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Introduction
Computational tools are widely used to complement biological 
investigations, especially in global gene expression analysis and 
high throughput assays. Advanced computational analyses such 
as integrated analyses of mRNA and miRNA expression, provide 
information on several regulatory networks in cancers,1 includ-
ing retinoblastoma (RB), a peadiatric ocular tumor. The identi-
fication of these molecular networks could implicate potential 
genes and miRNAs that may behave as biomarkers. It will also 
help better understand RB biology and clinical management.

RB is a childhood cancer that arises from the primitive 
retinal layer. The current management is enucleation (removal 
of eye in childhood), chemotherapy and/or focal therapy. Tar-
geted therapy is gaining importance in the management of 
RB.2–4 Gene expression profiling of RB tumors has helped to 
characterize cell signalling and the molecular pathways involved 
in its pathogenesis.5–7 Earlier reports on relative miRNA pro-
filing between normal and RB tumor tissues, and global gene 
dys-regulation studies (HMGA2, Tiam 1, EpCAM) have indi-
cated several aberrant miRNAs and their regulatory genes.8–15
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We had earlier reported that silencing of HMGA2 
reduced cell proliferation in cultured RB cells.12 HMGA2,  
a non-histone chromosomal protein, is highly expressed 
during embryogenesis and in various malignant tumors 
including RB.16,17 This protein contains structural DNA 
binding AT-rich domains, and at the C-terminus these 
domains undergo conformational change due to their inter-
action with the B form of DNA. This conformational change 
plays a crucial role in the transcriptional regulation of other 
proteins which are also involved in the epithelial mesen-
chymal transition (EMT) pathways.18 Over-expression of 
HMGA2 protein is seen in several malignancies and may be 
due to the suppression of miRNAs, namely miR-15, miR-16, 
miR-19619,20 and let-7.21 In a study on pituitary tumors, E2F1 
activation through displacement of HDAC1 by HMGA2 
resulted in pRB inactivation.22

Reports from, in vivo and in vitro studies have dem-
onstrated a reduction in cell proliferation in various cancers 
including RB by blocking the HMGA2 protein synthesis 
using antisense methodology.22,23 Our previous study,12 
implicated changes of several abnormal gene networks 
including mitogen-activated protein kinase (MAP) kinase, 
JAK/STAT, Ras pathway, Ras induced ERK1/2 and tumor 
protein 53 (p53) dependent pathways in HMGA2 silenced 
RB cells.

In the present study, using computational and experi-
mental tools, the role of dys-regulated miRNAs in HMGA2-
silenced retinoblastoma (RB) cells was investigated. Their 
association with the gene targets have been analysed using 
integrated array analysis. The specific role of miR-106b-25 
cluster in RB has also been examined.

Materials and Methods
Primary  tumor samples. Fresh frozen tumor 

samples were collected from 20 enucleated eyeballs of RB 
patients reported at Larsen and Toubro Department of 
Ocular Pathology, Medical Research Foundation, Sankara 
Nethralaya as part of RB management (2010–2011) and uti-
lised for research purpose. The Institutional Ethics Com-
mittee of Vision Research Foundation, Sankara Nethralaya 
(Chennai, India) has reviewed and approved the study (Insti-
tutional ethics clearance number: 2009–146p). Fresh adult 
retinae were collected from 3 cadaveric eyeballs (received at 
C.U Shah eye bank, Medical Research Foundation Sankara 
Nethralaya, http://www.sankaranethralaya.org/eye-bank.html).  
The collected tumor samples and the normal retinae were 
snap frozen in liquid nitrogen and stored at -80 °C until 
further use.

The haematoxylin and eosin stained RB sections were 
reviewed microscopically and graded by an ocular pathologist 
(S.K). The clinico-pathological features tabulated in Table3 
are based on the tumor invasion of the choroid, optic nerve 
or orbit. These RB tumors were recorded as per the report by 
Sastre X etal.24

ell culture. Human RB cell lines (Y79, Weri Rb1, 
Riken cell bank, Japan) were used as in vitro model to study 
the significance of the HMGA2, hsa-miR-106b-25 clusters in 
RB. The RB cell lines were cultured in RPMI 1640medium 
(Gibco-BRL, Rockville, MD, USA) supplemented with 10% 
heat-inactivated FBS (Gibco-BRL, Rockville, MD, USA), 
0.1% ciprofloxacin, 2mM L-glutamine, 1mM sodium pyru-
vate, and 4.5% dextrose (Sigma Aldrich, St. Louis, MD, USA) 
and grown in suspension at 37°C in a 5% CO2 incubator.

Transient transfection in RB cells (Y79, weri Rb1). The 
transfection method of silencing HMGA2 using Human 
HMGA2 siRNA (Hs_HMGA2_6 catalogue number SI03029929:  
forward strand: 5′-CGGCCAAGAGGCAGACCUATT-3′ 
and the reverse strand: 5′-UAGGUCUGCCUCUUGGC-
CGTT-3′, Qiagen, Santa Clara, CA, USA) in RB cells (Y79, 
Weri Rb1) was carried out as reported earlier.12

MicroNA profiling. The small RNAs were extracted 
from the HMGA2-silenced RB (Y79) cells using miRVANA 
kit (Ambion, Foster city, CA, USA) following manufactures 
protocol. The quantity of RNA was measured by Nano Drop 
spectrophotometer and the quality of small RNA was assessed 
using Agilent 2100 bioanalyzer. The extracted total RNA sam-
ple was diluted to 50ng/ul in nuclease free water. About 100ng 
of total RNA was dephosphorylated along with appropriate 
diluted Spike-In control (Agilent Technologies, microRNA 
Spike-In Kit, Part Number 5190–1934) using Calf Intestinal 
Alkaline Phosphatase (CIP) master mix (Agilent Technologies, 
Part Number: 5190–0456) by incubating at 37oC for 30min. 
Following the dephosphorylation, miRNA samples were dena-
tured by adding dimethylsulfoxide and heated at 100 °C for 
10 min and transferred to ice-cold water bath. The miRNA 
labeling was performed using miRNA Complete Labeling and 
Hyb Kit (Agilent Technologies, Part Number: 5190–0456). 
The Ligation master mix containing Cyanine 3-pCp was added 
to the denatured miRNA samples and incubated at 16°C for 
2 hours. The Cyanine 3-pCp labeled miRNA samples were 
dried completely in the vacuum concentrator (Concentra-
tor Plus, Eppendorf, Germany) at 45°C to 55°C for 2hours. 
The dried sample were resuspended in nuclease free water and 
mixed with Hybridization Mix containing blocking solution 
and Hi-RPM Hybridization Buffer and incubated at 100°C 
for 5min followed by snap chill immediate cooling on ice for 
5min. The samples were hybridized on the Human_miRNA_
version 3.15 ×  8 array. The hybridization was carried out at 
55°C for 20hours. After hybridization, the slides were washed 
using Gene Expression Wash Buffer1 (Agilent Technologies, 
Part Number 5188–5325) at room temperature for 5min and 
Gene Expression Wash Buffer 2 (Agilent Technologies, Part 
Number 5188–5326) at 37°C for 5min. The slides were then 
washed with acetonitrile for 30seconds. The microarray slides 
were then scanned using Agilent Scanner (Agilent Technolo-
gies, Part Number G2565CA).

