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ABSTR ACT: The aim of cancer chemoprevention is disruption or delay of the molecular pathways that lead to carcinogenesis. Chemopreventive block-
ing and/or suppressing agents disrupt the molecular mechanisms that drive carcinogenesis such as DNA damage by reactive oxygen species, increased 
signal transduction to NF-kB, epigenomic deregulation, and the epithelial mesenchymal transition that leads to metastatic progression. Numerous dietary 
phytochemicals have been observed to inhibit the initiation phase of carcinogenesis, and therefore are useful in primary chemoprevention. Moreover, phy-
tochemicals are capable of interfering with the molecular mechanisms of metastasis. Likewise, numerous synthetic compounds are relevant and clinically 
viable as chemopreventive agents during the fundamental stages of carcinogenesis. While molecularly targeted anti-cancer therapies are in constant stages 
of development, superior patient outcomes are observed if carcinogenic processes are prevented altogether. This article reviews the role of chemopreventive 
compounds in inhibition of cancer initiation and their ability to reduce cancer progression.
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Introduction
Cancer is a public health burden that is predicted to be diag-
nosed in excess of 1.6 million new cases and results in more 
than 585,000 deaths in the United States in 2014.1 An ever-
increasing understanding of cancer cell pathobiology has led 
to a molecular approach in treating neoplasms and reducing 
cancer mortality rates. These advances have also been instru-
mental in developing chemopreventive strategies that could 
reduce cancer incidence or oppose progression of disease. In 
light of the increasing financial strain of treating cancer and 
the favorable outcomes observed in investigational cancer pre-
vention strategies, the Food and Drug Administration (FDA) 
has approved agents for the prevention of breast (tamoxifen 
and raloxifene) and cervical (human papillomavirus (HPV) 
vaccination) cancers and several other intervention agents to 
reduce cancer risk in precancerous conditions.2

Clinically, chemoprevention is categorized as primary, 
secondary, or tertiary. Primary chemoprevention is suited for 
the general population and for those who may be at increased 
risk for disease. Secondary chemoprevention is intended for 
patients with premalignant lesions that may progress to an 
invasive disease. Generally, both primary and secondary che-
moprevention is now grouped under the category of “primary 
chemoprevention.” Examples of primary chemopreventive 
agents include dietary phytochemicals and non-steroidal anti-
inflammatory drugs (NSAIDs). On the other hand, tertiary 
chemoprevention is targeted to prevent disease recurrence or 
additional (second) primary disease in those individuals who 
have already endured potentially curative therapy, such as 
treatment with aromatase inhibitors.

At the molecular level, cancer chemoprevention is 
characterized by the disruption of, or at least the delay of, 
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multiple pathways and processes among the three stages of 
carcinogenesis: initiation, promotion, and progression.3,4 
Chemicals or biomolecules that inhibit the initiation stage 
are important for the preservation of DNA in its native 
state and are referred to as “blocking agents” since they 
“block” mutagenic interactions with DNA.4 Blocking 
agents may circumvent the permanent, irreparable DNA 
damage that occurs during initiation by inactivating or 
metabolizing carcinogens directly, acting as free-radical 
scavengers, or physiologically inducing anti-oxidative 
enzyme activity and triggering mechanisms of DNA 
repair.5 Furthermore, blocking agents can also modify the 
epigenomic landscape.6

In contrast to blocking agents, compounds that affect 
later stages of carcinogenesis (promotion and progression) are 
termed “suppressing agents” for their ability to decrease the 
proliferative capacity of initiated cells.4 They interfere with 
cancer cell proliferation by down-regulating signal trans-
duction pathways such as nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB), mammalian target of 
rapamycin (mTOR), signal transducer and activator of tran-
scription 3 (STAT3), and many others,7–10 and by inhibiting 
cytochrome P450 enzymes that modulate signal transduction 
to hormone responsive elements.11 Additionally, suppressing 
agents are likely to reduce or delay the ability of cancer cells 
to evolve metastatic properties by promoting pathways lead-
ing to apoptosis10,12 and inhibiting pathways leading to angio-
genesis, epithelial mesenchymal transition (EMT), invasion, 
and dissemination.5,13 Since metastasis is the most significant 
challenge related to cancer treatment and is the major cause 
of cancer-related death,14 this article will discuss not only the 
role of chemopreventive compounds in cancer formation but 
also their ability to reduce cancer progression.

