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Metabolic Networks: Structure and Capabilities
Cell metabolism can be computationally represented by a 
large set of metabolites intertwined by biochemical reactions. 
This is the simplest definition of a metabolic network. When 
a system comprises all possible reactions that are performed 
by a cell, it is a genome-scale metabolic network. Different 
from kinetic models where time is a fundamental parameter, 
the computation of metabolic networks is time independent 
and the outcome is an overview of the metabolic capabilities 
under the steady-state assumption, where external nutrients 
are metabolized in final products required for specific “meta-
bolic tasks.” The steady-state assumption states that no internal 
metabolite can be accumulated in the system. This means, for 
example, that the sum of reaction fluxes generating a metabo-
lite must be equal to the sum of the reaction fluxes consuming 
the same compound. The steady-state assumption allows the 
simplification of the computational complexity of the math-
ematical problem, although it is known that cell metabolism 
is in quasi-steady-state.1–4 The genotype content in the cell 

defines the network structure and which enzymes are present 
in a specific cell.

In Figure  1, Panel I, the metabolic network is repre-
sented by light blue dots (metabolites) connected by blue and 
black arrows (active and inactive reactions). Here, two red 
metabolites are the final products (metabolic targets) whose 
synthesis is fundamental for the simulated metabolic task(s). 
Under the chosen availability of external nutrients, only a part 
of the network is active (blue reactions), while the rest of the 
system is carrying a null flux (black reactions). Which net-
work subset is active and how efficiently are synthesized the 
metabolic targets is a detailed description of the cell phenotype 
and homeostasis. The second scenario (Panel II of Figure 1), 
which is a common routine to assess the network, introduces 
the concept of “perturbation” of the system. Useful informa-
tion may be gained comparing the non-perturbed phenotype 
(phenotype I) with the perturbed one (phenotype II).

The general term “perturbation” defines a wide set of a 
priori-chosen impairments that may be limitations of external 
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nutrients,5 inhibitor-induced impairments,6,7 or knock-outs of 
genes codifying for internal enzymes.8 In Figure 1, the per-
turbation blocks two reactions (the red arrows) and the net-
work topology allows redirection of the fluxes to synthesize 
the metabolic targets. Usually the perturbation outcome is 
“binary”: the network may be impaired and the perturbation 
is then lethal, or the network has some bypasses to exploit and 
the system reaches a new homeostasis through the establish-
ment of a new phenotype.

Some recent advancements aimed to simulate a partial 
inhibition of network enzymes to represent in more feasible 
way the effect of enzymatic inhibitors.6,7 It is often the case 
that the drug-induced impairments of enzymes do not prevent 
the residual activity of their metabolic targets.

It would then be possible to have more insights about 
the perturbation consequences, if -omics datasets (eg, 
transcriptome,9–12 proteome,13 fluxome14) would be integrated 
into the systems. Drug inhibitors may hinder enzymatic activi-
ties, but they can also trigger specific gene expressions, chang-
ing the efficiency of some pathways;15 gene deletions may cause 
unexpected enzymatic regulation in mutants;16,17 lack of some 
nutrients leads to the expression of transporters for alterna-
tive sources and, thus, possible new influxes to be included in 
the system.18 Overall, the cell is a living system that evolves 
under perturbations through metabolic adjustments. All these 
considerations may be exhaustively sorted out by experimen-
tal datasets12,13,19 that also improve the system description and 
resolve potential inconsistencies. Along with experimental 
data, a more fine description may be reached if the network 
is refined from a thermodynamical perspective.20–22 Then, the 
metabolic network may be only a layer of cell physiology, whose 

description may be refined by more model types, as signaling 
networks and transcription regulation (Figure 2).23 Complex 
physiological phenomena require an irreversible change in the 
metabolism. Terminally differentiated cells show more specific 
pathways in comparison to the pluripotent progenitors; cancer 
and other severe diseases impair metabolism in many differ-
ent ways, all leading to a new phenotype.24,25 Fully reversible 
adjustments of metabolism are likely to happen in case of lim-
ited nutrients26 and environmental adaptation.5,27,28