ata analysis of microarray. The miRNA microar-
ray profiling of the transiently HMGA2-silenced RB cells 
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using Human miRNA Microarray (V3), 8× 15K chip was 
performed in two replicates to identify a spectrum of dereg-
ulated cellular miRNAs. Intra-array normalization was 
done using 90th percentile and baseline transformation was 
done to the median of all the samples. Volcano plot based 
method was used to identify miRNAs that were 2.0 fold dif-
ferentially expressed between siRNA-treated and untreated, 
(P-value # 0.05 was calculated by unpaired Student’s t-test 
and Benjamini Hocheberg based FDR correction). Unsu-
pervised hierarchical clustering of differentially expressed 
miRNA were done using Pearson uncentered distance matrix 
and average linkage rule to establish gene clusters that dif-
ferentiate the two groups (Fig.1A shows the scatter plot for 
the top 100 dysregulated miRNAs). Predicted and validated 
targets of differentially expressed miRNAs was obtained 
using Microcosm database (www.ebi.ac.uk/microcosm/). 
Further, significant biological analysis of the non-redundant 
list of gene targeted by differentially expressed miRNA was 
performed using DAVID functional annotation tool. Statis-
tically significant Gene Ontology and pathways that were 
enriched with a corrected P value of #0.05 and an FDR of 
$2.0 were chosen for regulatory network modelling. Signifi-
cantly regulated genes, miRNA along with Gene Ontologies 
and pathways were provided as input to BridgeIsland Soft-
ware (Bionivid Technology Pvt Ltd, Bangalore) to obtain the 
nodes and edges information. Further, Cytoscape V 2.8.1 was 
used to model the regulatory network.

ransfection of hsa-miR-106b-25 cluster antagomirs in 
 cells. Transient transfections of hsa-miR-106b-25 cluster 
antagomirs (anti-miR-106b, anti-miR-93, anti-miR-25; Thermo 
scientific, Dharmacon, Lafayette, CO, USA) were carried out 
in RB cells. The antagomirs for the mature miRNA sequences  
are: hsa-miR-106b, 5′-UAAAGUGCUGACAGUGCAGAU-3′ 
(catalogue number: IH-300649–07–0005), hsa-miR-93,  
5′-CAAAGUGCUGUUCGUGCAGGUAG-3′ (catalogue 
number: IH-300512–08–0005), hsa-miR-25, 5′-CAUUGCAC-
UUGUCUCGGUCUGA-3′ (catalogue number: IH-300498–
07–0005). The scrambled miRNA sequence used in the 
study is 5′-GCAACGAUGGUCCAACACCUCGGCC-3′ 
(Thermo scientific, Dharmacon, Lafayette, CO, USA).

Quantitative real time PCR. Total RNA was isolated 
from HMGA2mRNA expressing primary RB tumor tissues 
(n=20) and RB cells (Y79, Weri Rb1: anti-miR treated and 
untreated cells, scrambled miRNA treated cells) using TRI-
ZOL reagent (Life Technologies, Carlsbad, CA, USA). The 
extracted total RNA was treated with TURBO DNase to 
remove the genomic DNA (Ambion, Genetix Biotech Asia 
Pvt. Ltd., New Delhi, India). A RT-master mix (15 µL) 
containing 100 ng of total RNA (5 µL), 100 mM dNTPs 
(0.15 µL), 50 U/µL MultiScribe™ Reverse Transcriptase, 
(1.00µL), 20U/µL RNase Inhibitor (0.19µL) and nuclease-
free water (4.16µL) was prepared. The prepared reaction vol-
ume was incubated in a thermal cycler programmed for the an 
initial hold for 30minutes at 16°C, followed by a second hold 

for 30minutes at 42°C, followed by a third hold for 5minutes 
at 85°C and a final hold at 4°C.

The gene expression assays for HMGA2 (Hs00171569_m1),  
GAPDH (Glyceraldehyde-3-phosphate dehydrogenase; endog-
enous control for gene; Hs99999905_m1), hsa-miR-106b-25 
family, hsa-miR-106b (Catalogue number RT 442), hsa-
miR-93 (catalogue number: RT 1090), hsa-miR-25 (Catalogue 
number: RT 403) and miRNA assay control RNU6B (Cata-
logue number: RT 0011093) were purchased from Applied 
Biosystems (Lab India, Chennai, India). Normalization of 
the HMGA2 gene expression was performed with GAPDH, 
which was determined using pre-developed assay reagents 
(Applied Biosystems, Bangalore, India). The PCR reaction 
was performed in 20µl volume containing 1µl (100ng) of 
the sample cDNA, universal PCR master mix (Taqman, ABI 
Applied Biosystem, Bangalore, India) and probes for gene/
miRNA according to the manufacturer’s instructions. The 
relative expression of the gene in each sample was analysed 
in triplicates and the miRNA expression in transfected RB 
cells was analysed in duplicates. The PCR protocol using 
Taqman probes was performed as follows: 2 min at 50 °C, 
10min at 95°C followed by 40cycles of 15sec at 95°C and 
1min at 60°C. Commercial software (SDS version 1.3, ABI, 
Bangalore, India) was used to determine relative expression 
of genes/miRNAs after normalisation with cadaveric retina 
(non-neoplastic tissue control). The relative expression values 
for HMGA2 gene expression were normalized to the GAPDH 
and miRNA (hsa-miR-106b-25) expressions were normalized 
to the RNU6B. Fold change in relative gene expression are 
expressed as log2 fold change.

