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ABSTR ACT: The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that 
store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and 
provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense 
study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and 
degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globules of fat to highly dynamic organelles 
of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant 
metabolic and cellular functions.
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Introduction
The major metabolic fates of fatty acids (FA) entering the cell 
are esterification into triglycerides (TG), synthesis of phos-
pholipids for membrane biosynthesis, and beta-oxidation for 
ATP production in mitochondria. Adipocytes, however, cap-
ture and store the excess of FAs as TG in cytosolic lipid drop-
lets (LDs), which are large quasi-spherical structures readily 
visualized by light microscopy.1–3 LDs are in physical contact 
with other LDs and also with other cellular structures such 
as endoplasmic reticulum (ER), mitochondria, peroxisomes, 
and endosomes. These interactions are frequently observed 
by electron microscopy4 (Fig. 1). Interestingly, live imaging 
revealed that LDs also undergo intracellular movements in 
the confines of the cytoplasm.5,6 LDs can be isolated from cell 
homogenates by density gradient ultracentrifugation7–10 and 
purified LDs retain their shape and functions, such as the 

ability to store TG11 or serve as substrate for lipases12 when 
tested in vitro.

The structure of LDs is commonly described as formed 
by a core of neutral lipids, predominantly TG and sterol esters, 
surrounded by a monolayer of phospholipids and a variety of 
proteins.13–15 TGs are the main lipids found in LDs. Other 
lipids are diglycerides (DG), retinyl- and cholesteryl esters 
(CEs), and ether lipids.16–20 A high content of CEs is found 
in LDs from macrophages and adrenal cells.21–24 The LD 
surface consists of phospholipids, lysophospholipids, and 
cholesterol.16 The phospholipid monolayer is the boundary 
that separates the hydrophobic core of LDs from the aque-
ous environment.25,26 It could also be involved in the dif-
ferential recruitment of lipid droplet proteins.25 The protein 
coat is composed of numerous proteins; it can comprise up to 
hundreds of proteins.27 A distinctive group of proteins, the 
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perilipins or PAT proteins, are always associated with LDs 
as shown in all LD proteomes.7–10,28–38 This is a small group 
of proteins composed by perilipin (PLIN1), ADRP (PLIN2), 
TIP47 (PLIN3), S3–12 (PLIN4), and OXPAT (PLIN5).39,40 
The PAT family of proteins is evolutionary conserved and 
relevant studies on the biology of LDs and the function of 
PLIN proteins are being conducted not only in vertebrates 
but also in other eukaryotic systems such as insects6,10,12,41–49 
and yeast.50,51 Early studies on TG metabolism in adipo-
cytes have shown significant conservation between mammals 
and insects.52 PLIN1 and PLIN2 occur in insects and were 
originally named LSD1 and LSD2.53 PLIN proteins have in 
common a conserved region of ~100 amino acids toward the 
N-terminal called the PAT domain.54 The function of this 
region remains unknown but it is not required for binding to 
LD.52 PLIN proteins play important roles in the processes of 
lipid storage and mobilization, however the underlying mech-
anisms of function are not completely known in any system, 
yet. The occurrence of PLIN proteins depends on a variety 
of conditions such as type of tissue and the developmental 
and metabolic stage of the cell. PLIN proteins may also differ 
in the subcellular localization; while PLIN1 is always found 
associated with LDs for which they are classified as constitu-
tive LD proteins, PLIN3–5, which are also found in the cyto-
sol, are considered exchangeable LD-proteins.52 PLIN1 plays 
major roles in the storage and degradation of TG in adipocytes 
as indicated by studies in vertebrates55,56 and in insects.52,57 
PLIN1 blocks lipolysis under basal conditions, but enables the 
action of lipases under hormone stimulated lipolysis.39 So far, 
only Drosophila’s PLIN1 has been purified and reconstituted 

in lipid droplet-like particles allowing some unique structural 
and functional studies.49,58

Since the hallmark discovery that PLIN1 regulates the 
storage of lipids,59 the study of LDs has seen a steady increase 
in attention by the scientific community. In the past decade, 
LDs have emerged as heterogeneous organelles with great 
dynamics in size, abundance, and composition in regard to 
both proteins and lipids.60 Recent studies have provided more 
details on LD structure, biogenesis, function, and molecu-
lar regulation.3,13,15,61,62 Given the conservation among the 
basic mechanisms of control of lipid metabolism,63 studies 
in insects41 and other systems have been instrumental to the 
advancement of this field. LDs are currently associated with 
multiple cellular roles beyond the storage of lipids.27 Here we 
compiled some of the most recent studies with the goal of pre-
senting the LDs as a major platform for the regulation and 
execution of multiple cellular functions.