Primary Chemopreventive Phytochemicals  
as Blocking Agents

Redox signaling. Dietary- and non-dietary-derived 
phytochemicals (molecules found in plants) have been directly 
observed to inhibit all stages of carcinogenesis in in vitro and 
in vivo models.5,10,15,16 Importantly, phytochemicals appear 
to prevent the initiation phase of carcinogenesis (protect-
ing DNA from mutation) by modulation of cytoprotective 
enzyme activation. In fact, transcription factors responsible 
for the expression of these cytoprotective enzymes, includ-
ing the well-documented NF-E2-related factor 2 (Nrf2), are 
induced not only in the presence of oxidative stress but also in 
the presence of various phytochemicals.

Nrf2, the “master regulator of antioxidant defenses,”17 
binds to cis-enhancer sequences called antioxidant responsive 
elements (ARE) that are 5′-flanking of the promoter regions for 
genes encoding detoxifying and antioxidant enzymes18,19 such 
as glutathione S-transferases (GST) and NADPH:quinone 
oxidoreductase (NQO1) (Fig. 1). Under normal, homeo-
static conditions, Nrf2 is regulated by cytosolic sequestration 

and interaction with Kelch-like ECH-associating protein 1  
(Keap1). Under stress conditions (eg oxidants and electro-
philes), Nrf2 is released from Keap1 and translocates to the 
nucleus, where it forms a heterodimer with Mafs before acti-
vating ARE-regulated genes. Expression of Nrf2 target genes 
is therefore advantageous to maintaining genomic integrity 
as these cytoprotective enzymes reduce the effects of electro-
philes, chemical challenges, and oxidative stress on DNA.20

Dietary phytochemicals such as isothiocyanate and 
sulphoraphane (Table 1) found in cruciferous vegetables 
and the phytochemicals found in the dietary supplement 
 Protandim (Bacopa monniera, Camellia sinensis [green tea], 
Curcuma longa [turmeric], Silybum marianum [milk thistle], 
and Withania somnifera [Ashwagandha]) not only appear to 
act as potent activators of Nrf2 in both cell culture and animal 
models,5,20,21 but many are also known to inhibit the conver-
sion of procarcinogens to their electrophilic (DNA damaging) 
species.22 Therefore, in reducing the potential for carcinogenic 
initiation, phytochemicals behave as blocking agents that pre-
vent DNA mutations.

Epigenetics. While 90% of all cancers are presumably 
caused by somatic mutations, in recent years, there has been 
considerable interest in the contribution of epimutations (epi-
genetics) to the development of cancer. Epigenetics comprise 
alterations to gene expression without changes to the genome 
(DNA) sequence and include cytosine methylation within 
CpG islands, histone tail modifications (acetylation, meth-
ylation, and ubiquitination), and the effects of non-coding 
RNA.6,23

DNA methylation is the most commonly described epi-
genetic alteration with more than 600 cancer-related genes 
known to carry hypermethylated promoter regions.6 DNA 
methyl-transferases (DNMT3a and DNMT3b) preferen-
tially target CpG regions for de novo methylation, and their 
activity is responsible for the hypermethylation and silenc-
ing of tumor suppressor genes. In contrast, decreased activ-
ity of DNMT1, the enzyme responsible for the maintenance 
methylation following DNA replication, can lead to a state 
of hypomethylation, chromosomal instability, and activation 
or excessive expression of oncogenes. In contrast to normal 
cells, cancer cells display profiles of “global hypomethylation” 
that are complemented with promoter-associated CpG island 
hypermethylation.23 While the presence or absence of DNA 
methylation contributes directly to gene expression, methyl-
ated DNA binding proteins (MBDs) can also influence gene 
expression indirectly by binding to methylated cytosine resi-
dues. The MBDs can then complex with histone deacetylase 
(HDAC), an event that leads to gene silencing through chro-
matin compaction.24

An emerging field of epigenetic study involves non- 
coding RNAs and their roles in modifying genes post- 
transcriptionally.25 These non-coding RNAs (18–25 nucleotides  
long) are commonly referred to as microRNA (miRNA) and 
function to down-regulate the expression of genes. This is 
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Table 1. selected dietary and synthetic chemopreventive compounds and their chemopreventive effects represented herein.