Cell proliferation assay. Five thousand RB cells (Y79 and 
Weri Rb1) were plated in 96 wells plate at day 0. On day 1, 
the cells were transfected with 100µl of serum free RPMI 
medium containing 50 pmol of antagomirs and 0.5 µl of 
LipofectamineTM transfection reagent (Invitrogen, Darstadt, 
Germany). The cells were incubated for 24 hours, 48 hours 
and 72hours respectively. At the end of the incubation period,  
serum free RPMI medium containing 5 mg/ml of 3-(4,5- 
Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT;  
Sigma Aldrich, St. Louis, MD, USA) was added to the wells, 
and the cells were incubated at 37°C for 4hours. Following 
incubation, 100 µl of MTT solubilization solution DMSO 
(Sigma Aldrich, St. Louis, MD, USA) was added, and the 
cells were incubated at 37 °C for 10min. Absorbance mea-
surements were made using a spectrophotometer (Beckman 
Coulter India Private Ltd, New Delhi, India) at 562nm, and 
the background was subtracted at 562nm.

Immunoblotting. The protein lysate from antagomirs– 
treated and untreated RB cells were prepared using RIPA 
buffer containing 50mM Tris-HCl (pH 7.6), 5mM EDTA, 
150mM sodium chloride, 0.1% PMSF and 250µl of pro-
tease inhibitor cocktail (1mg/ml). A total protein of 50µg 
was resolved by using 12% SDS-PAGE followed by elec-
trophoretic transfer onto the nitrocellulose membrane at 
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100V for 1.5 hours. The membranes were incubated with 
primary antibodies for human BIM (1:1000; catalogue No: 
H-191, Santa cruz, USA), human p21 (1:1000; catalogue  
No: SC-6246, Santa Cruz Biotechnology, CA), ß-actin 
(1:5000; Sigma Aldrich, St. Louis, MD, USA) overnight 
at 4°C followed by 2hours of incubation with appropriate 
anti-mouse horseradish peroxidase-conjugated secondary 
antibodies. After three intermittent washes for 30mins each 
with TBST containing 0.5% Tween-20, the membranes were 
subjected to chemiluminescence detection method (Super-
signal West Femto Maximum Sensitivity Substrate, Pierce 
Technologies, Germany). To determine the fold-change in 
the expressions of BIM and p21 proteins in the individual 
samples, the intensities of the bands were calculated using 
Quantity One, version 4.7 software in GS 800 calibrated 

Densitometer (Bio Rad, Gurgaon, Haryana, India) followed 
with normalization with the respective ß-actin expression.

Flow cytometry. Flow cytometric analysis was performed 
on RB cells following transfection. About 2 × 105 cells were 
plated in 24 wells plate, transfected with 50 pm of antago-
mirs to all the three miRNAs (hsa-miR–106b-25 cluster). 
Flow cytometric analyses were performed after 48 hours of 
transfection, using the Annexin V-fluorescein isothiocyanate 
(FITC) Kit for apoptosis analysis according to the manufac-
turer’s protocol (BD Biosciences, Gurgaon, India).

Scratch assay. After transfection of RB cells (1 ×105 cells/ 
96 well plate), a single uniform scratch was made once a con-
fluent monolayer was attained.25 The wells were then washed 
with PBS to remove the detached cells. Media was added to 
the culture immediately before taking the images. The area 

igure1A. The miRNA expression profile in HMGA2 si treated 79 cells. 
Notes: Hierrarchial cluster represents the expression profile of 100 differentially altered miRNAs in post HMGA2 silenced 79cells compared with 
untreated B cells. ed line indicates up-regulation, while green line indicates downregulation in fold change relative to untransfected 79cells. 
igure 1. mi and arget ene egulatory etwork odeling.  
Notes: he key mis that targets differentially expressed genes are presented here (ytoscape v 2.8). ircles and squares indicate mi and 
genes respectively, red colouer indicates up-regulation and green colour indicates down-regultion, ed colour indicates up-regulation while green colour 
indicates downregulation in fold change relative to untreated 79cells. he colour lines represent: green line describes the positive regulation between 
mi (down) and target gene (up); red line describes the positive regulation between mi(up) and target gene (down); pink line describes the positive 
regulation between mi(up) and target gene(up) and blue line describes positive regulation between mi (down) and target gene (down).
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of scratch infiltrated by migrating cells at 0hour, 24hours 
and 48hours of incubation in the experimental groups were 
calculated using Image J software (Image J, NIH, USA). The 
difference in area of migration between these time points 
and their 0 hour area was noted. The average area cov-
ered by the treated RB cells relative to untreated RB cells 
was expressed as percentage of migration at 24 hours and 
48hours of durations.

tatistical analysis. ANOVA (Post Hoc, Dunnett t-test) 
was used to compare the controls and test variables for cell 
proliferation using SPSS software (version 12.0). Paired stu-
dent’s t-test was used to compare the untreated and treated 
experiment groups for scratch assay. Values expressed for cell 
proliferation, apoptosis and scratch assay are mean ± SD of 
at least three experiments. They were considered statistically 
significant at P # 0.05.

esults
miNA expression in HMGA2-silenced  (79) 

cells. The miRNA expression analysis in Y79 cells revealed 
188 differentially expressed miRNAs. These differen-
tially regulated miRNAs (supplementary file 1) include 
86 up-regulated and 102 downregulated miRNAs. The 
family cluster classification of up-regulated miRNAs using 
TAM tool26 (http://202.38.126.151/hmdd/tools/tam.html)  
revealed three main clusters: hsa-miR-let7e clusters (miR-99b, 
miR125a), hsa-miR-506 cluster (miR-513a, miR-513b, miR-513c), 
and hsa-miR-1283 cluster. Functionally, the filtered 82 

up-regulated miRNAs were found to be involved in the 
activation of the caspase cascade (miR-150, miR-155), angio-
genesis (miR-150) and activation of apoptosis, cell cycle regu-
lation (miR-494, miR-150, and miR-155), cell proliferation 
(miR-150), and tumor suppression (miR-125a, miR-150, and 
miR-155). From this, it appears that miR-150 and miR-155 
expressions are common to the key regulatory cellular func-
tions in RB.

The downregulated 102miRNAs were categorized into 
15 families using TAM tool. Table1 lists the various miRNA 
clustering in the specific families along with their function. The 
suppression of hsa-miR-17 cluster, its paralogs, hsa-miR-106a  
cluster, hsa-miR-106b cluster, hsa-miR-23b family, hsa-
miR-130 family following the silencing of HMGA2 oncogene 
indicates a positive regulation of these miRNAs by HMGA2. 
The pathway analysis of these dysregulated miRNA’s using 
TAM tool revealed the down regulation of AKT pathway 
(P,0.001). The miRNA involved in this pathway was deter-
mined as miR-20a, miR-18a, miR-7, miR-17, miR-19a, miR-
331, miR-19b, miR-26a, miR-92a, miR-21 and miR−221. The 
functional annotations of these deregulated miRNAs are 
found to be involved in angiogenesis, apoptosis, cell cycle 
regulation, cell differentiation, cell proliferation, tumor sup-
pression and oncomirs. These data have been submitted to the 
NCBI: GEO data base (GSE51696).

