the early data regarding clinical efficacy are derived from 
level IV evidence; large prospective randomized trials have yet 
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Figure 3. Treatment strategies for osteoarthritis. 
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Abbreviations: ADAMTS, a disintergrin and metalloproteinase thrombospondin motif; BMP, bone morphogenetic protein; CCL19, chemokine (C–C 
motif) ligand 19; CS, chondroitin sulfate; ECM, extracellular matrix; Gro, growth-regulated oncogene; FGF, fibroblast growth factor; HIF, hypoxia-
inducible factor; HTRA-1, high temperature requirement—family of serine proteases; IGF, insulin-like growth factor; IL, interleukin; iNOS, inducible 
nitric oxide synthase; MAP, kinase mitogen-activated protein kinase; MCP-1, monocyte chemotactic protein-1; MIP, macrophage inflammatory protein; 
MMP, matrix metalloproteinase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, NOD-like receptor family, pyrin domain 
containing 3; OSM, oncostatin M; PTH, parathyroid hormone; RANKL, receptor activator of nuclear factor kappa B ligand, also known as tumor necrosis 
factor ligand superfamily member 11 (TNFSF11); TRANCE, TNF-related activation-induced cytokine; OPGL, osteoprotegerin ligand; ODF, osteoclast 
differentiation factor; RANTES, Regulated on Activation, Normal T cell Expressed and Secreted also known as chemokine ligand 5(CCL5); Runx2, 
Runt-related transcription factor 2, also known as core-binding factor subunit alpha-1 (CBF-alpha-1) is a transcription factor associated with osteoblast 
differentiation; S100, the S100 protein family consists of about 20 proteins with calcium binding domains and interacts with transcriptional factors involved 
in the regulation of protein phosphorylation, calcium homeostasis, cell proliferation, and differentiation; TGF-b, transforming growth factor; TIMPs, tissue 
inhibitors of metalloproteinases; TNFa, tumor necrosis factor; TLR, toll-like receptors; VEGF, vascular endothelial growth factor; Wnt/b-catenin, cell 
surface receptor-mediated transcription control pathway requiring b-catenin and leading to cell proliferation.
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to be completed.122,123 Nevertheless, stem cells are currently 
being considered for a wide range of reparative applications 
including OA.124–127 The tissues targeted in OA include the 
inflamed synovium,128 the meniscal cartilage,129 and sub-
chondral bone.130,131 Mesenchymal stem cells (MSC) are pro-
cured from a variety of autologous and/or allogeneic tissues 
and have been used in several OA trials.132,133 The effect of 
aging on autologous stem cell properties and their ability to 
synthesize Type I collagen has yet to be defined.126 The stage 
of inflammation at which treatment is initiated is of impor-
tance, because the inflammatory component of joint disease 
can influence stem cell activity.134,135 While stem cell therapy 
will be a subject of great interest and study for quite some 
time, the mechanism of action of stem cells remains to be elu-
cidated. Clinical application of stem cell treatment in OA has 
shown some success. Both subjective and MRI measurements 
confirm improvement over 12  months of observation.136–138 
Osteochondral lesions of the knee have also been successfully 
treated with MSC.139–141

Studies of fat-derived MSC in dogs revealed significant 
improvement in outcomes when treating hip142 or elbow OA.143,144

Growth factors, perhaps as surrogates for direct applica-
tion of stem cells, also may provide a path for regenerative 
healing.145 Although the use of isolated growth factors has 
not revealed consistent results, use of conditioned plasma or 
platelet therapy, as a source of cytokines and growth factors, 
has shown more promise.106,146 Recognition of the potential 
interactions between growth factors such as BMP-7, IGF-1, 
bFgF, and FGF-2 has prompted the use of platelet concen-
trates due to their recognized association with healing as they 
are a repository for multiple growth factors.

Platelet Therapy
A recent review of the use of platelet concentrate therapy in 
tennis elbow and rotator cuff repair shows promise,147 how-
ever, other applications such as long bone healing remain to 
be proved.148 Platelet concentrate proves to facilitate stem cell 
mediated chondrogenesis in animals with artificially induced 
OA.149 In addition, tendon,150–154 ligament,155,156 and disease 
injury including OA157 have all been reported to be success-
fully treated in humans with platelet therapy.