DIETARY CHEMOPREVENTIVE EFFECTS

2-methoxystypandrone (Polygonum cuspidatum) Inhibits JAK and IKKβ kinase signaling to nF-kB

apigenin (numerous plant sources) inhibits nF-kB dna binding, ikB-α phosphorylation, and IKKβ 
activity

Curcumin (curcuma longa; turmeric) Up regulates nrf2 signaling; induces apoptosis; inhibits nF-kB 
signaling; decreases cell invasion and motility 

eGCG (camillia sinensis; green tea) inhibits proteasome activity for ikBa stabilization and nFkB 
inhibiton; increases expression of e-cadherin; inhibitis signal 
transduction through erK

[6]-gingerol (Zingiber officinale; ginger root) increases expression of e-cadherin; inhibits signal transduction 
through erK; inhibits MMP-9 expression

isothiocyanate/sulphoraphane (cruciferous vegetables) increases nrf2 expression

Luteolin (Terminalia chebula) inhibits MMP-9 expression

resveratrol (skin of red grapes) increases expression of e-cadherin; inhibits signal  transduction 
through Pi3K/akt

SYNTHETIC

Nonsteroidal anti-inflammatory drugs (NSAIDs) Inhibits inflammation and NF-kB signaling

aromatase inhibitors inhibits CYP19 activity and estrogen activation

tamoxifen inhibits signal transduction through estrogen receptor

Figure 1. Mechanism of nrf2 signaling and activation of antioxidant gene expression. nrf2 is sequestered in the cytoplasm by Keap1. in response to 
external stressors (eg oxidants and electrophiles), nrf2 is released from Keap1 and translocates to the nucleus where it forms a heterodimer with Maf 
that binds to antioxidant-responsive elements (are). the nrf2–Maf heterodimer increases transcription of genes downstream from the are that encode 
detoxifying and antioxidant enzymes such as Gst and nQo1. these cytoprotective enzymes limit the effects of electrophiles and oxidants on dna and 
help preserve genomic integrity. 
Abbreviations: nrf2, nF-e2-related factor 2; Keap1, Kelch-like eCh-associating protein 1; Gst, glutathione s-transferase; nQo1, nadPh: quinone 
oxidoreductase 1.
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accomplished through base pairing between the miRNA and 
an mRNA and subsequent mRNA degradation or transla-
tional repression. It is estimated that nearly 30% of all human 
genes are regulated by miRNAs.26 Although non-coding 
RNA is essential to normal cell processes (eg introns and 
splicing), aberrant miRNA expression patterns are linked to 
chromosomal instability25 by the silencing of epigenetic regu-
lators such as DNMTs and HDACs.6

In the context of primary chemoprevention, phyto-
chemicals have been shown to alter the epigenome and reverse 
abnormal gene expression through modulation of DNMTs, 
MBDs, HDACs, miRNAs (Table 2), and several other epi-
genetic mechanisms. In doing so, phytochemicals promote 
genomic integrity and cellular homeostasis in both in vitro and 
in vivo models.6 Importantly, numerous synthetic compounds 
are in clinical trials for the treatment of various cancers, and 
four have garnered FDA approval as epigenetic drugs against 
cutaneous T-cell lymphoma and myelodysplastic syndromes 
(Table 2).27

Tertiary Chemoprevention by Suppressing Agents
NF-κB. The role of the NF-kB family of transcription fac-

tors is well established in immunity and inflammation. Inflam-
mation is now recognized as one of the “hallmarks of cancer,” 
since it has been shown to contribute to both initiation and 
progression of tumor cells.28 While uncontrolled and persis-
tent inflammation in the tumor microenvironment is driven by 
the actions of NF-kB target genes, NF-kB is also oncogenic.29  
More than 150 genes are regulated by NF-kB and these genes 
function in mechanisms of cell survival including apoptosis 
inhibition,30 increased proliferative capacity of cells,31 and 
promotion of tumor cell progression.32

In unstimulated cells, the five NF-kB family members 
(p65 [RelA], RelB, c-Rel, p50/p105 [NF-kB1], and p52/p100 
[NF-kB2]) are found as hetero- or homodimers and remain 
bound to IkB family proteins (IkBa, IkBβ, IkBg, IkBe, and the 
non-IkB, Bcl-3). The IkB proteins sequester the NF-kB pro-
teins in the cytoplasm. Upon stimulation by pro-inflammatory  
cytokines (eg TNF-a), IkB is phosphorylated by an IkB kinase 
(IKK) complex (IKKa, IKKβ, and IKKg) and subsequently 
ubiquitinated and degraded by the proteasome. IkB degrada-
tion exposes a nuclear localization signal in NF-kB, enabling its 
translocation to the nucleus and activation of its target genes.33