Heterogeneity, A Feature of LDs
With the exception of mature white adipocytes from mam-
malian cells in which a single supersized LD (100  μm)64 
is present, LDs of a broad range of sizes (1–100  μm) are 
observed in both vertebrate and invertebrate adipocytes.15 
Almost all types of cells are able to store TG in LDs, and in 
general, droplets in non-adipocyte cells are smaller.65 LDs are 
subjected to fast and substantial variations in size and num-
ber in response to hormonal changes and the availability of 
nutrients. For instance, a thirty-fold increase in LD-volume is 
observed within hours when Drosophila S2 cells are incubated 
in the presence of oleic acid.66 In mammalian cells, LD size 

Figure 1. Interaction among LDs, mitochondria, and ER. The transmission electron micrographs of M. sexta fat body show the physical contacts 
(indicated with arrows) observed between LD and mitochondria (A), or between LD and ER (B). This figure was adapted from a previous report10  
and is reproduced with permission.
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can increase by the transfer of lipids between droplets, which 
is possible through contact sites and the cooperative action of 
FSP27 and PLIN1.67 This process leads to the formation of 
the single LD in mature adipocytes.68 Conversely, TG hydro-
lysis induces LD fragmentation and shrinking69,70 with a rapid 
formation of small and micro LDs (1 μm) in adipocytes.71–73 
Although, both small and micro LD originate during lipoly-
sis, small LDs would be generated from the fission of large 
LDs, whereas micro LDs would be formed with TG pro-
duced by the re-esterification of FAs.72 Micro LDs and small 
LDs are considered physiologically relevant in the response to 
energy demands.72,73

Enzymes of lipid synthesis are mostly integral membrane 
proteins of ER.74 Therefore, the site of the biogenesis of LDs 
is assumed to be the ER membrane, which harbors the diacyl-
glycerol acyltransferases (DGAT) that are needed to catalyze 
the last reaction of TG synthesis. The hydrophobicity and low 
solubility of TG in phospholipids indicate that they would 
start accumulating in the bilayer core promoting the forma-
tion of intramembrane lipid globules that would eventually 
bud off from the ER to the cytoplasm.62,75 Once the LD is 
formed, it could accept additional lipids. Live-cell microscopy 
studies suggested that at least part of TG synthesis takes place 
in the immediate vicinity of LDs,11 and that intracellular lip-
ids continuously exit and re-enter LDs.76

Some studies suggest that the newly formed LDs that 
appear in adipocytes incubated with FA localize on the cyto-
solic side of the plasma membrane. These LDs are smaller and 
coated with different types of perilipins unlike the larger and 
older cytosolic droplets that are coated with perilipin 1.77–79 
Likewise, studies in Drosophila have shown that the fat body 
presents small LDs (1 µm) containing LSD2 and LSD1 and 
larger LDs that only express LSD1.42 The occurrence of sub-
populations of LD is in line with previous studies showing 
the presence of different pools of neutral lipids in adipocytes 
from mammalian80 and insect81 adipose tissue. The incorpo-
ration of FA into these tissues leads to the accumulation of 
diacylglycerides (DG). In both systems, 20–50% of the FA are 
accumulated as DG, and the newly synthesized DG pool has a 
relatively long half-life.80,82–84 This pool of DG remained inac-
cessible to the TG biosynthetic pathway for several hours, and 
was preferentially mobilized under hormonally-stimulated 
lipolysis.81 It is possible that these lipids are stored in the 
newly formed LDs at the periphery of the cell.

