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Abstract: In this article we try to discuss nonparametric linkage (NPL) score functions within a broad and quite general 
framework. The main focus of the paper is the structure, derivation principles and interpretations of the score function entity 
itself. We defi ne and discuss several families of one-locus score function defi nitions, i.e. the implicit, explicit and optimal 
ones. Some generalizations and comments to the two-locus, unconditional and conditional, cases are included as well.
Although this article mainly aims at serving as an overview, where the concept of score functions are put into a covering 
context, we generalize the noncentrality parameter (NCP) optimal score functions in Ängquist et al. (2007) to facilitate—
through weighting—for incorporation of several plausible distinct genetic models. Since the genetic model itself most oftenly 
is to some extent unknown this facilitates weaker prior assumptions with respect to plausible true disease models without 
loosing the property of NCP-optimality.
Moreover, we discuss general assumptions and properties of score functions in the above sense. For instance, the concept 
of identical by descent (IBD) sharing structures and score function equivalence are discussed in some detail.

Keywords: nonparametric linkage analysis, allele sharing, genetic disease models, inheritance vectors, score functions, 
families of score function defi nitions, genetic models, NCP-optimality, IBD-sharing structures, equivalence of score 
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1 Introduction
In linkage analysis (Ott, 1999) or, in a wider sense, gene mapping (Haines and Pericak-Vance, 2006; 
Siegmund and Yakir, 2007) one searches for disease loci along genetic regions of interest; in other 
words, through what we refer to as a genome. This is done by observing so called genotypes and 
phenotypes of a pedigree set, i.e. a set of multigenerational families, throughout the genome. The 
rationale for doing this is that, at a disease locus, the genotypes and phenotypes should generally 
show correlation of some strength on the individual level within the pedigree, where the actual strength 
depends on the structure of disease, i.e. the so called genetic model. Observed present correlations, 
measured through some kind of test statistic, suggests localizations of loci corresponding to underly-
ing disease genes or, at least, it narrows down the interesting genome regions to neighbourhoods of 
the fi ndings. The amount of trust put into such loci actually being disease-related are generally 
evaluated, in a standard sense, through statistical signifi cance calculations; preferably corrected for 
the multiple testing throughout the genome. An example of a small pedigree set is given in Figure 1. 
To further reduce the size of a plausible region for an interesting disease fi nding, i.e. to use a fi ne-
mapping technique, one may, for instance, use methods from the toolbox of association analysis (see 
Balding, 2006).

1.1 Basic notation and concepts
In practise the genotypes are observed as well-defi ned allelic types at polymorphic marker loci located 
along the genome of interest. Vaguely speaking, a marker locus might be seen as an, in some sense, 
observable short chromosomal segment and it is polymorphic if several types of genetic observations 
are possible, in the underlying population, with respect to this segment. Hence polymorphic markers 
correspond to genetic variation in the population.

http://creativecommons.org/licenses/by/3.0/
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Example 1 (Alleles and genotypes) Consider a 
situation where we have a polymorphic locus with 
respect to three distinct possible allelic types-
outcomes A, B and C within the population. Hence, 
at this locus, a specifi c individual will have any of the 
six consistent unordered genotypes; AA, AB, AC, BB, 
BC and CC, with certain probabilities jointly sum-
ming to one. For more information on, for instance, 
alleles, genotypes and genetic markers cf. Strachan 
and Read (2003).

As a restriction or application, in nonparametric 
linkage (NPL) analysis (Whittemore and Halpern, 
1994; Kruglyak et al. 1996; Ängquist, 2007) one 
searches for genetic linkage between disease and 
marker locus by observing and analyzing marker 
genotype data, without explicitly assuming a known 
genetic disease model. As noted above the linkage 
analysis approach may somewhat vaguely be 
described as analyzing the amount of dependence 
or correlation between genotypes and phenotypes 
among the observable individuals in the data set at 
hand, and hence in the nonparametric case one does 
not incorporate information on any disease loci in 
the standard analysis or search. Most oftenly such 
data is then taken to be representative of a homo-
geneous underlying population. Note that generally 

the phenotypes are assumed to be qualitative in the 
working form of indicators of disease status.

