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ABSTR ACT: Robots have been developed for treatment and rehabilitation of ankle injuries. Two reviews have been conducted involving the effective-
ness of robot-assisted ankle rehabilitation and ankle assessment techniques respectively to investigate what the optimal therapy is. This study proposes an 
assistance-as-needed (AAN) control paradigm for potential use in robot-assisted ankle rehabilitation based on the review results. This AAN control strategy 
will consider real-time ankle assessment and make rehabilitation more effective.
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Robots have been developed for treatment and rehabilitation 
of ankle injuries. Wearable robots are aimed at improving 
ankle performance during gait, whereas platform-based robots 
focus on improvement of ankle performance.1–6 A recent 
systematic review conducted by Zhang et al7 summarized 
various robot-assisted ankle rehabilitation techniques. The 
review concluded that the majority of them were beneficial 
for ankle recovery, but the effectiveness of robot treatment 
was not clear because of a lack of universal evaluation criteria. 
It also revealed that few took real-time ankle kinematics and 
kinetics into consideration when programming robotic con-
trol strategies, and AAN control strategy was proposed for 
optimal ankle therapy.

The optimal therapy should be tailored to the condition 
of each patient through a performance-based control algo-
rithm. Hogan et al10 suggested that the form of therapy might 
be  more important than its intensity: muscle strengthening 
offers no advantage over movement training. Experienced 
rehabilitation therapists advocated AAN control strategy, 

which refers to the principle of helping patients perform a 
movement with minimal amount of external assistance possi-
ble.11 In AAN training strategies, robotic devices only supply 
as much effort as patients need to accomplish training tasks, 
so voluntary participation is encouraged; whereas, in conven-
tional robotic trajectory tracking training system, patients’ 
active participation is not a concern. Studies12–14 were con-
ducted on both animals and humans to compare active with 
passive training regimes. The results indicated that subjects’ 
voluntary participation led to more effective training. In terms 
of implementation, however, the concept of AAN is still vague, 
because different levels of assistance could be applied accord-
ing to specific applications. Typical AAN schemes determine 
the amount of assistance based on task accuracy in virtual 
reality, and it is a multi-criteria optimization problem.2,3,15,16 
While these studies demonstrated that training regimes with 
different AAN paradigms reduced ankle motor impairment 
as assessed with various outcome measures, these methods 
used are not optimal nor very safe because they ignored actual 
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Further, ankle disability level could be quantified according to 
the kinematics and kinetics of ankle joint, muscles, and liga-
ments based on a predefined criterion.

Siegler et al19 showed neither ankle joint nor subtalar 
joint was acting as an ideal hinge joint, and motion of ankle–
foot complex is the result of rotations at both the ankle and 
subtalar joints. To be specific, the contribution of ankle joint 
to dorsiflexion/plantarflexion of ankle–foot complex is larger 
than that of subtalar joint, the contribution of subtalar joint 
to inversion/eversion is larger than that of ankle joint, and 
ankle and subtalar joints have an approximately equal con-
tribution to internal/external rotation movements. Therefore, 
the assessment of actual ankle capacity as well as the required 
value for a given task should be movement specific, which 
will further improve the effects of AAN robot-assisted ankle 
rehabilitation.
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ankle disability level. Thus, an AAN control paradigm of 
robot-assisted ankle rehabilitation was proposed in this study 
with consideration of actual ankle capacity.

Another review17 conducted by our group discussed vari-
ous ankle measurement and assessment techniques as well 
as their potentials when combined with robot-assisted ankle 
therapy. It included 16 qualitative and 60 quantitative studies, 
and concluded that these qualitative methods were not suit-
able for real-time monitoring in robot-assisted therapy though 
they were usually reliable for certain patients, while quantita-
tive techniques showed great potentials. Further, the majority 
of quantitative techniques were reliable in measuring ankle 
kinematics and kinetics, but were usually only available for 
use in sagittal plane. Limited studies determined ankle kine-
matics and kinetics in all three planes (sagittal plane, trans-
verse plane, and frontal plane) where motions of ankle joint 
and subtalar joint actually occur.18

In this article, we would recommend to combine AAN 
robot-assisted ankle rehabilitation technique and real-time 
ankle assessment. Figure 1 shows the flow diagram of a novel 
AAN control strategy for potential use in robot-assisted ankle 
rehabilitation. The red part of this block diagram is the key 
to the realization of the proposed AAN control strategy in 
robot-assisted ankle rehabilitation. The blue part provides fur-
ther information involving ankle muscles and ligaments that 
may be required for more accurate ankle disability assessment. 
The patient is encouraged to achieve the best performance in 
virtual-reality task and apply the maximum ankle capabil-
ity when real-time ankle assessment including kinematics 
and kinetics is conducted. The actual ankle capacity (it can 
be assumed to be ankle torque in this paradigm) is compared 
with the required ankle capability for a given task, which 
determines the gap that is the basis of the proposed AAN 
robot-assisted ankle rehabilitation. Based on measured ankle 
joint kinematics and kinetics, the corresponding kinematics 
and kinetics of ankle muscles and ligaments can be obtained 
by inverse dynamics based on a biomechanical ankle model. 

Robot-assisted ankle rehabilitation 
(AAN control strategy)

Decide the assistance

Virtual-reality task
Evaluate required ankle capability for a given task
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Measure actual ankle capability 
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Figure 1. The block diagram of the proposed AAN robot-assisted ankle rehabilitation strategy.
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