Simulations of metabolic models. The basics of the flux cone. 
The structure of a metabolic network is defined by its stoichio-
metric matrix (S), that stores the metabolites connectivity in 
terms of reactions stoichiometric coefficients. For a network of n 
reactions and m metabolites, S has m columns and n rows. This 
is a mean to transform a set of chemical equations in a compu-
tationally useful data structure. An example of stoichiometric 
matrix of the human pentose phosphate shunt pathway is given 
in Figure 3 with the list of included reactions. The dynamics of 
the metabolic network is described by equation 1,

	
dC
dt

S= .υ 	 (1)

where C is the vector of the metabolite concentrations, t is 
the time and v is the flux vector.

The steady-state assumption simplifies this equation in 
equation 2, defining the internal mass balance of the network. 
In this way, the variable “time” is discarded and the problem 
is simplified.

Now, this assumption leads to a system of n linear 
equations.

I

II

Nutrients

Nutrients

Pertur
bation

Gen
o

typ
e

Gen
o

typ
e

Metabolic
tasks

Metabolic
homeostasis

Pheno
type I

Pheno
type II

Metabolome

Transcriptome

Proteome Fluxome
Metabolic

adjustments

Metabolic
tasks

Metabolic
impairment

(lethal outcome)

New
homeostasis

(bypass)

OR

±±

Figure 1. Simulation of metabolic networks: two scenarios.
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A special propriety of each matrix is the rank r, whose 
integer value indicates the number of linearly independent 
columns or rows of the data structure. The rank can also be 
defined as the amount of non-zero rows of a new matrix, that 
is obtained reducing S matrix to its row-echelon form.

The network capabilities, defined as the set of all pos-
sible solutions, are given by a closed space, the flux cone.  This 
object has (n-r) dimensions, where n is the number of reactions 
in the system and r the rank of S matrix. Each point within 
this closed space describes a linearly dependent combination 
of reaction fluxes, while the cone edges are larger sets of fluxes 
solutions.

	 S. υ = 0	 (2)

There are many mathematical ways to solve equation 2. 
This can be solved by geometrical means, and in this case,  
the solution is unique,29 even if the most common approach is 
based on optimization problems for which do exist alternate 
possible solutions. This space can be restricted by constraints 
that describe reaction irreversibility, uptake and export fluxes, 
and, when available, experimental measures. Then, there are 
two main computational perspectives to explore the cone: 
topology-based analyses and optimization procedures.

Methods for pathway analysis. The study of the pathway 
topology may be performed with many methods that rely on 
the steady-state assumption. The use of these methods is not 
limited to pathway analysis, but they are also suitable tools to 
build large-scale networks. These algorithms are elementary 
modes,30–33 minimal cut sets,33–35 extreme pathways,36,37 and 
generalized mass-action.38

An elementary mode is a set of active enzymes carrying 
a non-zero flux. This subnet activation respects the reaction 
irreversibility and defines a short functional route. From a 
mathematical point of view, an elementary mode is a minimal 
linear combination of possible fluxes. The solution set may be 
any vector (internal or on the edge of the feasible space) that 
spans from the flux cone origin.

The main limit of this approach is given by the combi-
natorial complexity of all obtainable solutions; hence, some 
strategies were applied to prune the set of predicted modes, 
preferring the k-shortest path.30 This aspect limits the appli-
cation of this algorithm to genome-scale networks, whose 
size may hinder the computation time. To bypass this issue, 
Schuster and coworkers modified and extended this approach 
to large systems.39 The outcome of this more recent method 
(elementary flux patterns) collects a set of elementary fluxes.