In this context the prime quantity of central 
importance to the actual statistical analysis-
procedure is the process of inheritance of alleles. 
Each individual inherits two alleles, i.e. a genotype, 
at each chromosomal locus; one from the father 
and one from the mother. The inherited alleles 
themselves originates from either the correspond-
ing grandfather or the grandmother and this leads 
to the following statement:

For a single pedigree, at locus x, the inheritance 
process may be totally described by the binary—
zero-one—inheritance vector (Donnelly, 1983),

 v x p m p m p mn f n f( ) ( , , , ,..., , )= − −1 1 2 2  (1)

where pi and mi correspond to the ith nonfounder’s 
paternal and maternal allele respectively, i.e. each 
value is connected to one of the m = 2(n − f  )
specifi c meioses.1 Note that, for instance, one may 

Figure 1. A pedigree set example consisting of 5 distinct pedigrees of different structures and phenotype settings.

− male

− affected

− unaffected

− female

2 3

4

5

1

− unknown
  phenotype

1A nonfounder (founder) has both (has not any) of its parents included in 
the pedigree. The rationale for the number of meioses being m = 2(n − f) 
is that, which follows from above, each of the n − f nonfounders corre-
sponds to two meioses. Here n and f are the total number of individuals 
and the number of founders in the pedigree respectively.
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in practise let 0 and 1 correspond to inheriting 
grandpaternal and grandmaternal alleles respec-
tively.
Example 2 (Founders and nonfounders) Con-
sider the pedigrees in Figure 2. In both cases the 
parents constitutes the set of founders, whereas the 
siblings are the nonfounders.

In the same manner as (1), but somewhat more 
obscure, one may summarize inheritance through 
IBD-sharing structures, where IBD means 
identical-by-descent. Two alleles are IBD if they 
are both ancestrally inherited from the same 
unique founder allele2 with respect to the corre-
sponding pedigree. Basically, forming IBD-
sharing structures means grouping the elements 
of the set of all the 2m possible inheritance vectors, 
V, according to some pedigree-relational symmetry 
rules, into distinct IBD-groups. Such symmetry 
rules are, at least in principle, to some extent sub-
jective. A commonly accepted example is that 
inheritance vectors will fall into the same group 
if they correspond to, i.e. one gets the same 
inheritance structure, permuting the inheritance 
of two siblings (with corresponding offsprings). 
Most oftenly, this is accepted even if the siblings 
being of distinct sexes. For more information, see 
Example 3 and Appendix A.

To numerically facilitate analysis of inheri-
tance and phenotype-genotype dependence one 
may introduce a score function. Expressed in 
general terms this is just a function S giving a 
(numerical) score S(v) to each possible inheri-
tance vector v ∈ V, i.e. it serves as a representa-
tion of the quantification of phenotype-genotype 
correlation.3 Normally one searches for 
inheritance-wise deviations in the form of 
increased allele-sharing among affecteds,4 since 
this indicates presence of genetic linkage 
between the marker and disease loci. As a con-
sequence one aims at giving inheritance vectors 
consistent with such increased sharing high 
scores. On the other hand vectors being non-
consistent, in this sense, are then given low 
scores.

Assumption 1 We assume that score functions are 
invariant within IBD-sharing structures. Explicitly, 
this implies that each inheritance vector v corre-
sponding to a specifi c structure A produces the 
same output (score), i.e.

S(v) = S(w); ∀v, w ∈ VA,

where VA is the equivalence class including all 
inheritance vectors corresponding to structure A.