LDs are Organelles
The quasi-spherical geometry and the presence of a large lipid 
core that characterizes both lipoproteins and LDs suggest 
that they could be compared. In fact, until not long ago, LDs 
were seen as simple intracellular lipoproteins. It may then be 
appropriate to point out some of the differences between these  
two structures. Lipoproteins are assembled in the ER lumen 
and secreted by the secretory pathway into the circulatory 
system.85 LDs also originate from the ER, and although the 

process of LD assembly is not understood yet, it is clear that 
nascent LD segregates from the cytoplasmic face of the ER. 
The synthesis of lipoproteins is restricted to certain types of 
cells (eg hepatocytes, enterocytes).86 However, LDs are com-
mon organelles present in most types of cells. Some tissues, 
such as the liver in vertebrates and the fat body of insects  
store lipids as cytoplasmic LDs and also synthesize and secrete 
lipoproteins to circulation.87 Lipoproteins transport lipids 
among tissues, whereas LDs hold lipids in the cytoplasm. 
The function of lipoproteins requires a structure that limits 
their interactions with many cellular and extracellular com-
ponents, and thus, allows the particle to reach the target tis-
sues. Conversely, LDs serve as a scaffold that recruits proteins 
involved in lipid metabolism and other metabolic processes. 
LDs are in contact with elements of cytoskeleton as shown in 
all LD proteomes.7–10,28–38 The intermediate filament vimen-
tin was one of the first LD-associated proteins identified.88 
Early studies showed a tight association between LDs and 
vimentin filaments enduring extensive washes with 1% Tri-
ton X-100.89 It has been shown that vimentin is required for 
proper lipolysis90,91 and for the provision of LD-cholesterol to 
the mitochondria for steroidogenesis.92 Cholesterol stored in 
the LDs of adrenal cells must be delivered to mitochondria, 
where the first step of steroid synthesis takes place. Genetic 
ablation of vimentin in mice resulted in a marked defect in 
steroidogenesis.92 Vimentin binds to LDs and proteins that 
are involved in LD metabolism, such as the hormone sensitive 
lipase, HSL,91 and the steroidogenic acute regulatory protein 
that targets mitochondria.93 Vimentin is considered an impor-
tant component of the network that facilitates lipolysis and 
the movement of LDs toward mitochondria.93

In Drosophila embryos, a bidirectional movement of LDs 
along cytoskeletal tracks6 has been demonstrated.94 These 
movements are driven by the cytoplasmic motors dynein 
and kinesin-1 and controlled by Klar, a highly abundant LD 
protein in fly embryos. Klar binds to LDs through a specific 
domain localized in the C-terminal region of the protein.95 
Deletion of this Klar domain impairs binding of Klar to 
LDs and the ability to control droplet motion.96 The interac-
tion of Klar with LD is controlled by the phosphorylation 
of LSD2, a LD protein from the PLIN family.94 As LSD2 
controls lipid storage,43 it was proposed that phosphorylation 
of LSD2 controls both lipid metabolism and droplet motion. 
LD mobility could be associated with the delivery of lipids to 
other cellular organelles.6

The number of proteins associated with the surface of 
LDs is remarkably large, whereas circulating lipoproteins 
only contain a discrete number of specific proteins (structural 
and exchangeable apolipoproteins). Given the variety of pro-
teins associated with LDs, different types of interactions and 
mechanisms of association of proteins with the LD surface are 
expected. PLIN1, the best characterized LD-associated pro-
tein so far, is synthesized in free ribosomes and it is supposed 
to localize to LD surface from the cytosol.97–99 More recent 
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information showed that PLIN1 also can relocate to the ER 
from where the protein moves back and forth between ER and 
LD.100 These observations are in accordance with the tight 
association between LD and ER observed by electron micros-
copy,51,101,102 and the functional association between LDs and 
ER that has been demonstrated in yeast Saccharomyces cerevi-
siae.103 Insect PLIN1 or LSD1 is not soluble in the hydrophilic 
environment and can only be maintained in solution when 
reconstituted in lipoprotein particles.49 It is then expected that 
its intracellular movement and localization to LD be mediated 
by small lipoprotein complexes. The involvement of coatomer-
dependent mechanisms for proper localization of proteins at 
the LD surface has also been demonstrated.104,105