Every optimization problem can be described in dual 
terms, and on this aspect, it is based on the concept of mini-
mal cut set. While the former approach tests the reaction 
functionality, here the computation indicates the reaction set 
that is essential for the overall flow of the system. This method 
gives interesting information about the presence of a putative 
metabolic bypass in the network topology. It is an useful way 
to analyze a pathway topology in terms of robustness and 
sensitivity to perturbations. The feasibility of the approach of 
Klamt and Gilles was assessed by computing Escherichia coli ’s 
growth on different media.33

Similar to elementary modes, also extreme pathways are 
linear modes of an activate subnetwork.36 These pathways 
are the edges of the flux cone. Here, reversible reactions are 
decomposed into forward and backward fluxes. This is its 
main difference from elementary modes, where reversible 
reactions are treated as a single component of the flux. Two 
extreme pathways for the pentose phosphate shunt are shown 
in Figure 4.

The last approach here reviewed to assess pathways func-
tionality is the generalized mass-action kinetics. This method 
has the advantage of the possibility to describe more accurately 
the enzyme kinetics if inhibitors or activators are present. Here, 
the specific enzymatic mechanism is reduced to the product  
of the reactant(s) concentrations and rate constant. Despite 
this simplification, generalized mass-action kinetics was fea-
sible to study human purine metabolism and the outcome was 
supported by many experimental evidences.38 Advantages and  
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Figure 3. Three representations of human pentose phosphate pathway.
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disadvantages of the methods here reviewed are summarized 
in Table 1.

Methods for genome-scale metabolic networks. The com-
putation of large-scale networks often is performed with 
constraint-based optimization problems. Their main advan-
tage is that a profound knowledge on enzyme kinetics is not 
necessary. Despite this, many community efforts are currently 
devoted to kinetic and semi-kinetic approaches for large-scale 
networks.11,40–43

FBA (flux-balance analysis) is a wide-spread mathemati-
cal framework for genome-scale network simulations. Here, 
inputs for the models are the external availability of nutrients, 
the network structure, and the specific “metabolic tasks” to 
accomplish. The results will then predict the reaction fluxes 
of the network and how efficiently the metabolic tasks are 
fulfilled. Reaction fluxes represent qualitatively the reaction 
contributions to the metabolic tasks. In Figure 5, an example 
of FBA outcome is given for the shunt pathway (where inputs 
are vl  =  l, general lower bounds  =  −10, and general upper 
bounds = 10).

The mathematical core of FBA is a linear programming 
problem, where a system of mass-balanced equations (net-
work reactions) and intake fluxes defines a constrained space 
solution. An objective function should be chosen to find an 
optimal solution within the constrained space. The optimal 
solution describes a flux distribution fulfilling the objective 
function (the metabolic tasks) and represents a point in the 
restricted feasible space. Unfortunately, the optimal distribu-
tion for a given network is not unique. To bypass this issue, 
Smallbone and Simeonidis developed geometry-based meth-
ods that find an unique solution for the flux distribution.29 
Other details on FBA formalism and capabilities are given 
in Refs.44–46

If the simulations are representing the metabolism of a 
growing microorganism, a realistic metabolic task is the maxi-
mization of the biomass components.47–49 When the predic-
tions aim to optimize the biochemical design of microbes for 

cell factories, the synthesis (as molar yield) of key-products is 
maximized.50–52

Theoretically, any function can be maximized or mini-
mized in networks, but only a few have specific biological 
meanings. Some of these functions are the minimization 
of the internal fluxes53,54 and the maximization of specific 
metabolites.47–49 All the cited perspectives rely on the main 
assumption that the cell is under selective pressure and it will 
exert its efforts to reach an optimum. These efforts may be 
expressed as “maximization” of some metabolic syntheses or, 
antithetically, as “minimization” of internal costs (eg, ATP 
consumption, shortest path, etc). The idea that a cell is able 
to rearrange its metabolism in an optimal way has been revis-
ited in some works.55,56 An interesting work simulated E. coli 
growth on six media and with 11 different tasks to accom-
plish.57 The predictions were then confronted with measured 
in vivo fluxes, to understand which objective is maximized in 
reality. The surprising finding is that the cell does not use a 
shortest path, but tries to maximize its ATP yield for flux unit 
and the biomass yield.