Hence considering a pedigree with m corre-
sponding meioses leads to 2m possible scores,

S = { ( ), ( ),..., ( ),} { , ,..., },S v S v S v s s sm m1 2 2 1 2 2
=  (2)

assuming some order of inheritance vectors.5 In 
this setting some scores will according to 
symmetry, and in some cases by—explicitly or 
implicitly—defi nition, be numerically equal. Using 
the context of IBD-sharing structures one may 
reformulate (2) as

 S = { , ,..., },s s sn1 2  (3)

where the index corresponds to the by-score-ordered 
set of IBD-sharing structures, i.e. a natural restric-
tion (order) is given by assuming s1 � s2 � … � sn. 
Quite naturally one may note that n � 2m-f.
Remark 1 In fact one may instantly note that n � 
2m-f, where f is the number of founders, which 
follows from what is generally referred to as 
‘founder couple reduction’ (Kruglyak et al. 1996; 
Gudbjartsson et al. 2000). This is an inheritance 
symmetry property originating from the uncertainty 
of founder phases (ambiguity of inheritance vector 
interpretation).
Example 3 (Founder couple reduction) For an 
affected sib-pair (ASP), see Figure 2, one may 
illustrate Remark 1 through the following exam-
ple: Let the parents have genotypes {A, B} and 
{C, D}. Oftenly the inheritance vector is defi ned 
with each position corresponding to a well-
defi ned paternal or maternal allele of a specifi ed 
nonfounder; see (1). This is then also refl ected in 
the ordering of the alleles (including the founder 

2In other words, they are both inherited instances of gi ∈ G, for some 
i = 1, 2, …, 2f, where G is the set of all 2f founder alleles and f is the 
number of founders.

3One may note that this notion of a score function may be seen as adopting 
a data-mining perspective where such functions are used for scoring 
patterns (Hand et al. 2001). In this case one observes and scores inheri-
tance patterns.

4Or more generally within phenotype-groups.

5For instance using the standard decimal interpretation (conversion) of the 
binary zero-one inheritance vector with length m.
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alleles) in the sense that, for instance, the left 
allele (A and C) correspond to paternal inheri-
tance and the right allele (B and D) to maternal 
inheritance. Since most likely6 the ordering 
(phases) of the founder alleles is unknown we, in 
these cases, do not really know which of the fol-
lowing ordered founder-genotypes that is truth-
valid:

AB/CD, AB/DC, BA/CD, BA/DC.

The implication of this is that all inheritance vectors 
related through transformations between these 
founder-genotypes are inheritance-wise evidentially 
equivalent. (Hence giving rise to equivalent IBD-
sharing structures; see Appendix A.)

For further information on equivalent IBD-
sharing structures consider Appendix A.

1.2 Aims and scope
Our primary goal with this paper is to, in such a 
generally accessible way as possible, formalize 
and discuss the structure of nonparametric linkage 
score functions. Oftenly, in published works, these 
functions are either directly applied using some of 
the standard instances or derived in an ad hoc or 
highly theoretical, or non-intuitive, fashion.

Having this in mind, the text to follow is not a 
complete summary of suggested and published 
score function variants, or the most theoretical 
exposition out there. Rather, it aims at being a 
review-like overview discussing the underlying 
structure, contexts of derivations and interpreta-
tions (and to some extent performance) of certain 
families of NPL score functions.

In Section 2 three distinct such families—the 
implicit, the explicit and the optimality-based 
one—are introduced and discussed, whereas 
Section 3 gives a new generalization of an existing 
optimality-based function. A small simulation study 
with respect to fi ve distinct score functions of 

6According to the fact that the pedigree construction excluded farther (ear-
lier) generations.

Figure 2. The pedigree structures corresponding to affected sib-pair (ASP) and affected sib-trio (AST) pedigrees.

AST

ASP
Affected man

Unaffected woman

Woman with unknown
disease status (phenotype)
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various types is performed in Section 4. The two 
appendices, Appendix A and Appendix B, discusses 
equivalence-properties with respect to structure and 
standardization of score functions respectively.

