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Introduction
Schizophrenia is one of our world’s most devastating and 
complex psychiatric disorders. It is characterized by periods 
of delusional psychotic states and thought disturbance inter­
laced with a general state of anhedonia, avolition, and social 
withdrawal. Cognitive deficits are considered a core feature 
of the disorder. It follows that this lifelong disability often is 
accompanied by social and occupational exclusion.

In the past decade, the kynurenine pathway has been 
implicated in schizophrenia pathophysiology.1,2 Thus, eleva­
tion of brain kynurenic acid (KYNA), a neuroactive meta­
bolite of this pathway, is one of the most consistently found 
biochemical aberrations in schizophrenia and bipolar disorder 
with psychotic features.3–10 Apart from being an antagonist 
at the glycine site of the N-methyl-d-aspartate (NMDA) 
receptor,11 KYNA also antagonizes the cholinergic α7 nicotinic 
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receptor (α7nAChR).12 Similar to synthetic NMDA receptor 
antagonists such as phencyclidine or ketamine, elevation of 
endogenous KYNA in rodents produces aberrant behavior 
thought to model certain aspects of schizophrenia.13–18

The kynurenine pathway accounts for approximately 95% 
of tryptophan metabolism and involves several neuroactive 
metabolites (Fig. 1). There are two main branches of the path­
way diverting from the common precursor l-kynurenine. In 
a dead-end branch, KYNA is produced from kynurenine via 
the astrocytic kynurenine aminotransferase (KAT) enzymes. 
In the other branch of the pathway, guarded by the enzyme 
kynurenine 3-monooxygenase (KMO), 3-hydroxykynurenine 
is produced from kynurenine and further metabolized to 
3-hydroxyanthranilic acid by kynureninase. This ultimately 
leads to the formation of the intermediate quinolinic acid 
(QUIN), which subsequently is transformed to nicotinamide 
adenine dinucleotide (NAD+). QUIN is considered neurotoxic 
because of its agonistic action on the NMDA receptor and 
has mainly been studied with regard to neurodegeneration.19 
Thus, elevated levels of cerebrospinal fluid (CSF) QUIN have 

previously been reported in neurodegenerative disorders such 
as Huntington’s disease20 and Alzheimer’s disease.21 Recently 
though, QUIN was found to be elevated also in patients with 
severe depression and suicide attempters.22,23 The kynurenine 
pathway is critically regulated by inflammatory stimuli where 
the two rate-limiting enzymes tryptophan-2,3-dioxygenase 
(TDO) and indolamine-2,3-dioxygenase (IDO) are induced 
by proinflammatory cytokines.24–26 The cellular source of 
QUIN in the brain is microglia, a cell type responsible for 
most inflammatory signaling in the brain.

The literature on central levels of QUIN in schizophrenia 
is sparse. One early study found normal CSF QUIN levels 
in a small cohort of patients with schizophrenia.27 Similarly, 
according to a postmortem study 3-hydroxykynurenine, a pre­
cursor of QUIN, was unchanged in patients with schizophre­
nia, while kynurenine and KYNA were elevated.4 No studies 
hitherto have investigated KYNA and QUIN in the same 
schizophrenia patient cohort.

The aim of the present study is to further characterize the 
kynurenine pathway in schizophrenia. We therefore analyzed 
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Figure 1. The kynurenine pathway of tryptophan degradation. KYNA is produced mainly in astrocytes (dashed box), whereas QUIN is produced mainly in 
microglia (solid box).

http://www.la-press.com
http://www.la-press.com/international-journal-of-tryptophan-research-j97


Imbalanced kynurenine pathway in schizophrenia

17International Journal of Tryptophan Research 2014:7

CSF QUIN and related the levels to CSF KYNA, CSF 
kynurenine, and CSF tryptophan from the same patients with 
schizophrenia and from healthy controls.