Segré and colleagues realized that microorganisms under 
gene deletions are more sensitive to perturbations than wild-
type cells.55 Their minimization of metabolic adjustment 
(MOMA) method was a relaxed version of the FBA prob-
lem, where the prediction is a suboptimal flux distribution for 
a mutant strain. This method relies on the assumption that 
mutants are “metabolically impaired” to grow, although there 
is evidence that not all knock-out organisms are dysfunctional 
in comparison to the parental wild-type strain.58–60 Subopti-
mal computational outcomes should be reconciliated with in 
vivo/in vitro mutation-induced effects, which may be unex-
pected in some cases. Nevertheless, MOMA found a wide 
consensus among network modelers as a computational tool. 
Lactococcus lactis metabolic network was assembled with FBA 
and its enzymatic deletions simulated with MOMA;47 a yeast 

Table 1. A summary of the methods to model metabolic pathways.

Computational 
method

Advantages Limits

Elementary modes Useful to understand  
possible routes

long computation  
time for large  
systems

Minimal cut set Based on structural  
features of the  
mathematical problem

Extreme pathways Useful to understand  
possible routes; different  
versions available  
depending from the  
network size

subset of possible  
elementary modes

Generalized mass 
action kinetics

Possibility to include  
regulations

 

IN

F6P

0

0

0

00;1 6;3

6;3

4;2

4;2

2;1

2;1

1;1

1;0

1;1

−2;−1F16PP

X5P

S7P

G3PDHAP

E4P RI5P

R5P

PRPP

Figure 4. Two extreme pathways calculated for the pentose phosphate 
shunt pathway. Software: ExPA.

http://www.la-press.com


Promise and reality of metabolic networks

87Bioinformatics and Biology Insights 2014:8

strain has been engineered for vanillin synthesis with FBA 
and MOMA;61 the metabolic reconstruction of Sulfulobus 
solfataricus applied MOMA to assess the percentage of lethal 
mutations.62

Another mutant-dedicated algorithm is regulatory  
on/off minimization (ROOM), which computes the minimal 
flux deviation from the wild-type flux distribution.63 ROOM 
performance was higher in comparison to FBA and MOMA 
in the flux prediction for pyruvate kinase deletion in E. coli.63 
MOMA and ROOM pioneered the way to the development 
of algorithms for metabolic networks that do not strictly fol-
low the optimality criterion. A recent interesting application 
of ROOM is given by r-dFBA, a dynamic FBA version that 
integrates ROOM algorithm.64 While Shlomi and coworkers 
minimized the flux deviation, r-dFBA minimizes the devia-
tion of metabolite concentrations. Another recent research 
proposes an algorithm (PSEUDO) to find suboptimal clouds 
of flux distributions in metabolic networks with a minimal 
rearrangement of the objective function.65 The authors 
correlated flux variability with the degenerated optimal con-
strained space.

The objective function has a specific importance in a 
new computational framework for large-scale networks, 
Feasibility Analysis.66 The scope of the objective function is 
improved to describe a large spectrum of cell capabilities, 
such as network robustness, metabolic homeostasis, and 
temporal responsiveness. Overall, this approach has a good 
performance in predicting yeast growth in chemostat under 
carbon limitations.

Alongside with mutant-dedicated programs, another set 
of algorithms is dedicated to estimation of the cellular biomass 
composition. In many works, this composition was retrieved 
and rearranged from the available literature48,49,67 or experi-
mentally measured.12 It could be also possible to obtain the 
biomass from a network topology and an available fluxome68 
or test which biomass has the best performance in a specific 

system.69 Reconstruction of biological functions can be also 
predicted by Redirector,70 which focused on minimal adjust-
ments of the biomass components. More details on different 
types of biomass composition are given in Ref.71

Network Reconstruction in a Nutshell
Assembling a network requires the list of annotated genes 
in an organism and some patience to rationalize these data 
in a pathway-centric hierarchy. Often, the first draft of the 
model is achieved with semi-automatized methods exploiting 
biochemical databases (KEGG,72 BRENDA,73 MetaCyc,74 
and many more). A parallel and complementing way would 
assemble the metabolic network from literature sources 
only. This draft should be, then, refined with the available 
databases.