2 Approaches to Score Function 
Defi nitions
For an underlying disease to be genetically inher-
itable, i.e. to include a genetic component, some 
kind of correlation between the phenotype and the 
disease genotypes must exist. This is usually 
described by means of a genetic model λ. One may 
note that λ usually, at least to some extent, is 
unknown so, if needed, it is estimated prior to 
analysis using so called segregation analysis 
(Khoury et al. 1993; Haines and Pericak-Vance, 
2006). The complete, possibly multilocus, genetic 
model may be summarized as,

 λ = (p, f, l), (4)

where p is the set of disease allele frequencies, 
f is the set of penetrance values, describing the link 
between phenotypes and disease genotypes, and l 
defi nes the disease loci positions.

Now, to defi ne a score function one basically has 
to instantiate the numerical scores corresponding to 
(2) or (3). This may be done in several distinct ways, 
which is furtherly discussed below. What truly is 
the core question with respect to such defi nitions is 
the evidential performance of the corresponding 
score function. (Most likely in the form of statistical 
power calculations.) One may note that the relative 
performance of different score functions depends 
on the underlying genetic model λ and the combined 
present pedigree-structure of the pedigree set.

A score function performing well under a wide 
range of different λ ∈ Λ, where Λ is the set of all 
possible disease models, is termed a robust score 
function. The best score function with respect to a 
criterion C and disease model λ is called an optimal 
score function Sopt = SC (v|λ).

2.1 Implicitly defi ned versions
Vaguely speaking, as noted above, at a true disease 
locus, the IBD-sharing within phenotypes should 
be expected to increase. This makes it possible to 
defi ne functions, depending on pedigree IBD-
sharing only, meeting this requirement (property). 
Since such functions implicitly instantiate (2) and 

(3) through the higher-level sharing-based function 
defi nition we call them implicitly defi ned score 
functions. Next, we will note on two distinct such 
defi nitions.

2.1.1 Traditional score functions
Firstly, Spairs (Weeks and Lange, 1988) is based on 
IBD-sharing among all pairs of affected individu-
als in the pedigree,

 S v a ai j
a ai j

pairs IBD( ) ( , )
( , )

=
∈

∑
A

, (5)

where i � j, A is the set of affecteds in the pedigree7 
and IBD(x, y) is the number of alleles shared IBD 
between individuals x and y.

Secondly, Sall (Whittemore and Halpern, 1994) 
is based on the simultaneous IBD-sharing among 
all the affecteds in the pedigree,

 S v b hi
i

f

h
all ( ) ( )!,| |=

=∈
∏∑1

2 1

2

A �
H

 (6)

where |A| is the number of affecteds, H is a set 
containing the elements corresponding to all ways 
of selecting one allele from each affected, 2f is 
the number of founder alleles in the pedigree and 
bi (h) is the number of times the ith founder allele 
is present in selection h ∈H.8
Example 4 (Score function Sall ) For an ASP 
(Fig. 2) one may examplify (6) as follows: Let the 
parents have genotypes {A, B} and {C, D}. Then, 
if the affected siblings inherit {A, C} and {A, D} 
respectively we have the following h-selection pos-
sibilities ( ∀h ∈ H  ):

h1 = {A, A}; h2 = {A, D}; h3 = {C, A}; h4 = {C, D},

where for instance, treating A as the 1st founder 
allele, ∏ = ==i ib h1

4
1 2 0 0 0 2( ) ! ! ! ! .

Remark 2 Both (5) and (6) give high (low) scores 
to excess (low) IBD-sharing. The difference lies in 
that the latter one, relatively seen, upweight 
increased sharing of specifi c founder alleles within 

7Including the ordered affected individuals a1, a2,…,a|A|, where |A| is the 
number of affecteds or, equivalently, the cardinality of the set A.

8Each specifi c selection h consists of |A| alleles that may be grouped accord-
ing to their ancestral history, i.e. each allele is a copy of one of the 2f 
founder alleles. The link to the number of members in the ith group is 
bi(h), i.e. where bi(h) is the number of gi alleles; see Footnote 2.
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large groups of individuals, thus refl ecting a higher 
degree of belief in such inheritance evidence.