Materials and Methods
Patients. Twenty-two Swedish Caucasian outpatients 

diagnosed with schizophrenia (n = 18; 11 males, 7 females) or 
schizoaffective disorder (n = 4; 2 males, 2 females), according 
to the Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition (DSM-IV)28 criteria, were included in the 
study. Dr Elisabeth Skogh and Dr Martin Samuelsson were 
the responsible psychiatrists for the DSM-IV diagnosis. Full 
details of the study design and patient characteristics, includ­
ing serum and CSF concentrations of olanzapine, have been 
published elsewhere.29 All of the patients were prescribed olan­
zapine as the only antipsychotic drug. The patients had been 
on medication with olanzapine for between 0.1 and 11 years 
(median 2 years) using the same dose (5–25 mg/day) for at least 
14 days prior to CSF sampling. All patients were somatically 
healthy, as judged by routine laboratory analyses (electrolytes, 
hematology, kidney, liver, and thyroid function) and a physi­
cal examination. The Brief Psychiatric Rating Scale (BPRS)30 
and Global Assessment of Functioning (GAF)28 index were 
used to evaluate symptoms and the level of function, respec­
tively. Mean (± SD) age of patients was 37.1 ± 7.6 years (range 
23–50 years).

Controls. As controls, 26 healthy Caucasian volunteers 
(18 males, and 8 females in the follicular phase of the men­
strual cycle) were recruited among medical students, hospital 
staff, and their relatives. All controls were somatically healthy, 
as judged by routine laboratory analyses (electrolytes, hema­
tology blood, kidney, liver, and thyroid function) and physical 
examination. Volunteers were subjected to a semi-structured 
interview using the Structured Clinical Interview of DSM-IV 
disorders (SCID Axis I)31 and a questionnaire for personality 
disorders (SCID Axis II)32 or interviewed by a psychiatrist 
to exclude mental illness. None of them had a family history 
of major psychosis or suicide in first- or second-degree rela­
tives, and they were all found to be free from current signs 
of psychiatric morbidity or difficulties in social adjustment at 
the time of sampling. Controls were not allowed to use any 
medication for at least one month prior to sampling; however, 
coffee and smoking were allowed. The mean (± SD) age of the 
controls was 24.9 ± 5.8 years (range 18–49 years).

CSF levels of kynurenine, KYNA, and tryptophan from 
a subsample of patients (n = 11, all males) and controls (n = 18, 
all males) have previously been published.6 KYNA is a stable 
compound, neither degraded nor affected by storage time, nor 
by repeated thawing.33 Since the sample size of the present 
study differs from our previously published paper,6 levels of 
CSF kynurenine, KYNA, and tryptophan in the patients and 
controls included here are shown in Table 1.

Ethical consideration. The patients and controls were 
recruited at Linköping University Hospital. The study was 

approved by the Ethics Committee of Linköping University 
and the Swedish Medical Products Agency. The study was 
performed according to the Declaration of Helsinki for exper­
iments involving human subjects. All patients and healthy 
volunteers received written as well as verbal information and 
provided written consent prior to engaging in the study. Astra­
Zeneca did neither influence nor sponsor the clinical research 
performed at Linköping University. These data arise from a 
sample collection, not from a prospective trial, and this work 
is therefore not recorded in any clinical trial registry.

CSF sampling. For lumbar puncture, a disposable needle 
(BD Whitacre Needle 0.7 × 90 mm) was inserted at the L 4–5 
level with the subject in the right decubitus position. CSF was 
allowed to drip into a plastic test tube. The CSF samples were 
protected from light, centrifuged at 1438  g for 10  minutes 
(Sigma 203 centrifuge) within 30 minutes after the puncture, 
and divided into 2- to 3-ml aliquots. Samples were stored at 
−70 °C pending analysis.