Underlining the dynamic nature of these organelles is 
the fact that the protein coat of LD undergoes major changes 
in response to the metabolic state of the cell.8,10 As an illus-
tration, Figure 2 shows protein profiles of LDs isolated from 
Manduca sexta fat body adipocytes under opposite physiologi-
cal conditions: high lipogenesis and high lipolysis, which are 
characteristic of the larval and adult stages, respectively. The 
differences in protein composition that can be readily observed 
in Figure 2 were confirmed by mass spectrometry.10 The dif-
ferences affected proteins such as perilipins, but also tens of 
other proteins that are not necessarily related to lipid metabo-
lism. Lipoproteins also undergo changes in protein composi-
tion that have major impacts in metabolism. However, overall, 
the composition of lipoproteins is kept simple and includes a 
discrete set of proteins, mostly the apolipoproteins. The pro-
tein profile of purified insect lipoprotein, lipophorin is shown 
in Figure 2. Lipophorin is also synthesized in the fat body 
and, as LDs, was also purified by ultracentrifugation in a 
density gradient.

LD Proteomes: First Look at the LD Network
Proteomic studies of purified LD have shown that, in addi-
tion to the PLIN proteins, the protein coat of LDs includes 
a large number of significantly abundant proteins. A complex 
mixture of proteins from multiple subcellular compartments 
including cytosol, mitochondria, lysosomes, and ER are found 
associated with purified LDs. Proteins of the PLIN family, 
lipid metabolism, nucleus, ribosomes, chaperones, cytoskel-
eton, ER, membrane trafficking, and cell signaling are com-
monly identified in LD proteomes.7–10,28–38 The possibility of 
contamination of the LD preparations is often raised.3,13,52 
However, the consistency on these findings in preparations of 
LDs from different systems clearly argues against that pos-
sibility. Electron micrographs from many systems have dem-
onstrated tight physical contact of LDs with other subcellular 
compartments.10,101,106,107 Most recently, reports of functional 
interaction between LDs and ER,103 and LDs and mitochon-
dria,108 and LDs and peroxisomes61 add support that these 
proteomes for the most part are a reflection of the complexity 
of LDs. Interestingly, LD proteomes show proteins that are 
known to possess integral membrane regions. This common 

observation suggests that the LD envelope may have bilayer 
domains enriched in ER or mitochondrial proteins or, alterna-
tively, may contain domains that are fragments of ER or mito-
chondrial membranes. It seems obvious now that LDs cannot 
be simply described as a fat globule surrounded by a monolayer 
of phospholipid and a discrete number of different proteins 
anchored to its surface. Electron microscopy has provided evi-
dence consistent with the presence of monolayer structure.2,109 
However, that evidence may not apply to some LD popula-
tion. The complexity of the protein composition of LDs that 
has been provided by the proteomic studies suggests that LDs 
have an ample spectrum of interactions with other organelles 
and a number of cytosolic proteins and protein complexes. 

Lipid droplets LDLp

kDa 1 2

220-

80-

20-
-ApoLp-III

-ApoLp-II

-ApoLp-I

Figure 2. Changes in the protein composition of LDs from the same 
tissue. Protein profiles of purified LDs from the fat bodies of Manduca 
sexta larva and adult insects obtained by SDS-PAGE are shown in lanes 
1 and 2, respectively. Additional information on the protein compositions 
of the LDs was previously reported.10 For comparison, the protein profile 
of Manduca sexta low density lipoprotein purified by ultracentrifugation 
in a density gradient180 is shown in the lane labeled LDLp. ApoLp-I, -II  
and -III refer to the protein components of the insect low density 
lipoprotein. Parts of the figure are reproduced from previous reports10,180 
with permission.
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This picture of LDs is in line with the increasing evidence 
supporting a role of LDs in a number of cellular functions. 
Recent studies showing that structural and functional interac-
tions between LDs and other organelles are of physiological 
relevance support this notion.50

LDs as Signaling Platforms Involved in Multiple 
Cellular Functions
The array of functions related to LDs can be separated into 
classical and non-classical functions. The former are directly 
or indirectly linked to lipid storage and mobilization, whereas 
the second group of functions involving “refugee” proteins are 
related to vesicular trafficking, protein folding, protein stor-
age, autophagy, immunity, and virus replication.44 “Refugee” 
or non-resident proteins are proteins characteristic of other 
cellular compartment that nonetheless associate with LDs. 
Numerous refugee proteins have been identified in indepen-
dent biochemical and proteomic studies.7–10,28–38 An increasing 
number of mostly recent studies are shedding light into why 
those proteins are present in LDs and what metabolic and/or 
cellular conditions cause their association with the organelle.