Another strategy for an initial reconstruction may involve 
human Recon l, a collection of all reactions present in the 
human body.75

This large dataset can be useful to extract metabolic 
pathways contained in experimental -omics datasets. In this 
way, many models of human cells were compiled.13,76,77

The entire viability of the network is assessed, and struc-
tural gaps (created by unconnected metabolites; thus, they are 
indicative of missing reactions or pathways) are analyzed with 
the help of literature and with sequence alignments.78 It is pos-
sible to assemble reasonable subnetworks to close the gaps and 

Table 2. A summary of the methods to model metabolic networks.

Computa-
tional method

Advantages Limits

Flux balance  
analysis

genome-wide  
experimental dataset  
integration; main  
reconstruction tool

no unique solution; 
subnetwork activa-
tion dependent from 
objective function 
size

Elementary flux  
patterns

feasible on wide-scale  
systems

not based on objec-
tive optimization; not 
feasible to repre-
sent long-distance 
impairments due to 
secondary metabo-
lites (cofactors, 
prosthetic groups 
donors, etc.)

MOMA first algorithm introducing  
suboptimality for mutants

ROOM refined suboptimality for  
mutants

Feasibility  
Analysis

assessment of the system  
robustness and on a  
dynamic parameter  
(time responsiveness);  
good agreement with  
experimental results

not tested yet on  
large scale  
networks

PSEUDO good agreement with  
experimental results;  
feasible for large scale  
networks
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refine erroneous genome annotation.79 A common practice is 
the integration of -omics datasets (proteomic, transcriptomic, 
metabolomic, and fluxomic data) in the metabolic network to 
improve the physiological description of the cell.9,12,13,77,80–82

Simulation strategies to support a metabolic network. 
Generally, the simulations for validation may have two oppo-
site aims:
1.	 to predict the maximal production and secretion of a 

metabolite, given experimental measures of the microor-
ganism in the medium and

2.	 to detect enzymes or reactions that are essential for a spe-
cific metabolic task (eg, biomass synthesis, toxin synthe-
sis, cell growth).

While the first case is mainly followed by researchers 
modeling organisms for industrial purposes,12,50,52,80 the sec-
ond approach is devoted to simulate effects of enzyme inhibi-
tors for drug research or the discovery of disease-specific 
biomarkers.7,83–86

Advantages and limits of some methods here reviewed 
are summarized in Table 2. In Figure 3, a flux balance solution 
is shown for the human pentose phosphate shunt. Here, the 
different flux activation of the pathway branches are propor-
tional to the stoichiometric coefficient of the biomass compo-
nent (G3P, R5P and PRPP).

To assess the network validation for a specific synthesis, 
it would be reasonable to test, first, the growth rates under dif-
ferent media conditions.48,49 This would help to fit the biomass 
growth under different environments and to detect possible 
faults in the network topology. It is interesting to notice that 
the prediction accuracy can be impaired more by an incor-
rected topology than by a generic biomass composition. The 
network reconstruction of Pseudomonas putida, for example, 
includes a biomass composition of E. coli, but it has a good 
performance in predicting growth yields.87

Another approach to test the network validity simulates 
the effects of existing enzymatic inhibitors on the flux distri-
bution. List of enzymatic inhibitors are retrieved from online 
resources and literature, and the corresponding enzymes 
(drug targets) are “computationally inhibited.” The predic-
tion would assess if the metabolic tasks were fulfilled (non 
essential enzyme) or if there were some impairments (essen-
tial enzymes). Simulation of drug-induced effects in a network 
may focus not only on the detection of the biomass component 
that is impaired7 but also on the screening of essential enzyme 
in a mutated cell with multiple knock-outs.84

If a model can reproduce the effects of known drugs 
on the metabolism, it is also feasible to represent the general 
homeostasis of the modeled cell.