Inflammation that is supported in the presence of aberrant 
NF-kB signaling likely promotes the development of tumors 
after the initiation of carcinogenesis.34 Consequently, there 
exists a conceivable strategy for the use of anti-inflammatory 
compounds as suppressing chemopreventive agents. Numer-
ous dietary phytochemicals have been cited as inhibitors of 
NF-kB signaling or having anti-inflammatory properties.13  
For example, through proteasomal inhibition, both the green 
tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) and 
curcumin stabilize IkBa in cell-based and animal mod-
els,12,35 thereby preventing nuclear translocation NF-kB and 
transcription of its target genes. Additionally, the compound 
2-methoxystypandrone derived from the Chinese medicinal 
herb Polygonum cuspidatum and the phytochemical apigenin 
have been identified as IKK inhibitors that block NF-kB sig-
naling.36,37 Although the use of anti-inflammatory compounds 
is interesting as a potential chemopreventive approach, no syn-
thetic IKK inhibitors or NF-kB inhibitors have yet been clini-
cally approved despite showing anti-tumor effects in numerous 
cancer models.29,38–40 Finally, the use of NSAIDs such as aspi-
rin (used at a minimum dose of 75 mg/day for 5 years or longer) 

Table 2. natural and synthetic epigenetic modulators.

DIETARY EPIGENETIC MODIFICATION(S) ROLE(S) IN CHEMOPREVENTION

Curcumin inhibits dna methylation (dnMt)
inhibits histone acetylation (hat) and  
deacetylation (hdaC)
Modulates mirna expression

Prevents dna damage and inhibits nF-kB signalling59

eGCG inhibits dna methylation (dnMt)
inhibits histone acetylation (hat)
Modulates mirna expression

triggers apoptosis and cell cycle arrest  
in tumor cells60

isothiocyanate/sulphoraphane inhibits dna methylation (dnMt)
inhibits histone deacetylation (hdaC)

inhibits tumor cell growth and triggers cell cycle 
arrest and apoptosis61–63

resveratrol inhibits dna methylation (dnMt)
inhibits histone deacetylation (hdaC)

inhibits nF-kB signalling64

romidepsin (derived from the bacteria  
Chromobacterium violaceum)

inhibits histone deacetylation (hdaC) reverses abnormal silencing of tumor suppressor 
genes, leading to growth arrest, differentiation, and/or 
apoptosis of tumor cells27,65

SYNTHETIC EPIGENETIC MODIFICATION(S) EPIGENETIC OUTCOME(S)

Vorinostat and 
hydroxamic acid (LaQ824)

inhibits histone deacetylation (hdaC)
Modulate mirna expression

reverses abnormal gene silencing and alters mirna 
expression in tumor cells, resulting in cell cycle 
arrest, differentiation, and/or apoptosis25,27

5-azacytidine (vidaza) and  
2′-deoxycytidine (decitabine)

inhibits dna methylation (dnMt) induces re-expression of silenced tumor suppressor 
genes and stimulates cell responses to dna damages
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is an effective approach to chemoprevention for individuals at 
risk for various cancers, especially colorectal cancer.41

Cytochrome P450s. Cytochrome P450s (CYPs) are a 
superfamily of proteins involved in metabolism of  environmental  
and dietary chemicals for elimination from the body and 
 activation of procarcinogenic exogenous compounds and 
endogenous molecules (hormones) to their carcinogenic 
forms. The CYPs therefore represent a unique paradigm for 
chemoprevention and carcinogenesis.

Since increased CYP expression is observed in human 
tumors,11 it is important to understand the relationship of 
the CYPs to tumor development and malignant transforma-
tion. The standard pharmacological treatment for hormone- 
dependent breast cancer has traditionally been to block estro-
gen from binding to its receptor. This has been achieved 
through administration of the drug tamoxifen. While tamoxi-
fen was the first FDA-approved chemopreventive agent for 
individuals at high risk for developing breast cancer, there are 
some considerable caveats for its use; tamoxifen is linked to 
an increased incidence of endometrial cancer42 and when used 
as a cancer therapy, resistance to its use is inevitable.43 Aro-
matase inhibitors (anastrozole, letrozole, and exemestane) are 
an alternative approach to tamoxifen treatment and have dem-
onstrated superior treatment effectiveness in postmenopausal 
women.44 Aromatase inhibitors bind to and block the activity 
of CYP19 (aromatase), the enzyme that converts androgens to 
estrogens.45 As such, aromatase inhibitors behave as suppress-
ing agents that down-regulate the survival signal mediated by 
estrogen to hyperproliferative estrogen responsive cells. They 
therefore limit the capacity of cells to progress to metastasis.