LDs and whole-body energy homeostasis. The adipose 
tissue in vertebrates and the fat body in insects play a major role 
in maintaining the whole body energy homeostasis. Under an 
energy demand, FA are mobilized from these tissues to supply 
fuel for other organs. Mammalian adipocytes secrete free FA, 
whereas insects mobilize FA as DG, which are transported in 
circulation by lipophorin.110 On the surface of the lipid droplet 
is PLIN1, which serves as a gatekeeper controlling the access 
of lipases to the lipids inside the droplet. Catecholamines in 
vertebrates111 and adipokinetic hormones in insects87,112 con-
trol the mobilization of FA through a cAMP/PKA signal-
ing cascade. PKA-mediated phosphorylation of PLIN1 in 
vertebrates113 and LSD1 in insects12 activates TG hydrolysis. 
In vertebrates, lipolysis is catalyzed by the concerted action of 
at least PLIN1 proteins, three lipases (ATGL, HSL, MGL),  
a co-lipase (CGI58), and two separate pools of PKA.24,114 
PKA proximal to plasma membrane phosphorylates HSL 
triggering the translocation to the surface of LD.22,115 The 
second PKA seems to be on the surface of LD116,117 apparently 
recruited by the protein OPA1.118 A new study showed that 
this protein, which is known to be a mitochondrial protein, 
is a putative A-kinase anchoring protein (AKAP) on LDs.119 
Under stimulated conditions, OPA1 seems to operate on the 
surface of LDs recruiting PKA in connection to PLIN1 phos-
phorylation and activation of lipolysis.119

Other kinases such as ERK, p38 MAP, and AMP kinases 
are also activated by catecholamines120–122 and adipokinetic 
hormones.123 For example, HSL can be phosphorylated by 
ERK which increases its activity,124,125 whereas phosphoryla-
tion by AMP kinase is inhibitory.126,127 PLIN1 and HSL have 
multiple phosphorylation sites.56 The modulation of the lipo-
lytic response may rely on differential phosphorylation levels 
of these proteins.128

The lipolytic activity of a cell must respond to short and 
long term requirements of its own metabolism, such as FA 
oxidation and membrane synthesis, but also of the whole body 
metabolism, for instance for the synthesis of steroid hormones, 
for the synthesis of lipoproteins, and for the provision of FA to 
other tissues. Since FA and cholesterol are mobilized from the 
surface of the LDs, it is not surprising that the LDs harbor a 
number of lipases, kinases, and regulatory proteins. This com-
plexity is needed to allow the coordination of multiple signals 
originated from the metabolic requirements of both the cell 
and the whole organism.

LDs as transient platforms for protein storage. LDs are 
highly abundant in the oocytes of insects and play an essen-
tial role in the reproduction of insects by providing fuel and 
FA for the development of the embryo. The accumulation 
of histones in LDs has been detected in proteomic study in 
early Drosophila embryos.9 More importantly, these histones 
were transferred to the nuclei during development.9 Histone 
proteins are needed to assemble chromatin. As early embryo-
genesis involves several rounds of DNA-replication without 
translation, pre-made histones are required for chromatin 
packaging. In Drosophila, maternal histone protein is syn-
thesized and temporarily stored in the nurse cells and then 
transferred to the oocyte.129,130 Maternal histone H2A, H2B, 
and H2Av proteins as well as those proteins that are gener-
ated by maternal histone mRNA accumulates in the LDs. 
Now we know that histones are recruited by the LDs through 
a LD-associated protein called Jabba, which forms protein 
complexes with histones.131 The sequestration of histones to 
LDs by Jabba helps their stabilization. Since, in the absence 
of Jabba, there is no storage of maternal histone H2A, H2B, 
and H2Av in the oocytes or early embryos, this process could 
be important to preserve histones from degradation. Like his-
tones, Jabba is maternally provided.

It has been proposed that other proteins target LDs for 
temporary shelter. The common presence of ATP-synthase 
subunits in LDs is intriguing.7–10,132,133 A new study showed 
that three ATP-synthase subunits interact with invadolysin,134 
which also is a LD-associated protein.135 Invadolysin is a con-
served metalloproteinase required for proper mitochondrial 
function.134 It is possible that following their synthesis in the 
cytoplasm, the inactive ATP-synthase subunits are recruited 
by the LDs. The interaction with invadolysin on the LD sur-
face could be needed as part of a mechanism of folding and 
activation of ATP-synthase subunits.