2.1.2 Extended score functions
Both functions (5) and (6) are defi ned, given the 
inheritance vector v, with respect to the set of 
affecteds A only, which might be notationally 
pointed out as S(v) = S(v | A). Henceforth we refer 
to such score functions as traditional score func-
tions. In fact a vast majority of the most commonly 
used functions are of this kind.

In Ängquist (2006) several extensions to tradi-
tional score functions are given. Now, assume a 
traditional instance S and let S ′ denote a corre-
sponding extended version. A fi rst-level extension 
is to combine information from both phenotype 
groups (affecteds as well as unaffecteds) through

S S v S v S v S v′ ′ ′= = ∪ = +( ) ( | ) ( | ) ( | ).A UA A UA  (7)

This aims at additionally searching for unusual 
IBD-sharing within the set of unaffecteds UA. Note 
that S(v | UA) in practise means, given inheritance 
vector v, applying the traditional score function S 
to the same pedigree set, in the standard way using 
the same function-defi nition, but with phenotypes 
interchanged between affecteds and unaffecteds.9
Example 5 (Extended score functions; phenotype-
switching) Consider the pedigree consisting of two 
parents (unknown phenotypes) and four siblings 
(A, B, C and D) in Figure 3. When calculating 
S(v | A) this is done with respect to Siblings A and D. 
After the phenotype-switching process displayed 
in Figure 3, S(v | UA) is calculated using Siblings 
B and C. Note that the actual score function algo-
rithm, for instance underlying (5) or (6), is the 
same in both cases.

A second-order extension may be formulated 
as

 

S S v S v

S v S v

S v S v

′ ′ ′= = ∪ ∪
= − ∪ ∪

+ −

( ) ( | )
[ ( | ) ( | )

[ ( | ) ( |

A AU UP
A A AU UP

UA A ∪∪ ∪
= +

− ∪ ∪

UA UP
A UA

A UA UP

)]
( | ) ( | )

( | ),
S v S v

S v2

 (8)

where UP denotes the set of individuals with 
unknown phenotype. Here one additionally cor-
rects for the overall sharing within the pedigree, 
i.e. it compares the IBD-sharing (through the tra-
ditional function S) within phenotype-groups to 
what is jointly given on the pedigree-level.
Remark 3 An intuitive critiscism to extensions as 
(7) and (8) might be that unaffecteds is not to the 
same extent as affecteds a secure (fi nal) phenotype, 
since in time such individuals might turn into 
affecteds.10 However, this could be solved by letting 
ambiguous cases, according to some criterion, 
being labelled as having affection status unknown, 
i.e. as UP-individuals. Further, given a well-defi ned 
probability model for (possible) affection time one 
may weight the analysis (scores) with respect to 
this model.
Remark 4 Another objection against usage of 
unaffecteds in this way may be raised if a disease 
is not purely caused by gene mutations, but rather 
through a combination of genetic and environmen-
tal factors. In this case the unaffecteds in the 
pedigree are not obviously good representatives of 
the normal population in terms of genetic compo-
sition. It is then logically possible that such unaf-
fecteds still share a common genetic background 
with the affected relatives, but lack certain envi-
ronmental factors; or lack some trigger events in 
their health history. Hence, their role in gene map-
ping is in this case of secondary importance.

2.2 Explicitly defi ned versions
It is perfectly possible not to use a closed defi nition 
or high-level algorithm when calculating the vec-
tor of scores constituting the corresponding score 
function. We refer to such cases as explicitly 
defi ned score functions.

The construction of an explicit score function 
reduces to (explicitly) distributing scores to all 
present IBD-sharing structures, thus refl ecting 
numerically the assumed connection between these 
sharing structures and evidence for a present dis-
ease locus. For instance, such an approach might 
be interesting if one can show by some real exam-
ples, or a priori assume, that certain combination 
of inheritance vector states are impossible or 
unlikely.