Much remains to be detailed concerning the use of plate-
let therapy, including the dose–response effect, the duration 
of efficacy, the manner of administration, the platelet con-
centration required, and the synergistic role of white cells 
in the preparation. Although observational studies suggest 
a favorable influence of platelet therapy in OA, the mecha-
nism of action remains unknown. Of interest is evidence that 
an increase in growth factor blood levels occurs following IA 
injection of platelet concentrates.158

Platelet therapy for OA of the knee has been reported 
as beneficial in a number of studies.159–162 Most investigators 
conclude that platelet therapy alone or in combination with 
stem cells deserves further study in large randomized trials.106

Types of Platelet Therapy
Platelet therapy is often referred to as platelet-rich plasma 
(PRP), a term used in blood banking; however, in regenera-
tive medicine it is a misnomer. The product is actually platelet 
concentrate and is prepared using either a centrifuge or a fil-
ter. Some methods are standard centrifugation steps that are 
reminiscent of blood banking protocols and are conducted in a 
biological safety cabinet to maintain an aseptic environment. 
Automated centrifugal methods and filtration employ dispos-
able components with aseptic fluid paths. The resultant prod-
ucts have characteristics that can be used to distinguish the 
method of preparation and might affect their clinical effects.

The preparations can be characterized using a 2 × 2 matrix 
defining them as either WBC rich or poor and containing or 
not containing fibrin.163 Fibrin is produced by the addition of 
an agonist such as bovine thrombin and/or calcium salts. The 
presence of fibrin is thought to provide a matrix from which 
growth factors released from platelets will remain entrapped. 
Additionally, the agonist produces a more immediate release 
of growth factors from platelets allowing high levels to be 
achieved over short periods of time.

Some investigators express concern over the presence of 
WBC and their potential to cause inflammation164 while oth-
ers argue that they serve a valuable purpose in augmenting the 
levels of TGF-b165 and may decrease the risk of infection fol-
lowing intra-articular injection.166–171 Yet another classifica-
tion characterizes the platelet preparation based on its platelet 
count, activation status, and WBC content (PAW).172

Little is known concerning the role of red cells present 
in the platelet product intended for IA injection. Data from 
horses at 24 hours after the injection of 10 mL of autologous 
blood into the metacarpophalangeal joint show no untoward 
effects. In fact computerized force measurements compar-
ing the injected limb with the un-injected limb remained 
unchanged.173

Variables in Platelet Therapy Clinical Trials
Pharmacologic evaluation of platelet therapy is desirable 
but has yet to be done. Some animal model data on platelet-
derived growth factor (PDGF-BB) in rat Achilles collagenase-
induced tendinopathy exist,174 but a full characterization of 
platelet therapy has not been forthcoming. In part, this is 
due to the variable composition of the preparation. Platelet 
therapy has been used in a variety of indications with varying 
degrees of success. Data collected to date used to support or 
refute the selection of a given preparation have been largely 
absent, and what is available comes from in vitro or explant 
cultures.

Other variables include the route of administration, intra-
lesional injection for tendon and ligament, intra-articularly for 
joints, and option of single or multiple therapy sessions. Stan-
dardization and characterization of the platelet therapy is a 
reasonable step toward understanding the limitations of the 
product in any particular application.
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The following studies are summarized to exemplify the 
divergence of reports in the literature. Seventy eight patients 
with bilateral OA of the knee received either a single or dou-
ble intra-articular injections spaced three weeks apart. Both 
platelet therapy groups improved significantly when compared 
to saline controls, however, no differences were observed 
between those receiving a single or double injection.175

One hundred patients with OA of the knee and chon-
dropathy received either intra-articular platelet or HA ther-
apy. Assessment was performed at 12 months using the Likert 
scale measurements and range of motion.176 Those with low-
grade articular degeneration appeared to respond more favor-
ably but statistical significance was not achieved. Of note, 
when more than one injection was used in this study, frozen 
and thawed platelets were administered, which could have 
affected the results.

A group of 50 patients with OA of the knee, previ-
ously treated with cartilage shaving or microfracture proce-
dures, received two doses of platelet therapy with a 12-month 
period.177 All showed significant improvement from baseline 
without significant differences between the previous treat-
ment subgroups.

Half of the 120 patients with OA of the knee were 
treated with three weekly intra-articular injections of either 
platelet therapy or HA. The latter being a brand specifically 
chosen to have a molecular weight shown to possess enhanced 
viscoelasticity.178 The platelet product contained a 4.5-fold 
increase in platelet concentration and a 3.6-fold increase in 
WBC compared to native blood. Both treatments improved 
outcome over the six-month follow-up period as determined 
using subjective score measurements, however, the improve-
ment with platelet therapy was superior.

The impact of age on success with platelet therapy was 
revealed in a study of 150 patients with OA of the knee. 
Patients were treated with either low- or high-molecular-
weight HA or with platelet therapy.179 Results revealed sig-
nificant clinical improvement over the six-month trial with 
platelet therapy outlasting either form of HA; however, all 
treatments were less effective in older patients or in patients 
who had more progressive disease.