LDs as transient platforms in the path of protein 
degradation. Misfolded proteins in the ER lumen are 
removed from the ER via dislocation to the cytosol, where 
they are degraded by the ubiquitin/proteasome system. This 
process, which is called ER-associated degradation (ERAD), 
covers a range of different mechanisms that include protein 
adaptors whose function is to recruit misfolded proteins to 
the ubiquitination machinery.30,33 Proteasomes are distrib-
uted in the vicinity of LDs,136 and LDs are involved in the 
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degradation of at least two substrates: lipidated ApoB100137 
and 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reduc-
tase,138 the rate-limiting enzyme of cholesterol synthesis.  
A role for LDs in ERAD was originally suggested when pro-
teasome inhibition caused the accumulation of ApoB100 at 
the surface of LDs.137 Furthermore, LDs might play a broader 
role in the degradation of misfolded ER proteins since phar-
macological inhibition of LD formation impaired the dislo-
cation of other proteins.145 To eliminate lipidated ApoB100 
from the ER lumen, the lipidated particle is transported to 
the LD surface in a process that involves the proteins Der-
lin-1 and Ubxd8.139 It has been suggested that Derlin-1 in 
the ER membrane and Ubxd8 on the LD surface interact in 
an ER–LD juncture allowing the passage of ApoB100 to the 
LD surface for ubiquitination.139 Ubxd8, a LD-associated 
protein140–142 recruits VCP/p97, the ATP driven chaperone 
required to process ubiquitin-labeled proteins.143 The ubiqui-
tination machinery also involves E3 ubiquitin ligases that use 
adaptor proteins for substrate recognition. Ancient ubiquitous 
protein 1 (AUP1), a highly conserved protein that localizes 
to ER and LDs34,38 and is found in LD proteoms,8 acts as an 
adaptor recruiting different ubiquitin ligases such as E2 con-
jugase Ube2g2,144 an E3 ligase AMFR/gp78.138,145,146

AUP1 also mediates the sterol-induced ubiquitination 
of HMG-CoA reductase.146 AUP1 recruits the ubiquitin-
conjugating enzyme Ubc7 to LDs and facilitates its binding 
to both gp78 and Trc8. The LD mediated degradation of the 
rate-limiting HMG CoA reductase is important for the con-
trol of cholesterol synthesis in mammalian cells.138

Apart from degradation of ERAD proteins, the abun-
dance of LD-associated proteins PLIN1 and 2 are also con-
trolled by the ubiquitin/proteasome system.147 In this regard, 
it has been shown that the multifunctional protein spar-
tin acts as an adaptor needed for the degradation of ADRP  
that takes place during adipocyte maturation.148 Housekeep-
ing chaperones such as Hsp70, which are found in all LD 
proteomes,8–10,31,149,150 may also serve as adaptors to recruit 
misfolded proteins for proteasomal degradation.

Although the number of examples is limited, the reported 
studies suggest that degradation of ER proteins on the sur-
face of LDs could be a mechanism controlling the fate of a 
large number of proteins. The study reported by Klemm and 
coworkers145 certainly suggest that this could be the case. As 
observed for HMG-CoA reductase, the abundance of other 
membrane enzymes, such as other enzymes involved lipid 
synthesis could also be controlled by ubiquitination and pro-
teasome activity on the LD surface.

LDs recruit autophagic machinery leading to lipoph-
agy. A number of factors, such as cellular starvation and cellu-
lar infection lead to the activation of autophagy. In this process, 
cytoplasmic components are first engulfed in a vesicular 
structure and then fused with lysosomes for degradation.70,151  
LDs are targets of autophagy and one of the required struc-
tural components of the autophagosomes is the protein  