Analysis of olanzapine and laboratory variables. In 
order to analyze olanzapine in CSF and serum, a validated 
liquid chromatography/tandem mass spectrometry method 
was used as described in detail elsewhere.34

Analysis of kynurenines. For QUIN, standard curves 
were prepared in the range of 0.005 to 0.5  µmol/L QUIN 
(Sigma-Aldrich), dissolved in Dulbecco ś phosphate buffered 
saline (PBS; Gibco®, Life Technologies, Carlsbad, CA, USA), 
aliquoted, and stored at −70 °C until use. CSF and standard 
samples (50 µL) were diluted 2× with internal standard solu­
tion in 5% formic acid and filtered by centrifugation at 3000 g 
for 60 minutes at 10 °C using 10 kDa Ultracel®-10 filter plates 
(Merck Millipore, Darmstadt, Germany). Internal standard 
(13C3

15N1-QUIN; Synfine research Inc., Ontario, Canada) 
was added to each standard and CSF sample to a final concen­
tration of 0.5 µmol/L.

Following centrifugation, 7.5 µL of the filtrate was injected 
into a Waters Acquity high-performance liquid chromatog­
raphy (HPLC) system equipped with a SymmetryShieldTM 

Table 1. CSF levels of tryptophan,kynurenine and KYNA in the 
present sample, presented as mean ± SEM. Part of these data have 
previously been published.6

Patient Control

N 21 26

Tryptophan (µM) 1.7 ± 0.03 1.8 ± 0.07

P = 0.652

N 21 26

Kynurenine (nM) 57.2 ± 3.5 37.3 ± 4.3

P = 0.001

N 19 26

KYNA (nM) 2.1 ± 0.2 1.6 ± 0.1

P = 0.012
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RP18 2.1 × 100 mm, 3.5 µm particle column. The detection 
was performed using a Waters Xevo TQ-S triple quadrupole 
mass spectrometer operating in positive ionization MS/MS 
configuration. The mobile phase was run at a flow rate of 
300 µL/minute and consisted of 2.1% formic acid (MS-grade, 
Sigma-Aldrich, St. Louis, MO, USA) in MilliQ water 
(A phase) and 95% acetonitrile (MS-grade, Sigma-Aldrich), 
0.1% formic acid in MilliQ water (B phase), starting with 5% 
B for two minutes, following gradient elution up to 95% B, 
with a total run time of 10 minutes. The mass spectrometer 
was tuned for QUIN and set at capillary voltage of 3.0 V, cone 
voltage 25 V, source temperature 150 °C, desolvation tempera­
ture 500 °C, desolvation gas flow of 150 L/hour, and collision 
energy of 16 eV. Mass spectral transition for QUIN was m/z 
168 . 106 and for the IS 172 . 110.

Calibration was performed using standards cover­
ing the range of the CSF concentration. Seven concentra­
tion points were used to establish a linear calibration curve 
and plotted using the ratio of analyte peak area over IS peak 
area after integration by Masslynx 4.1  software (Waters 
Corporation, Milford, MA, USA). Retention time for QUIN 
was 1.2 minutes.

The analysis of tryptophan, kynurenine, and KYNA was 
performed utilizing a reversed-phase HPLC system as pre­
viously described.5,6 Fifty-microliter samples were manually 
injected, and some samples were analyzed in duplicate, and the 
inter-individual variation was less than 5%.

Statistical analysis. Plotting CSF QUIN residuals 
revealed one patient as an outlier in regard to CSF QUIN 
(standardized residuals . 3 SD). Data from this 29-year-old 
male patient (CSF QUIN = 85.1 nM) were removed from all 
further analyses. For one patient the QUIN levels were below 
the lowest level of detection (LLOD), and the QUIN value 
for that patient was substituted for the LLOD value (5 nM). 
Background characteristics between patients and controls 
were compared using t-tests or Chi-square tests. To study the 
effect of background characteristics on CSF QUIN concentra­
tion in the patient sample and in the controls sample we used 
correlation analyses or Mann–Whitney U-tests. All correla­
tion analyses were performed using Spearman rank correlation 
tests. The comparisons of CSF kynurenine metabolites levels 
and the QUIN/KYNA ratio between patients and healthy vol­
unteers were performed using t-tests. Logistic regression anal­
yses with age and sex as covariates were also performed. All 
reported P-values are two sided. All analyses were made using 
IBM SPSS Statistics 21.0 software (IBM SPSS Inc., Chicago, 
IL, USA).