The sequence alignment of the HMGA2 mRNA with 
the conserved miRNAs described above was carried out 
using the online tool: microRNA.org-Targets and expression 

able1. he list of mis de-regulated in the post- HMGA2 B cells (79) revealed in the microarray analysis and their functional 
annotations.

S.No utol otto of  
gult miRNA

Dgult miRNA

p-gult miRNA Dow-gult miRNA

1. ngiogenesis mi-150 mi-15a, mi-let7b, mi-18a, mi-let7f, mi-21, mi-126,  
mi-16, mi-19a, mi-19b, mi-378, mi-27b, mi-130a,  
mi-20a, mi-92a, mi-17, mi-221 

2. poptosis mi-494, mi-150, mi-155 mi-15a, mi-15b, mi-21, mi-148a, mi-221, mi-7g,  
mi-19a, mi-19b, mi-182, mi-27a, mi-34b, mi-34c,  
mi-29b, mi-29a, mi-20a, mi-17, mi-16, mi-92a,  
mi-96, mi-18a, mi-7, mi-26a, mi-195

3. ell cycle mi-494, mi-150, mi-155 mi-15a, mi-24, mi-15b, mi-21, mi-19a, mi-140,  
mi-107, mi-221, mi-let-7b, mi-7a, mi-124, mi-7g,  
mi-331, mi-19b, mi-182, mi-27a, mi-27b, mi-34b,  
mi-185, mi-29b, mi-20a, mi-17, mi-16, mi-34c,  
mi-92a, mi-424, mi-96, mi-18a, mi-9, mi-195 

4. ell differentiation – mi-15a, mi-424, mi-16 

5. ell proliferation mi-150 mi-15a, mi-24, mi-15b, mi-124, mi-21, mi-let7d,  
mi-16, mi-9, mi-27b, mi-130a, mi-34b, mi-34c,  
mi-140, mi-29b, mi-221 

6. umour suppressors mi-125a mi-15a , mi-let7b, mi-7a, mi-7f, mi-7g, mi-7d, mi-16,  
mi-7i, mi-7e, mi-26b, mi-26a, mi-101, mi-34b, -c,  
mi-195, mi-124, mi-125a, mi-126, mi-29a 

7. ncomirs mi-150, mi-155 mi-24, mi-20a, mi-20b, mi-21, mi-17, mi-106b,  
mi-19a, mi-19b, mi-107, mi-27a, mi-18a, mi-92a,  
mi-93, mi-18b, mi-221

8. kt pathway – mi-20a, mi-18a, mi-7, mi-17, mi-19a, mi-331, mi-19b,  
mi-26a, mi-92a, mi-21 and mi-221
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(www.microRNA.org) to confirm its regulatory networks. The 
output of this analysis has been tabulated in Table2. Among 
this list, we could identify the suppression of two oncomir 
families–hsa-miR-17-92 cluster and hsa-miR-106b cluster with 
good miR-SVR scores, which are also found in other cancers, 
including RB.8,11,27

Integrating differentially expressed miNAs and 
their gene targets in HMGA2 silenced  cells. To under-
stand the interactions between the dysregulated miRNAs and 
the genes involved in cancer progression, a computational 
approach was adopted. The dysregulated genes in HMGA2 
silenced Y79cells obtained from cDNA microarray analysis 
(published earlier [13]) may be referred to at the NCBI: GEO 
database (GSE31687).

The present analysis revealed a total of 337 genes that 
are under the regulatory control of dysregulated miRNAs in 
HMGA2-silennced RB cells (Fig. 1B). Biological networks 
were generated by connecting the nodes (genes) and edges 
(type of regulation) based on Microcosm Database. The BAN 
shows some highly interconnected genes and their regulatory 
miRNAs (Supplementary file 2). These networks are vital for 
tumorigenesis and cancer control (Fig.1B).

Interestingly, we observed elevated numbers of cell cycle 
genes with a positive correlation to miR-17∼92 cluster and its 
paralog miR-106b∼25 cluster. While the biological role of the 
miR-17∼92 cluster has been reported in RB tumorigenesis,8,11,28 

the functional role of the miR-106b∼25 cluster in RB is not 
understood. The present study, therefore, attempts to charac-
terize the miR-106b∼25 cluster in primary RB tissues, and in 
HMGA2-silenced RB cells.

Analysis of transcription factors, mNA–miNA 
feed forward loops (FFL) and feed backward loops (FL) in 
HMGA2 silenced  cells. In order to evaluate the interactions 
between transcription factors, genes (mRNA) and miRNAs, 
we carried out the feed forward and feed backward loop 
analysis based on data obtained from Circuits Database.29 
The supplementary file 3shows the loops obtained with high 
significance (corrected P value # 0.05) in genes and miRNA 
expression levels. Enriched loop connections were visual-
ized using Cytoscape V 2.8 with nodes coloured by their fold 
change (Fig. 2B). Transcription factors that were shown to 
regulate the differentially expressed miRNA and mRNA 
were identified based on its role in promoting tumorigenesis. 
Among these loops, we observed that the key transcription 
factor, SOX5, is regulated by the miRNAs–hsa-miR-29a, 
and hsa-miR-9 family (hsa-miR-9*, hsa-miR-9-3). This has 
been analyzed with the corresponding dysregulated genes, as  
given below.

Network regulation between SOX5, hsa-miR-29a and TFs/ 
genes. The predicted regulatory networks between SOX5, 
miR-29a and the other key regulatory transcription factors/
genes derived from the integrated array in HMGA2-silenced 

able2. The alignments of the conserved miRNAs identified in HMGA2 silenced B (79) cells with the HMGA2 m.