9Generally S (v|X) means applying the traditional score function S, given v, 
to the arbitrary pedigree subgroup X. Also note that A ∪ UA equals the 
subgroup of all individuals in the pedigree with known phenotype.

10This might be the case for, in some relative (to the disease) sense, young 
individuals. These persons might be interpreted as what we later refer to 
as ambiguous cases.
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Example 6 (Explicit ASP-defi nition) Once more, 
consider an ASP. Here three IBD-sharing struc-
tures (with scores s1, s2 and s3) are possible cor-
responding to the sib-pair sharing 0, 1 and 2 alleles 
IBD respectively. Arbitrarily fi xing s1 and s3 with 
s1 � s3 the closure of an explicit defi nition is 
refl ected by the choice of s2 with the restriction of 
s1 � s2 � s3; see Section 2.4 and Appendix B.

Explicit defi nitions, so to speak, implicitly make 
some (though quite vague) assumptions on the type 
of underlying disease structure. In this sense they 
are more strongly directed towards certain disease 
models than implicit defi nitions, but much less so 
than the family of defi nitions described below in 
Section 2.3. There explicit assumptions on true 
(plausible) genetic disease models λ under corre-
sponding alternative hypotheses H1 are made.

2.3 Optimality defi ned versions
If having an explicit algorithm (as for implicitly 
defi ned versions) but where this algorithm is for-
mulated with respect to, in some sense, an optimal-
ity criterion C, we say that we deal with C-optimal 
score functions.

Given a disease model λ, defi ne the expected 
score at the disease locus under this model as

 
E S S w P w

w

( | ) ( ) ( | ),λ λ=
∈
∑

V  (9)

where P(w|λ) is the inheritance distribution under 
disease model λ. The expected value in (9) is 
referred to as the noncentrality parameter (NCP). 
It is showed in Ängquist et al. (2007) (based on 

results given in Hössjer, 2005) that optimal score 
functions with respect to (maximization of) NCPs 
may be expressed as

 S w P w m( ) ( | ) ,∝ − −λ 2  (10)

with m equaling the number of meioses. This 
approach might be interpreted as basing the scores 
on the difference between inheritance vector-
probabilities under the null and alternative hypoth-
esis in all cases.11 The rationale for being interested 
in NCPs are that this concept is closely linked, but 
not equivalent, to statistical power (Feingold 
et al. 1993).

Hence one may note that the optimal score func-
tion (10) depends on the true genetic model and 
should be interpreted as, in this sense, the best 
possible result that the investigator might expect 
when the genetic model is correctly specifi ed. In 
practice though, the genetic model is often 
unknown. Then in a natural way, for each choice 
of score function and for a range of different 
genetic models, (10) facilitates comparisons with 
optimality, leading to a quantifi cation of the appar-
ent loss of information. The optimal score function 
might also serve as a form of explicit score function 
with respect to certain assumptions or prior infor-
mation.

Further, in Hössjer (2003) locally most power-
ful tests are outlined using specifi c parametric 
models (in the form of exponential expansions) for 
the inheritance distribution under alternatives. 

11Note that P(w|H0) = 2−m for all w ∈ V.

Figure 3. A pedigree consisting of 4 siblings (two affecteds, two unaffecteds). The two distinct cases (left to right) display the corresponding 
phenotype-switching process involved in the defi nition of extended score functions.

A         B          C     D          A         B          C     D   

(I)                                                     (II)
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Consider also the discussions in Whittemore 
(1996), Kong and Cox (1997), Nicolae (1999) and 
McPeek (1999).