Results
Background characteristics. The mean age (±SD) among 

the 21 patients was 37.5 (±7.5) years, and in the 26 controls 
24.9 (±5.8) years (P  ,  0.0001). Sex, smoking status, height, 
weight, and body mass index (BMI) did not differ significantly 
between patients and healthy controls (Table 2).

Age was correlated to QUIN levels in controls (P = 0.012) 
but not in patients; there was however a trend toward correla­
tion also in patients (P = 0.113). Sex, height, weight, and BMI 
were not correlated to CSF QUIN in patients or in controls. In 
the patient group there was no correlation between CSF QUIN 
and psychiatric symptom ratings (BPRS and GAF); however, 
there was a tendency of positive correlation between CSF 
QUIN and serum levels of olanzapine (ρ = 0.414, P = 0.062). 
There was no correlation between CSF QUIN levels and CSF 
olanzapine levels (ρ = 0.333, P = 0.140). The mean CSF QUIN 
concentration did not differ between smokers/nonsmokers or 
male/females, in patients or in controls (Table 3).

CSF QUIN levels and the QUIN/KYNA ratio in 
patients and controls. The mean CSF QUIN concentration did 
not differ significantly between patients and controls (patients: 
20.6 ± 1.51 nM vs. controls: 18.2 ± 1.08 nM; P = 0.198; Fig. 2). 
Adjusting the comparison for potential confounding by age 
and sex gave a similar result (Odds Ratio (OR) = 0.93, 95% 
confidence interval (CI) = 0.80–1.10; P = 0.355). The QUIN/
KYNA ratio was however close to significantly decreased in 
patients compared to healthy controls (P = 0.057). Adjusting 
the analysis for differences in age and gender distribution in 
two groups strengthened the association between the patient 
group and a decreased QUIN/KYNA ratio (OR = 0.66, 95% 
CI 0.45–0.95; P = 0.027).

Relationship with other kynurenine metabolites.  
A correlation between CSF QUIN and CSF kynurenine lev­
els was detected in patients (ρ = 0.53, P = 0.014) but not in the 
controls (ρ = −0.32, P = 0.117). A similar pattern was seen 
regarding CSF QUIN and CSF KYNA in patients (ρ = 0.54, 
P = 0.016) and in controls (ρ = 0.12, P = 0.565). No significant 
correlation between CSF tryptophan and CSF QUIN levels 
was detected in patients (ρ = 0.32, P = 0.164), or in controls 
(ρ = −0.18, P = 0.373). See Table 1 for levels of kynurenine, 
KYNA, and tryptophan.

Discussion
The present study offers support to the view of an imbal­
anced kynurenine pathway in patients with schizophrenia. 
Thus, levels of CSF kynurenine and CSF KYNA were found 
to be elevated whereas CSF QUIN levels were found to be 
in the same range in patients and in healthy controls. Fur­
thermore, a reduced QUIN/KYNA ratio was observed in 
patients, a result that is likely independent of smoking status. 
Moreover, QUIN was found to correlate to both kynurenine 
and KYNA in patients but not in controls. Despite a cor­
relation on the individual patient level, no difference in CSF 
QUIN levels between patients and controls was observed, 
suggesting that a putative enhancement of QUIN formation 
is substantially lower compared to the increase in kynurenine 
and KYNA in patients. The lack of correlation between CSF 
QUIN and CSF tryptophan might be attributed to the fact 
that no difference in the levels of neither tryptophan nor 
QUIN was observed.
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The present findings indicate an over-activated but also 
an imbalanced kynurenine pathway in patients with schizo­
phrenia, favoring the production of KYNA over QUIN.