S.No miRNA oto Algmt mirSR o

1. mi-150 2615 3′ gugaccauguucccaACCCUCu 5′
|||||| 

5′ uauaguuuauuuuugUGGGAGa 3′ 

−0.6787

2. mi-17 1197 3′ gauGGACGUGACAUU--CGUGAAAc 5′
:|| ||:| || ||||||| 

5′ aucUCUUCAUUCAAACUGCACUUUu 3′

−0.5950

3. mi-106a 1197 3′ gauGGACGUGACAUU--CGUGAAAa 5′
:|| ||:| || ||||||| 

5′aucUCUUCAUUCAAACUGCACUUU u3′

−1.2030

4. mi-106b 1199 3′ uaGACGUGA--CAGUCGUGAAAu 5′
|| ||:| | ||||||| 

5′ cuCUUCAUUCAAACUGCACUUUu 3′

−0.5950

5. mi-93 1197 3′gauGGACGU--GCUUGUCGUGAAAc 5′
:|| || | ||| ||||||| 

5′ aucUCUUCAUUCAAACUGCACUUUu 3′ 

−0.5950

6. mi-23b 1979 3′ ccauuagggaccgUUACACUa 5′
||||||| 

5′ uguauuuuacacaAAUGUGAu 3′

−1.0962

7. mi-20a 1197 3′ gauGGACGUGAUAUU--CGUGAAAu 5′
:|| ||:| || ||||||| 

5′ aucUCUUCAUUCAAACUGCACUUUu 3′ 

−0.5950

8. mi-129-5p 982 3′ cguUCGGGUCUGGCGUUUUUc 5′
| :::| | ||||||| 

5′ aucAAUUUAAAAAGCAAAAAa 3′

−1.2030

9. mi-26a 546 3′ ucggaUAGGAC--CU---AAUGAACUu 5′
|||:|| || |||||||| 

5′ guauaAUCUUGUAGACACUUACUUGAu 3′

−0.5528
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RB cells shows the up-regulation of IRF1 (gene involved 
in nuclear apoptosis),30 CDX2 (tumor suppressor gene),31 
SPARC (apoptosis mediator and chemo-sensitizer),32 NAV3 
(navigator gene),33 CREG1 (involved in cellular senes-
cence)34 and downregulation of NASP (involved in cell 
growth arrest).35

Network regulation between SOX5, hsa-miR-9* and RIT1 
gene. In this network, the downregulation of RIT1, an onco-
gene36 mediated through SOX5 and hsa-miR-9* may be a part 
of the molecular dys-regulation contributing to the arrest of 
cell proliferation in the HMGA2-silenced RB cells.

Network regulation between SOX5, hsa-miR-9-3 and TFs 
(AREB6/ZEB1, CDP, and ANP32B). The present analysis 
reveals the link between SOX5, hsa-miR-9-3, and the down-
regulated genes–AREB6/ZEB1, CDP (transcription factors),37 
ANP32B (negative regulator of caspase 3).38 These gene 
downregulations were observed with the concomitant induc-
tion of the pro-apoptotic gene BNIP3L. These results explain 
in part the contributors to cell growth arrest in HMGA2 
silenced RB cells.

The current FFL analysis has predicted the various net-
works existing between the SOX5, miRNAs (hsa-miR-29a, 
hsa-miR-9* and hsa-miR-9-3) and the key regulatory genes 
(Fig. 2B). These predicted outcomes can be experimentally 
validated.

xperimental validation to understand the role of  
miR-106b∼25 clusters in . The BAN results clearly 
implicated the dys-regulation of miR-106b∼25 cluster in 
HMGA2 silenced RB cells. In order to understand the role 
of miR-106b∼25 in RB tumorigenesis, the following experi-
ments were performed: (a) Assessment of miR-106b∼25 
cluster expressions in primary RB tissues (discussed in sec-
tion3.4.1), and (b) Implication of miR-106b∼25 in RB can-
cer cell proliferation using specific antagomirs (discussed in 
sections3.4.2–3.4.5).

The miR-106b∼25 cluster, its direct target MCM7 are 
over expressed in RB primary tumors. Initially, to under-
stand the role of miR-106b∼25 cluster in RB, the expres-
sion of this miRNA cluster was determined in RB primary 
tumors (n=20), using qRT-PCR. The median fold change of 
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miR-106b, miR-93, miR-25 and MCM7 were 6.56, 7.67 and 
11.25 and 7.9 respectively. Relative to donor retina control, 
miR-106b∼25 cluster was over expressed in most of the RB 
tumor samples: miR-106b: 17/21 (85%), miR-93: 19/21 (95%), 
miR-25: 21/21 (100%), and MCM7: 21/21 (100%) of positiv-
ity (Fig.3). Among the cluster, miR-106b and miR-93 showed 
a significant difference (P # 0.05) between the invasive and 
no invasive RB tumors while no significant difference was 
observed based on tumor differentiation and status of che-
motherapy. This reveals the presence of the oncogene MCM7 
and its resident intronic miRNAs (miR-106b-25 clusters) in 
RB tumors.

Silencing of miR-106b∼25 cluster using antagomirs down-
regulates HMGA2 and MCM7 oncogenes. The link between 
miR-106b∼25 clusters and its gene target (HMGA2) was 
further established using the short antisense oligos (antago-
mirs) against the individual miRNAs of this family. A tran-
sient transfection with these antagomirs was induced in the 
RB cell lines resulting in the downregulation of miR-106b∼25 
cluster (fold change in the order miR-106b, miR-93 and 
miR-25): -6.68, -6.60, -10.26 versus untreated cells and a 
fold change: -4.96, -4.48, -8.06 versus scrambled miRNA-
treated control) in Y79cells (Fig.4A). In Weri Rb1cells, we 
observed the suppression of miR-106b∼25 family in the order 
miR-106b, miR-93 and miR-25: -8.27, -6.17, 7.06 compared 
with untreated cells and fold change of -5.88, -7.77, -6.17 
(in the order miR-106b, miR-93 and miR-25) compared with 
scrambled miRNA-treated control (Fig.4B). The expression 
of miR-106b∼25 family in the RB cells treated with the mix-
ture of all the 3 antagomirs showed a down regulation of by 
a fold change in the order miR-106b, miR-93 and miR-25: 
-1.79, -7.34, -6.51in Y79cells and -8.15, -4.50, -6.07in 
Weri Rb1cells, respectively (Fig.4A and 4B).

After antagomirs transfection (miR-106b, miR-93, miR-
25 and mixture) in RB cells, the HMGA2 gene was down-
regulated by -2.20, -1.89, -1.74, -2.24 fold change in Y79, 
and by a fold-change of -1.03, -0.71, -1.6, -0.33 in Weri 
Rb1cells respectively (Fig.5A). The suppression of HMGA2 
transcripts confirms the regulation of these oncogenes by 
miR-106b∼25 clusters. The downregulation of MCM7 to a fold 
change -3.51, -1.04, -9.48 and -0.06in log2 fold change was 
observed in anti–miRs (miR-106b, miR-93,miR-25 and mix-
ture) treated Y79cells and -1.72, -2.55, -1.25, -3.03 log2 fold 
change in anti–miRs (miR-106b, miR-93, miR-25 and mix-
ture) treated Weri Rb1 (Fig.5B). Further we probed the role 
of this miRNA family in mediating RB cell proliferation.