A study of 140 individuals with severe OA of the hip 
entailed treatment with intra-articular administration of cal-
cium chloride treated platelets, designed to produce fibrin for-
mation. The majority experienced clinical improvement for at 
least six months. Many experienced early responses including 
reduced pain and improved mobility within 6–7 weeks.180

An additional 91 patients with OA of the knee treated 
with platelet therapy achieved significant improvement at 
one-year post-treatment.181 After two years, patients contin-
ued to show improvement from baseline although the extent 
of the improvement declined thereafter.182

Some remain critical of the paucity of high quality ran-
domized controlled trials for platelet therapy,116,183 whereas 
others recognize the potential value of platelet therapy as a 

treatment option. The complexities and lack of standardiza-
tion of the platelet therapy constituents make controlled stud-
ies difficult to design and evaluate.184

Animal studies are a logical approach to more concisely 
document the benefits of platelet therapy in degenerative joint 
disease. In a recent publication, the effect of platelet therapy 
on canine OA was studied using force plate kinetics, a visual 
analog score for lameness, and the canine brief pain inventory 
(CBPI) for pain measures.185 Platelet therapy was prepared by 
closed system filtration producing a product that was 3-fold 
platelet and 2-fold WBC enriched over whole blood with an 
hematocrit of 27%, ie, leukocyte rich, fibrin poor, and conse-
quently a non-activated platelet product. Dogs with naturally 
occurring OA of the hip were treated with either a single dose 
of saline or platelet therapy by IA injection using volumes from 
3 to 6 mL in the affected joint. Three months after treatment 
the platelet therapy group significantly improved compared 
with the saline controls with respect to all response measures. 
The magnitude of change of peak vertical force among plate-
let therapy treated animals was 8%, statistically significant 
from baseline, and with a magnitude that rivals that found 
with NSAIDs.186 The magnitude of change measured using 
subjective measurements of clinical efficacy suggested a 35% 
improvement in the Hudson visual analog score (HVAS) for 
lameness as well as the CBPI; comparable to those seen for 
treatment of canine OA with accepted therapies.187 Recent 
data confirm that subjective measures such as the CBPI and 
HVAS correlate well with the more objective measurement, 
peak vertical force.188

This paper describes the pilot studies that justified the 
recently published prospective randomized control trial 
described above.185 In a yet to be published study sponsored 
by the manufacturers of the Pall platelet filtration system, 
20 veterinarians enrolled 100 dogs with confirmed lameness 
based on clinical judgment. Analgesics were discontinued for 
one week prior to assessing the animals with the HVAS for 
lameness. The filter based autologous platelet concentrate con-
tained a 3-fold increase in platelets, a 2-fold increase in leuko-
cytes, and a hematocrit approximating 27%. It was administered 
as a single injection and repeat HVAS scores were obtained at 
three months for each dog.185,189

HVAS data were analyzed using non-parametric analy-
ses. The Wilcoxon matched pairs test was used to compare the 
median of pre- vs. post-treatment values in a paired test. A test 
of the hypothesis that slope was equal to zero was employed 
to determine if the regression coefficient should be considered 
important enough to consider its magnitude.

Results of the platelet therapy were previously reported.185 
Interestingly, animals for which data were available regarding 
platelet concentration, white cell concentration, and/or nor-
malized values for both platelets and white cells failed to show 
a statistically significant difference in HVAS scores (Fig. 4).  
Support for a dose-dependent or component-dependent effect 
could not be obtained. HVAS baseline and three-month 
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post-treatment responses are depicted in Figure 5. From these 
data, we see that all responses show significant (p    0.05) 
improvement in indices of lameness with one exception, ie, 
amount of activity. The aggregate response is also significantly 
different with an overall magnitude of improvement of about 
30%; similar to that seen in the prospective randomized trial.185

The condition responsible for lameness allowed for the 
disease to be sub-classified as either OA, tendon or ligament 
damage (T/L)-associated lameness, and a less descriptive 
category involving bone-related lameness other than OA. 
All animals showed improvement (Fig. 6). The magnitude 
of the improvement for OA, tendon or ligament damage and 
bone appear to be approximately 30% by weighted average 
(OA = 28.1%, T/L 35.6% and bone 54.5% improvement).

Data suggest that older subjects do not improve as well as 
younger ones. Segmenting the dog population by age (Fig. 7) 
illustrates that most animals receive benefit through the age 
of 10. Animals appear to be less responsive to platelet therapy 
beyond this age when analyzed by the one sample Wilcoxon 
sign test.