The Promise: Practical Applications of Metabolic 
Networks
Metabolic networks are considered feasible representations of 
cellular biochemistry. The availability of metabolic networks 

as predictive tools is fundamental for metabolic engineering. 
The mutations of specific enzymes would redirect the flux 
to other products. This strategy was successfully followed to 
engineer yeast for succinate synthesis.12 Succinate, an inter-
mediate of the Krebs cycle, is largely employed in chemi-
cal industries.12 Following the same concept, the network 
of a microalga (Chlamydomonas reinhardtii) predicted a way 
to accumulate H2.48 The same model also suggested some 
ways to optimize this production. The synthesis of antima-
larial precursors was optimized with extreme pathways-based 
modeling in yeast.88

The networks are powerful tools to design the meta-
bolic architecture of microorganisms and are also employed 
to understand how to defeat human pathogens. To identify 
enzymatic drug targets in pathogens, FBA-based methods 
were applied to models of Mycobacterium tuberculosis,9 
Campylobacter jejuni,89 Plasmodium falciparum,83 and Neisseria 
meningitidis.90 To describe better the host—pathogen 
interactions, some pathogens were “coupled” to the human 
host cell. M. tuberculosis was simulated inside a human 
macrophage,13 and the malaria pathogen was integrated in 
a human red blood cell.83 The main idea is that a parasite 
growth would be more realistic when it is embedded in the 
“natural environment” (the host). To understand which path-
ways are active in L. monocytogenes when it is in the intracel-
lular state, topology-based computations (extreme pathways 
and elementary modes) were employed to detect essential 
reactions.91 The outcome was then in agreement with gene 
deletion assays and helped to gain insights into the intrac-
ellular metabolism of the pathogen. Drug-effects on patho-
gens metabolism were simulated with extreme modes in two 
Streptomyces models to assess weak point and cytotoxic effects 
in the microorganism.92

A human cancer network was reconstructed to assess 
cancer-specific essential enzymes, and the predicted target 
was experimentally validated.84,93

An exciting use of metabolic networks is the screen-
ing of disease-specif ic biomarkers that can be applied 
for early detection of diseases. The principle behind this 
application is that mutated cells present alterated meta-
bolic profiles. Shlomi and coworkers analyzed a human 
cancer network, and detected the impairment of 176 
enzymes and a set of 233 potential biomarkers for inborn 
metabolic mutations.94 Following a similar approach, a 
large-scale network of human heart cell was reconstructed 
and analyzed to predict 776 putative biomarkers for car-
diovascular diseases.95

This short overview of the practical applications of meta-
bolic networks highlights their potential in

-	 detecting new drug targets for specific cell types,
-	 optimizing the genetic design of microbial strains for 

industrial purposes,
-	 screening biomarkers for early diagnoses,
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-	 improving genome annotations of organisms, and
-	 studying physiology and biochemistry of the cell.

The principal axiom of Systems Biology is that a system 
should be also analyzed at the level of interactions of its parts, 
not only as sum of them. The examples reported here suggest 
that this “philosophy” can make sense.

The Reality: the Limits of Metabolic Models
Metabolic models are useful tools, but, as everything has, they 
show some limitations too.

A not complete genomic draft may result in a not viable 
metabolic network. Luckily, possible gaps may be resolved 
through the integration on -omics datasets.12,13,16,92

The second limitation is the inability to describe internal 
regulations, such as feedbacks, complex assembly, and drug-
side effects, without integration of a specific ODE subnet-
work.23 This fact is linked to specific expression of isoforms 
that are transiently present in different compartments.96 With 
no prior knowledge about their localization, it would not 
be possible to design ad hoc experiments. It is interesting to  
notice than often -omics datasets do not focus on the carrier 
expression. This aspect, if integrated in a network, may give 
hints about the temporal activation of metabolic pathways 
under a defined stimulus in different compartments.

In some common diseases, the enzymatic isoforms, their 
assembly, and their possible impairment in the membrane are 
mainly regulated by single fatty acids.97 Being this a wide set 
of molecules, a similar complex event would not be feasible for 
FBA for its descriptive limits and may be wide for a detailed 
kinetic model. Generalized mass-action kinetics could be 
helpful for this purpose.

Overall, the complexity of the cell is always far ahead in 
comparison to any computational model that may mimic only 
specific aspects of a living being.
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