Role of the miR-106b∼25 cluster in RB cell proliferation and 
cell apoptosis. The MTT assay and Annexin V fluorescence 
binding assay results reflected the effects of the anti-miR-106b∼25 
cluster in RB cells. The Figure6 (A and B) shows decreased cell 
proliferation compared to the untransfected RB cells at the end 
of 24hrs, 48hrs, and 72hrs. At the end of 48hrs, the percentage 
of viable cells in the antagomirs treated RB cells in comparison 
with untreated cells in the order of miR-106b, miR-93, miR-25 
and mix were (i) Y79cells: 67.52%, 64.87%, 64.72%, 67.68%; 
(ii) Weri Rb1: 66.37%, 68.44%, 64.46%, 66.09% respectively. 
Moreover, the Annexin V flourescence staining and FACS 
analysis showed an increased level of apoptosis significantly in 
the RB cells transfected with the anti-miRs compared to the 
untransfected RB cells (Fig.6C, 6D, 6E). The average percent-
age of early apoptotic cells induced at the end of 48hrs in the 
anti–miRs treated RB cells (in the order of untreated control, 
miR-106b, miR-93, miR-25 and the mix) are (i) Y79cells: 1.2%, 
33.54%, 28.00%, 38.91%, 31.02%; (ii) Weri Rb1: 0.22, 39.86%, 
39.82%, 38.417%, 22.09% respectively. These results suggest 
that these miRNAs promote the cell proliferation and suppresses 
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the apoptosis in RB cells (Y79 control: 1.2%, Weri Rb1  
control: 0.22%).

Role of the miR-106b∼25 cluster in RB cell growth and cell 
migration. To further understand the role of the miR-106b∼25 
cluster in cell growth and cell invasion, the scratch assay was 
carried out in the antagomirs-transfected and untransfected RB 
cells. The average area of scratch invaded by the Y79cells in the 
order (untreated, antagomirs treated: miR-106b, miR-93, miR-
25) at the end of 24hrs: 17.91%, 10.6%, 9.4%, 9.79% and 48hrs 
25.25%, 4.5%, 4.18%, 4.81% respectively. The average area of 
scratch invaded by the Weri Rb1cells in the order (untreated, 
antagomirs treated: miR-106b, miR-93, miR-25) at the end of 
24hrs: 34.71%, 19.96%, 15.33%, 14.31% and 48hrs 36.16%, 
19.28%, 11.15%, 9.06% respectively. These experiments showed 
a marked reduction in migrating cell populations in the antago-
mirs transfected RB cells (Fig.7A and 7B), suggesting that the 
miR-106b∼25 cluster is involved in RB tumor progression.25
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miR-106b∼25 clusters mediates cell cycle by down- 
regulating the expression of p21 and BIM in RB. The expres-
sion of apoptotic proteins–p21 and BIM (direct targets of 
miR-106b and miR-2539) was measured in the anti-miR-
transfected RB cells by immunoblot analysis (Fig.8A and 
8B). This experiment revealed the increase in p21 and 
BIM protein levels in the antagomirs transfected RB cells 
compared to the untransfected RB cells. This indicated 
the apoptotic mechanisms, in part, regulated through 
the miR-106b∼25, and its relationship with the oncogene  
HMGA2.

iscussion
a. HMGA2 induced miRNA-gene regulatory pathways  

in RB:
We explored the global miRNA expressions in HMGA2-

silenced RB cells. Through an integrated miRNA-mRNA 
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expression analysis, we were able to correlate the dys-regulated 
miRNAs and corresponding mRNAs (genes) that are involved 
in various cellular processes (Fig.2A). The study mainly focuses 
on the dysregulated miRNAs which have been reported to play 
a vital role in cancer development (Fig.9) and their roles in 
HMGA2-silenced RB cancer cells.40–42

The HMGA2 siRNA treatment induced up-regulation 
of miR-125a, miR-150, miR-155, and miR-494 which may 
contribute to cell growth arrest in RB tumor cells through 
alterations in expression of cancer regulatory genes. miR-
125a, known as a tumor suppressor, regulates ERBB oncogene 
(ERBB2 and ERBB3) via ERK1/2 and AKT phosphorylation. 
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The suppression of this oncogene, through the over-expression 
of miR-125a was reported to alter the cancer cell phenotype 
of SKBR3 cells (ERBB2-dependent human breast cancer cell 
line).43 miR-125a has also been suggested as a prognostic and 
therapeutic marker in gastric cancers.44 High expression of 

ERBB3, along with the dys-regulation of AKT pathway has 
also been reported in RB earlier.45 These studies strongly 
indicate that one of the mechanisms of HMGA2-silencing 
mediated RB cell death could be through the over expression 
of miR-125a (and subsequent oncogene modifications).
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igure8. Western blot of p21 and B proteins in antagomirs treated cells: he western analysis of p21 and B proteins in 79 (A) and Weri b1 () 
cells are presented here. he intensity of protein (p21 and B) bands were normalized with beta-actin expression in B cells (control and antagomirs 
treated cells). [anes 1–5: control B cells, antagomirs to mi-106b, mi-93 and mi-25, mix respectively].
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miR-150 is reported as a tumor suppressor in lymphoma46 
and corticotropinomas.47 Watanabe et al.46 showed that 
miR-150 directly downregulated the expression of gene 
targets DKC1 and AKT2 while increasing that of the tumor 
suppressors, Bim and p53 in lymphoma. This is in line with 
the present finding of over-expressed miR-150, along with 
increased level of Bim protein (Fig.8A and 8B), and our ear-
lier finding of elevated p53 proteins12 in HMGA2-silenced RB 
cells. These findings strongly point to the tumor suppressor 
mechanisms of miR-150 induced by the silencing of HMGA2 
gene in RB.47,46 The up-regulated miR-155in the current study 
has been previously reported to reverse EGF-induced epithe-
lial-mesenchymal transition (EMT) resulting in inhibition 
of proliferation, metastasis, invasion, and contributing to 
increase cisplatin sensitivity in cervical cancer cells.48 miR-
494 is reported to induce cellular senescence by suppressing 
IGF2BP1 in lung cancer cells.49 Thus, the up-regulation of miR-
155 (fold change=7.421) and miR-494 (fold change=2.421) 
can be linked to cell growth arrest in post-HMGA2 silenced 
RB cells.