2.4 Equivalent score functions
As a way of enhancing interpretation one usually 
uses standardized versions of the score functions. 
Standardization is performed through

 S v
S v( ) ( ) ,← −⎡

⎣⎢
⎤
⎦⎥

µ
σ  (11)

where, for a pedigree with m meioses,

µ

σ µ

= =

= = −

⎧

⎨
⎪

⎩
⎪

−

−

∑
∑

E S H S w

V S H S w

m
i

i

m
i

i

( | ) ( )

( | ) ( )
,

0

2
0

2 2

2

2

are the mean and variance of S prior to standardiza-
tion; under the null hypothesis H0 of no linkage 
and where summation is over all the 2m distinct 
elements w ∈ V.12

Remark 5 Note that S on the right-hand side in 
(11) is referred to as an ‘unstandardized’ score 
function, whereas S on the left-hand side is a ‘stan-
dardized’ score function.

Equipped with the concept of standardization 
one may defi ne equivalent (unstandardized) score 
functions. In order to defi ne this concept in a clear 
and straighforward manner we need the following 
additional assumption.
Assumption 2 We assume that there is a general 
agreement on the order of the IBD-sharing struc-
tures, i.e. that si ( ∀i ) in (3) correspond to the same 
structure regardless of which score function you 
choose.

If two unstandardized score functions through 
standardization are transformed to equal13 stan-
dardized score functions they are referred to as 
being equivalent. For more detailed information 
and corresponding equivalence-criterions, see 
Appendix B.
Example 7 (Equivalence of Spairs and Sall for 
ASPs) For an ASP the score functions Spairs and 
Sall, defined in (5) and (6) respectively, are 

equivalent. This follows since they both lead to the 
distinct standardized numerical scores −{ }2 0 2, , . 
Adopting the approach in (2) these scores corre-
spond to, in turn, 4, 8 and 4 distinct inheritance 
vectors related to the ASP sharing 0, 1 and 2 alleles 
IBD respectively. (Here we have m = 4 meioses and 
2m = 16 unique inheritance vectors.) Alternatively, 
one may use (3) where S only contain these three 
scores (structures), which are then attained with 
probabilities 0.25, 0.50 and 0.25 respectively 
under H0.

One may also note that actual numerical stan-
dardized scores corresponding to a specifi c score 
function (or several equivalent ones) are dependent 
on the score distribution P(s|H0) under the null 
hypothesis H0, which is given by the actual pedi-
gree structure and phenotype setting.14

2.5 Real studies and data
Note that throughout this article we try to discuss 
score functions without explicitly mentioning the 
actual test statistics they are used in connection with 
when facing real and imperfect marker data MD.15

An exception is the use of standardization 
through (11) which implicitly refer to the practise 
of the ‘NPL score’ test statistic (Kruglyak et al. 
1996; Ängquist, 2007).

 Z x E S v x( ) ( [ ( )] | ),= MD  (12)

where the expected value, at locus x, is taken over 
P [v(x)|MD] which is the inheritance distribution 
given the observed marker data.16

Given imperfect data the variance of the NPL 
score V(Z) � V(S), hence if decreasing leading to 
conservative procedures assuming V(Z) = V(S) = 1. 
In order to increase the actual variance in data, 
hence reducing the conservativeness, one usually 
bases real studies on so called multipoint analysis, 
where all inheritance information from the sur-
rounding chromosome is used when calculating 
the inheritance distribution at a locus. Here the 
calculations are preferably performed using Hidden 
Markov Models (HMMs) through the Lander-
Green-Kruglyak algorithm; see Lander and Green 

14This follows since these settings uniquely defi ne the standardization 
parameters µ and σ in (11).

15In other words, when the complete inheritance process over corresponding 
loci is not known with probability one.

16Note that (12) refer to a single pedigree (pedigree-specifi c NPL score; see 
Ängquist (2007) for more information). For a full pedigree set one uses 
pedigree-weighted sums with respect to such present scores.

12Note that we end up with the standardized properties E(S|H0) = 0 and 
V(S|H0) = 1.

13Two score functions S1 and S2 (unstandardized or standardized) are equal 
if, using the formulation of (3), s1 

i = s2 
i for all i.
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(1987), Kruglyak et al. (1995) and the expositional 
review in Ziegler and Koenig (2006).17 Actually, 
the complete marker data assumption seems fairly 
realistic when all pedigree members are genotyped 
with a density of SNP markers of at least, say, 
0.1 cM.