LC3 covalently conjugated to phosphatidylethanolamine (PE). 
LC3 is recruited to the surface of LDs, where it is conju-
gated with PE.152 Other required proteins of the autophagic 
machinery, Atg2, Atg5, and Atg7, are also recruited at the LD 
surface to help the formation of autophagosomes.153,154 In the 
starved cell, small LDs or portions of larger LDs are directed 
to lysosomes via autophagosome vesicles in a process called 
lipophagy.155,156 This process may be important to eliminate 
misfolded proteins stored in LDs or fragments of membrane 
proteins that remain in the LD after the proteasomal activity. 
It may also be important to provide FA through the action 
of lysosomal acid lipases.152,157 Some studies have shown 
that alteration of the autophagy process through lysosomal 
inhibition or knockdown of the expression of the Atg5 gene 
decreases TG breakdown and increases LD number and 
size.153 Although much remains to be known, current infor-
mation suggests that LDs play an active role in the degrada-
tion of cellular components. To this end, LDs seem to provide 
a platform for the association of both the degradation targets 
and the degradation machineries of the proteasomal complex 
and autophagy.

On the role of LDs in cellular infection and immunity. 
A range of pathogens such as hepatitis C virus (HCV),158 
dengue virus,159 bacteria Mycobacterium leprae,160 and the 
protozoan Trypanosoma cruzi161 target LDs and manipu-
late host cell lipid metabolism. Pathogens may target host-
derived LDs either for gaining nutrients or for escaping host 
immune systems.162 They also exploit host-derived LDs as the 
sites for their protein assembly.163 HCV assembles virions at 
lipid droplet surface.164 HCV core protein localizes to LDs 
and initiates production of viral particles at LD-associated 
membranes of the ER. During infection, some nonstructural 
proteins of HCV, such as NS2, NS3, and NS5A and viral rep-
lication RNA complexes are recruited on the LD membrane 
surface.163 A critical role of DGAT1, the enzyme that syn-
thesizes TGs in the ER, in recruiting the virus to LDs has 
been recently reported.165 DGAT1 would serve as a cellular 
hub for HCV core and NS5A proteins, guiding both onto 
the surface of the same subset of LDs. Binding of HCV core 
protein to LD causes a redistribution of the LDs around the 
nucleus and displacement of ADRP from the LD surface.166 
The interaction between HCV core protein and LDs also leads 
to the accumulation of TG and the formation of larger LDs. 
This interaction could be associated with the development of 
steatosis.167 HCV core protein can also slowly affect LD local-
ization by controlling the directionality of LD movement on 
microtubules.168

LDs play an important role in the synthesis of eico-
sanoids,169 important mediators of the inflammatory 
response. LDs of macrophages and mast cells store arachi-
donic acid,170,171 which is the precursor for the synthesis of 
eicosanoids. LDs of these cells are considered central organ-
elles of the inflammatory response because they are the place 
for storage and synthesis of prostaglandins and leukotrienes 
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that are secreted during infective processes.162 Interestingly, 
LDs of macrophages seem to be structurally different from 
other LDs.172 In addition to the protein coat surrounding the 
droplet, these LDs appear to have internal structures con-
sisting of membranous structures and proteins in the core of 
the particle.173–175 To what extent this is a unique structural 
feature of the LDs of macrophages, or a more general case 
remains to be elucidated. Several pathogens induce the accu-
mulation of LDs in immune cells.161,172,176–179 T. cruzi infec-
tion promotes the accumulation of LDs concomitantly with 
a higher production of prostaglandin PGE2.161 Furthermore, 
during the in vivo infection with T. cruzi, LDs associate with 
phagosomes, the vacuole in which the pathogen is internal-
ized. This complicated picture suggests that some pathogens 
may be able to manipulate host-derived LDs to extend their 
survival, even when the cells are producing greater amounts of 
the inflammatory mediators.176 It is not clear whether the phe-
nomena observed are more important for pathogen survival 
or for the defense of the host. However, increasing evidence 
suggests that LDs are playing a role in infection/immunity 
processes.

Conclusion
From simple globules of fat to highly dynamic organelles of 
unexpected complexity, our perception of LDs has been radi-
cally transformed in the last years. Now we recognize LDs as 
organelles involved in a number of cellular processes beyond 
their role as site for lipid storage. The broad range of LD func-
tions implicates specific interactions with other cellular com-
partments and in some conditions the concerted movement 
of LDs along microtubule tracks. Although the details of the 
mechanisms for any of the cellular functions in which LDs 
are involved are limited, protein–protein interactions involv-
ing LD-associated proteins emerge as vital components of LD 
biology. Knowing the full spectrum of LD interactions and 
signaling mechanisms is essential to understand LD biology 
and lipid metabolism.
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