The HMGA2 siRNA treatment has induced downreg-
ulation of major oncomirs such as such as miR-21, miR-9, 
miR-221 and the 2major families miR-17∼92 cluster and its 
paralogs miR-106a∼363 and miR-106b∼25 clusters.

miR-21 is known to be an oncomir with its regulatory 
target genes involved in tumor invasiveness and microvascular 
proliferations in cancers such as glioblastoma, breast cancer, 
pre-cell lymphoma.50–53 The gene targets RECK (a matrix 
metalloproteinase regulator, fold change: 0.93),54 PTEN (fold 
change: 0.64), PDCD4, and TM1 are modulated by this miR-
21 in breast cancer.52 Thus the observed downregulation of 
miR-21 (fold change: -1.821) links the anti-proliferative effect 
of HMGA2-silencing with the suppression of the oncomir 
miR-21. Another oncomir, miR-9, was down–regulated (fold 
change:-2.878) along with increased expression of E-cadherin 
gene in HMGA2 silenced RB cells.55 E-cadherin (CDH1), 
a gene target of miR-9, is involved in tumor angiogenesis 
through the activation of ß-catenin that promotes cancer 
metastasis.55

miR-21 from an earlier report.56 and miR-9 from our 
current integrated data analysis (Fig. 2B) regulate SOX5,  
a member of (SRY-related HMG-box) family of transcription 
factors. The over-expression of SOX5 has resulted in regula-
tion of embryonic development and cell fate,57 malignant B 
cell proliferation58 and reduction of glioma cell proliferation 
with induction of acute cell senescence.59 The up-regulation 
of SOX5 (fold change: 1.93), together with downregulation of 
miR-9 family and miR-21 contributes to HMGA2–silencing, 
mediated RB cell growth arrest.

In addition, miR-221, which is a suppressor of cell cycle 
inhibitor proteins p27/Kip1 and p57, and a promoter of RAS-
RAF-MEK signalling pathway55,60 was found to be downreg-
ulated (fold change: -6.838). This miRNA downregulation 
may result in the inhibition of cell migration as reported 

earlier in MDA MB-231, breast cancer cell line61,62 and thus 
will contribute to the reduction of RB tumor cell proliferation, 
invasiveness and motility in post-HMGA2 gene silencing.

We also observed the suppression of two major oncomir 
clusters namely miR-17∼92 and miR-106b∼25 due to the 
silencing of HMGA2 in RB. The miRNA family, miR-17∼92 
clusters and one of its paralogs miR-106a∼363 cluster reside 
on c13ORF25genes of chromosome 13 and chromosome X, 
respectively. The over expression of these clusters have been 
reported earlier in various cancers such as leukemias,63 breast 
cancer64 and AIDS associated non-Hodgkin’s lymphoma.65 
miR-17∼92 expression was reported in RB.11

In HMGA2 silenced cells, we observed the suppression 
of the other paralog miR-106b∼25 and its host gene MCM7. 
HMGA2 is known to be a positive regulator of MCM7, where 
one of the reported mediators is the E2F family. The involve-
ment of E2F in tumor promotion has been implicated in RB 
primary tumors.12,66 Further, the HMGA2 silencing also 
induced suppression of E2F family.12 Thus the silencing of 
HMGA2 gene induces downregulation of MCM7 (via E2F 
family) which in turn prevents the biosynthesis of miR-106b∼25 
(please see Fig.9).In addition, the sequence complementarity 
between 3′UTR of HMGA2 and miR-106b∼25 may also be a 
direct target for regulation. The miR-106b-25 has been investi-
gated in detail and is discussed in the next section.

b. Implication of miR-106b∼25 in RB pathogenesis, valida-
tion of its host gene MCM7 and target genes p21, BIM
The miR-106b-25 family includes three miRNAs namely 

miR-106b, miR-93 and miR-25. This family is highly con-
served in vertebrates and resides in the 13th intron of MCM7 
gene on chromosome 7.67,68 The MCM7 is well known for its 
regulation of the replication fork assembly on chromosomal 
DNA during G1/S phase transition.69 The suppression of this 
cluster using inhibitors had resulted in increased apoptosis 
and G0/G1 cell cycle arrest in oesophageal adenocarcinoma 
and laryngeal cancer.27,70 Earlier studies have correlated its 
over expression with poor prognosis in prostrate, endometrial 
and gastric cancers.71,72 We have observed over-expression of 
MCM7 in a cohort of 20 primary RB cases (Table3, Fig.3). 
Although miR-106b∼25 cluster, (especially miR-106b) has 
been reported in RB tumor and serum samples,73 their gene 
regulation mechanisms are not known.

In the present study, the over-expression of miR-106b∼25 
cluster was identified in primary RB tumors (n=20) relative to 
donor retina. Secondly, we have used a model of RB cells where 
the miR-106b∼25 cluster was inhibited by specific antagomirs 
to study its functional and regulatory mechanisms.

In a study on unrestricted somatic stem cells, the various 
gene targets of miR-106b such as (i) cyclinD1 (CCND1), (ii) 
E2F1 (iii) CDKN1A (p21), (iv) PTEN, (v) RB1, (vi) RBL1 
(p107), and (vii) RBL2 have been reported indicating enhanced 
G1/S transitions with increased levels of E2F transcription 
factors using bioinformatics and experimental validation 

188 Bioinformatics and Biology insights 2014:8

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Dysregulation of miRNAs in HMGA2silenced RB cells

able3. Clinicopathological features of the primary RB tumours following the International Intraocular Retinoblastoma Classification (IIRC) with 
HMGA2, MCM7 gene expression and miR-106b∼25 cluster (by q-P).