The observed imbalance of the kynurenine pathway in 
schizophrenia is likely a result of a priority of l-kynurenine 
metabolism toward the KYNA branch. Several mechanisms, 
acting independently or in combination, may induce such a 
disparity. The increased activity in the kynurenine pathway is 
likely attributed to an upregulation of the initial and rate lim­
iting enzyme TDO in patients with schizophrenia, tentatively 
induced by the increased secretion of the proinflammatory 
cytokine IL-1β.10,26,35,36 Furthermore, the differential activa­
tion of the QUIN and KYNA branches of the kynurenine 
pathway is likely sought for in differences in activity of the 
enzymes guarding the entry of l-kynurenine into the different 
branches of the pathway. Thus, compared to the higher capac­
ity of KAT enzymes, displaying Km values in the low millimo­
lar range,37 the KMO enzyme gets saturated at relatively low 
concentrations (Km ≈ 20 µM),38 and can therefore act as a rate 
limiting step in the synthesis of QUIN. In a situation where 
l-kynurenine is elevated (eg, by induction of TDO) such 
a limitation of KMO might guard against excessive production 
of QUIN. A suboptimal function of KMO could also present 
an explanatory mechanism of the observed increase in KYNA 
but not in QUIN.7,8,39 Such a scenario would thus shunt the 
metabolism of l-kynurenine toward formation of KYNA, 
which indeed is observed in the present study. In agreement, 
experimental data show increased brain KYNA concentrations 
in Kmo knockout mice or following pharmacological blockade 
of KMO.40–42 The importance of KMO in the kynurenine 
metabolism is supported by clinical data. A nonsynonymous 
single nucleotide polymorphism (SNP) in the KMO gene has 
been shown to affect the CSF KYNA levels in patients with 
schizophrenia39 and bipolar disorder.8 In addition, the activity7 
and expression8 of the KMO enzyme was found to be reduced 
in prefrontal cortex in patients with schizophrenia and bipolar 
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Figure 2. CSF QUIN levels, in healthy controls and in patients with 
schizophrenia. After adjustment for age and sex (OR = 0.93, 95% CI 
0.80–1.10; P = 0.355).

disorder patients with psychosis. Furthermore, a recent study 
suggests that the function of other enzymes in the pathway is 
worth investigating as well. Thus, examining rare mutations 
constituting a polygenic burden in schizophrenia, the lowest 
identified nominal P-value for disruptive mutations was for 
the enzyme kynureninase, converting 3-hydroxykynurenine 
to 3-hydroxyanthranilic acid.43 Although these mutations did 
not reach statistical significance, it constitutes another piece 
of evidence for a downregulation of the QUIN branch of the 
kynurenine pathway in schizophrenia. The ratio between CSF 
levels of QUIN and KYNA is consequently telling us more 
than the individual measurements of QUIN and KYNA per 
se. Not only do these compounds represent different branches 
of the kynurenine pathway but also more importantly have 
opposing effects, with KYNA being an antagonist and QUIN 
an agonist of the NMDA receptor. A shift in the ratio between 
QUIN and KYNA is therefore likely to have an effect on 
behavioral domains.

The higher QUIN/KYNA ratio in controls is in line 
with the above-mentioned studies and renders support 
to the hypothesis that KYNA is elevated in patients with 
schizophrenia likely because of a lower input of kynurenine 
into the QUIN branch of the pathway. In comparison, we 
recently showed that this ratio (QUIN/KYNA) was elevated 
in suicide attempters compared to healthy volunteers.22

The kynurenine pathway is increasingly recognized as 
a pathophysiological promoter in several diseases. In this 
regard, the balance between the two oppositely acting metab­
olites, KYNA and QUIN, acting to antagonize and stimulate 
the NMDA receptor, respectively, is of major importance for 
glutamatergic neurotransmission. The present study, showing 
normal CSF QUIN levels concomitant with increased CSF 
kynurenine and CSF KYNA, resulting in a decreased QUIN/
KYNA ratio in patients, offers support to the view of an 
imbalanced kynurenine pathway in schizophrenia. These data 
are thus in line with previous findings showing elevated levels 
of KYNA and a compromised function of enzymes involved 
in the synthesis of QUIN in patients with schizophrenia.
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