Dose–response data were examined as a difference in 
HVAS pre- vs. post-treatment at  three months as a sepa-
rate function of individualized platelet concentration, WBC 
concentration, normalized platelet concentration, WBC con-
centration, and as combined normalized values for platelets 
and WBC. None resulted in a correlation coefficient greater 
than 10%, yet all showed statistically significant non-zero 
slopes. A trend was observed in a subset of animals treated 
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for OA who had one- and three-month follow-up data, sug-
gesting that a longer duration of improvement may correlate 
with higher concentrations of platelets, although there was 
no statistically significant difference in HVAS scores at three 
months with platelet concentration (Fig. 8).

Additional data were derived from studies conducted 
by veterinarians who followed treated animals beyond three 
months (Table 1). Difference in pre- and post-treatment HVAS 
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Figure 5. Responses to individual questions of the Hudson visual analog score before and three months after intra-articular platelet therapy for lameness 
and pain.
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Figure 6. Response to platelet therapy by indication.
Abbreviations: OA, osteoarthritis; T/L, tendon or ligament injury.

values suggest that some degree of improvement persists for 
at least six months following platelet therapy. Three animals 
have sustained improvement at one-year post-treatment.

Discussion
OA is a complex disease process in which the biochemistry 
and structure of cartilage, subchondral bone, and synovium 
are altered. Current medical therapies are strictly palliative 
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and newer approaches, although encouraging, are poorly sup-
ported by clinical trials.

Among the emerging therapeutic approaches is the use of 
platelet concentrate, a product which generates a host of cyto-
kines known to be involved in tissue repair. The observations 
reported here for canine OA are consistent with studies found 
in the literature. The subjective assessment employed corre-
lates with force plate kinetics data189 and is consistent with a 
prospective randomized, saline control trial.185 The magnitude 
of the response is the same, approximating 30% improvement.

0 1 3

0

1

2

3

<2x

>2x
(n = 5)

(10)

(15)

(18)

Month Post-treatment

Po
st

- m
in

us
 P

re
-tr

ea
tm

en
t  

H
VA

S
(p

os
iti

ve
 n

um
be

rs
 =

 im
pr

ov
em

en
t) fold-∆ PLTWB

Figure 8. Dose–response of platelet therapy. Dogs less than 11 years 
of age with diagnosis of OA and for whom both one- and three-month 
follow-up data exist along with identifiable fold-change in platelet 
concentrations relative to whole blood (fold-D PLTWB). A Mann–Whitney 
U-test applied to the high and low dose platelet treatment outcome at 
three months showed a trend in sustained improvement with increasing 
dose that did not achieve a level of statistical significance (p = 0.1539).

Table 1. Proportion of animals improved over time.

MONTHS  
POST-TREATMENT

PERCENT OF DOGS  
IMPROVED

N

1 93 61

2 83 24

3 84 90

4 100 5

5 83 6

6 88 16

Mean 88.5

SD 6.8

Note: Improvement is defined as a positive number when calculated as the 
post- minus the pre-treatment HVAS.

These observations uniquely analyze the duration of 
effect of a single injection. Reported human studies employed 
multiple injections over 2–4 weeks using an initial freshly pre-
pared platelet preparation followed by thawed frozen aliquots 
of the originally procured product. The current data suggest 
multiple injections may not be required. The single injec-
tion provides rapid onset and a sustained duration lasting at 
least up to six months. Limited anecdotal data suggest effects 
can last a year or more. Eighty four percent of the animals 
treated in these studies experienced some degree of improve-
ment. Human data show that the effect of treatment regimens 
can peak at about a year and persist for two years although 
the magnitude of the effect is lower than at one year but still 
higher than baseline.190

The majority of the published studies involve platelet 
preparations obtained with varying methods, a small number 
of patients, the absence of a suitable control group, or subjec-
tive measurements. Although attempts at systematic review or 
meta-analysis have been made,191–193 the majority of data are 
currently not suited for such an approach. Large, randomized 
control trials are required in the final analysis.

This review is consistent with the majority of publica-
tions regarding platelet therapy. It is intended to provide the 
reader with resources to identify the weaknesses in the body of 
literature, understand the rationale, purported mechanisms of 
action, and limitations of platelet therapy for OA.

The platelet product used in the canine studies proves to 
be an effective adjunctive treatment. Its role as a primary ther-
apy remains to be elucidated. The technique offers the advan-
tage of being self-contained, provides a sterile fluid path, and 
is easily incorporated into a clinical practice.
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