S.No Ag/x  Chmothp oup Clo-pthologl pmt Expo of miRNA /mRNA   
pm R tumou

miR-106b miR-93 miR-25 MCM7 HMGA2

1. 3/ Pre-operative,  
2cycles of adjuvant  
chemotherpy

–E U::P; viable , thickened sclera,  2.40 7.08 12.95 7.08 4.36

2. 3/   : U; a focal retinoma component,  8.01 9.32 20.01 4.92 9.66

3. 2/  –E :;  5.12 5.93 11.25 8.69 5.9

4. 5/   :P;  8.04 8.78 19.22 14.50 10.09

5. 3/   OS:WD; formation of fleurettes, prelaminar  
invasion of , 

3.31 6.59 7.87 2.04 4.91

6. 1/ ocal therapy  U:; W; ocal  ,3mm 2.62 7.19 9.74 4.77 7.56

7. 1/ Pre-operative,  
2cycles of  
chemotherapy

– U::W, prelaminar invasion of , o  10.34 12.23 14.64 14.58 2.64

8. 3/   :, with focal retinoma component,  
prelaminar invasion of , o 

9.81 10.96 8.05 11.28 11.45

9. 2/   ;; retinoma, ocal ,3mm 13.70 15.42 12.03 10.18 7.01

10. 4/  –E :P,  measuring .3mm. o  invasion 8.71 9.80 8.83 12.96 6.78

11. 3mon/ Post-operative  
chemotherapy,  
6cycles

E :P, iris neovascularization, few  seen  
over the iris surface,  .3mm,  invading  
anterior fibres of the sclera, pre and post  
laminar invasion of 

4.61 8.10 12.61 7.11 11.45

12. 3/  B :U; ,3mm, pre and post laminar  
invasion of 

3.97 6.37 11.25 3.14 12.05

13. 3/ Post-operative  
chemotherapy,  
6cycles

E :P,focal  ,3mm, pre and post laminar  
,1.5mm in height and 1mm thickness

1.79 0.99 2.791 5.44 2.46

14. 2/ Post-operative  
chemotherapy,  
6cycles

–E : massive .3mm,  invading the  
anterior, middle and posterior border of  
sclera with spill over into the orbital tissue

3.09 7.24 9.74 2.95 4.58

15. 4/ Post-operative,  
2cycles (Expired)

E :P massive .3mm,  invading the  
anterior, middle and posterior border of sclera  
with spill over into the orbital tissue

1.60 5.41 7.74 12.44 6.69

16. 2/ Post- operative,  
6cycles

E U:; tumor seen in iris surface, trabecular  
meshwork, diffuse  .3mm thickness  
(.60%), pre and post laminar invasion,  
invasion of anterior and middle portion of sclera 

1.94 5.29 7.27 4.61 7.71

17. 8/ Pre-operative,  
7cycles

E U::U; cells adherent to iris surface,  
invasion of ciliary process, diffuse full  
thickness  .3mm, tumor touching anterior  
fibres and outer margins of sclera, invasion of  
pre and post laminar portion of 

8.90 6.09 7.31 6.05 3.39

18. 3/ Post- operative,  
2cycles 

B :   measuring .3mm,  seen in  
iris stroma and pre and early post invasion of  
. E is free

10.84 11.77 13.05 9.57 8.11

19. 4/  E : P, massive  .3mm, tumor  
invading into anterior, middle and posterior  
border of sclera and emissary veins. Pre, post  
laminar, and meningeal sheath of  invasion,  
hemorrhage in ,  seen posterior to the  
sclera and in orbital tissue

12.22 13.22 15.21 9.64 5.6

20. 3/ Pre-operative,  
7cycles of adjuvant  
chemothrapy

E : P tumor invading into anterior, middle  
and posterior border of sclera and emissary  
veins. Pre and post laminar invasion of ,  
meningeal sheath of  invasion, hemorrhage  
in , tumor nodules seen close to the   
and posterior to the sclera and orbital tissue

12.60 14.83 17.38 14.58 8.81

Abbreviations: , ale; , emale; , o chemotherapy; U, Both eyes; , ight eye; , eft eye; W, Well differentiated; , oderately differentiated;  
P, Poorly differentiated; , horoid invasion; pre-, pre-laminar; P, post-laminar; , optic nerve; nv, nvasion.

Bioinformatics and Biology insights 2014:8 189

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Venkatesan etal

protocols.74 In addition, this cluster of miRNAs have been 
known to repress the p21 and BIM which are downstream 
mediators of the TGF-ß signalling pathway.72

Our results showed the activation of p21 and BIM 
(Fig.8A and 8B), along with decreased cell proliferation and 
invasion, and with concomitant increase in apoptosis in the 
antagomirs treated RB cells. The observed up-regulation of 
oncogene, MCM7 in primary RB tumor tissues was comple-
mented by the downregulation of MCM7 gene (Fig. 3) in 
miR-106b∼25 specific antagomirs treated RB cells. These 
results strongly points to the role of miR-106b∼25 cluster in 
promoting RB cell proliferation.39

To summarize, the integrated analysis between the 
deregulated miRNAs and genes due to the reduction or sup-
pression of HMGA2 mRNA in the RB cells revealed the 
downregulation of two main clusters of miRNAs namely miR-
106b∼25 and miR-17∼92. These miRNA clusters are known to 
regulate various key genes such as MCM7, CDKN1A (p21), 
BIM and EpCAM. These oncomir clusters can be further 
investigated for their role in RB tumor progression and also 
during chemotherapeutic interventions.

onclusions
Improvement in RB management may be achieved by under-
standing the regulatory gene–miRNA networks involved in 
RB tumorigenesis and tumor suppression along with their 
regulatory miRNAs. We have reported the various miRNAs 
deregulated in the HMGA2-silenced RB cells. The inte-
grated mRNA-miRNA network analysis revealed the regu-
latory associations between important genes and miRNAs 
following HMGA2 silencing that result in RB tumor con-
trol. Particularly, HMGA2 silencing induced downregula-
tion of the miR-106b∼25 cluster. The tumor promoting role 
of miR-106b∼25 in RB was clearly documented using specific 
antagomirs. Taking the results together, it is suggested that 
(a) miR-106b∼25 cluster itself may be a potential biomarker 
or target in RB management, and (b) downregulation of the 
miR-106b∼25 cluster is one of the key mechanisms of cell 
death induced by HMGA2 silencing in RB.
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upplementary Files
upplementary File 1. The list of up-regulated and 

downregulated miRNAs identified in the post-HMGA2 

silenced RB cells (Y79).The description of the listed miRNAs 
includes fold change, miRbase accession number, chromo-
some location (start and end), and its orientation.

upplementary File 2. The list of miRNAs and the 
respective gene targets derived from the integrated analysis of 
mRNA-miRNA expressions in RB cells (Y79).

upplementary File 3. The list of miRNAs and respec-
tive gene targets derived from Feed Forward Loop/Feed 
Backward Loop analysis. The first work sheet states the net 
result of FFL/FBL linking the transcription factors, genes 
and miRNAs de-regulated in the HMGA2 silenced RB (Y79) 
cells. Second worksheet provides the list of transcription fac-
tors, gene targets, miRNAs, FFL/FBL type, fold change in 
transcription factor, expression of genes in fold change and 
expression of miRNAs in fold change.
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