Phytochemicals Suppress Metastasis
In addition to the chemopreventive effects of synthetic aro-
matase inhibitors, dietary phytochemicals have also shown 
great promise in reducing cancer cell progression to metas-
tasis. Metastasis is a complex process that involves cancer cell 
migration, invasion, dissemination through the lymphatics 
or vasculature, and, ultimately, colonization. Since the vast 
majority of cancer-related deaths are fundamentally linked to 
the onset of metastasis, essentially all physical manipulations 
and radio-, chemo-, and biological therapies seek to prohibit 
dissemination of cancer cells to distant sites. While molecu-
larly targeted anti-metastasis drugs are in development,46 
superior patient outcomes are achieved if the metastatic pro-
cess is prevented altogether.

Dietary phytochemicals are well documented to block 
the molecular pathways that lead to metastatic events. Dur-
ing the EMT, cancer cells acquire properties of motility and 
invasiveness by loss of the epithelial phenotype. Cancer cells 
become capable of metastasis during EMT by reduced expres-
sion of the epithelial-specific proteins (eg E-cadherin)47 and 
gain of mesenchymal properties through increased expres-
sion of mesenchymal-specific proteins (eg N-cadherin).48 
In vitro exposure of cancer cells to phytochemicals such as  

silibinin,49 EGCG,50 curcumin,51,52 [6]-gingerol,53 resveratrol,54  
and numerous others has been shown to induce increased 
 expression of E-cadherin and therefore decreases the mesen-
chymal phenotype. These phytochemicals appear to inhibit 
several EMT pathways, but commonly function through inhi-
bition of receptor and non-receptor tyrosine kinases (ERK, 
Src, PI3K, etc.).

As tumor cells acquire the phenotypic EMT, the ability 
of those cells to become invasive is determined in large part 
by remodeling of the extracellular matrix. This is accom-
plished by increased expression and activation of matrix 
metalloproteinase (MMPs) in the tumor microenviron-
ment that function to degrade the extracellular matrix and 
basement membrane. MMPs therefore eliminate the bar-
rier that should restrict cancer cell dissemination to distant 
sites. Numerous phytochemicals inhibit MMP expression 
and function as suppressing agents in tertiary chemopreven-
tion. For instance, recent evidence suggests that curcumin 
inhibits extracellular signaling to and decreased expression 
of MMP-9 by tumor cells in thyroid, colorectal, pancreatic, 
ovarian, and numerous other cancer cells, in vitro and in 
animal models.51,52,55 Furthermore, [6]-gingerol and luteo-
lin, among many other phytochemicals, appear to reduce 
MMP-9 expression in pancreatic and colon cancer cells, 
respectively.53,56 Thus, chemoprevention may be viable not 
only in blocking the initiation of cancer but also in averting 
cancer progression.

Conclusions
The “state of the art” in chemoprevention has revealed 
that numerous natural and synthetic compounds are able 
to inhibit carcinogenesis through novel molecular mecha-
nisms, with epigenetic alterations at the forefront of cur-
rent research. The molecules discussed in this article were 
selected because of their historical medicinal use, consump-
tion among certain populations, and their roles in various 
biological systems.

Although there is an exciting amount of new empirical 
information in support of chemopreventive strategies, there 
is also “art” in the realm of chemoprevention. Chemopreven-
tion studies are generally well received by the nutraceutical 
research community, but the long-term safety and tolerability 
of any chemopreventive compound (natural or synthetic) for 
human consumption must be considered, since it is likely that 
the agent will have to be consumed/administered for a long 
period of time. Therefore, a major hurdle for potential clini-
cal trials in chemoprevention is defining a minimal dose that 
remains clinically beneficial, while also avoiding any adverse 
effects.57 Furthermore, biotransformation reactions limit the 
potential for disseminating bioactive ingested dietary phyto-
chemicals to the sites of carcinogenesis.58 Since the goal of 
primary chemoprevention is to reduce the incidence of can-
cer in the general population and those at high risk of devel-
oping the disease, chemopreventive agents will vary in their 
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 effectiveness depending on the genotype of the individual 
exposed to them. Hence, there is great promise in the “state of 
the art” in cancer chemoprevention, yet there still remains a 
considerable amount of “art” in such endeavors.
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