Replacing σ 2 in (11) with V(Z) at each loci leads 
to the interpretation of the standardized score as a 
common statistical score function based on the 
derivative of a corresponding likelihood function 
(see Kong and Cox, 1997).18

However, note that although the choice of test 
statistic and possible standardization procedure are 
important from a testing and statistical signifi cance 
perspective it is not particularily essential for the 
present discussion. Moreover, generally the inter-
pretations and relative performances of the differ-
ent score function variants will not change when 
dealing with imperfect data, hence this matter is 
only noted on in this specifi c subsection.

2.6 Two-locus score functions
One may generalize the one-locus procedure above 
in order to simultaneously, or sequentially, search 
for two distinct disease loci on the genome. The 
former case is referred to as an unconditional 
analysis, whereas the latter case is a conditional 
analysis performed conditioning on some kind of 
genetic information at one, or several, conditioning 
loci. One may generally use the same basic score 
function definitions in both cases, taking into 
account that the standardizations will differ.

Implicitly defi ned score functions may in some 
cases be relatively easily generalized to the two-
locus case, but in some cases the corresponding 
score-algorithm will be refrainingly more complex. 
As a positive example, one may generalize (5) into 
a two-locus score function. In Ängquist et al. (2007) 
the following, quite general, formulation is given

S w w w wi j i j
k

i j
pairs IBD IBD( , ) [ ( ) ( )] ,, ,1 2 1 2= +

<
∑

 
(13)

where IBDi,j (wi) equals IBD(ai, aj) in (5) with 
respect to inheritance vector wi, related to the ith 
(disease or marker) loci, and {ai, aj} ∈ A.

For k � 1 (13) may be thought of as trying to 
capture epistatic joint pairwise IBD-sharing within 
a pedigree. The case k = 1 of (13) corresponds to 
the additive score function used in Strauch et al. 
(2000),

 

S w w w w

w

pairs i j i j
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i j i
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1
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= +
<
∑ IBD IBD

IBD IBD jj
i ji j

w

S w S w

( )

( ) ( ),

2

1 2

<<
∑∑

= +pairs pairs

 

which these authors also implemented into the 
analysis program GENEHUNTER-TWOLOCUS. 
In the applications of Ängquist et al. (2007) the 
case k = 2 is used, which shows close to NCP-
optimal performance for the one-parameter 
genetic disease model families used in their 
simulations.
Example 8 (ASP score matrix) For ASPs one 
might summarize a two-locus score function com-
pletely using a 3 × 3 score matrix.19 Letting

 S i j S IBD i IBD j( , ) ( , ),= = =1 2

where IBDk = l means that the ASP shares l alleles 
IBD at the kth (marker or disease) locus, leads to 
the general score matrix

 S =
⎡

⎣

S S S

S S S

S S S

( , ) ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , )

0 0 0 1 0 2
1 0 1 1 1 2
2 0 2 1 2 2

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (14)

Several instances and substructures of (14) are 
given, implemented and discussed in Ängquist 
et al. (2005).

Two-locus explicitly defi ned score functions are 
concept-wise straightforward generalizations of 
one-locus ones. Moreover, the NCP-optimal score 
function (10) of Ängquist et al. (2007), for uncon-
ditional and conditional two-locus analysis respec-
tively, may be generalized to

17A textbook on HMMs is Cappé et al. (2005).
18On standard score functions see e.g. Clayton and Hills (1993) or Garthwaite 

et al. (1995). A specialized monograph on the theory and philosophy of 
the likelihood approach is Edwards (1992).

19Note that this is possible according to our assumption of scoring all 
inheritance vectors leading to similar IBD-sharing structures equally. In 
this case, at each locus, the three distinct IBD-sharing structures corre-
spond to the number of alleles (0, 1 or 2) shared IBD by the affected 
sib-pair.
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Note that the interpretation of these scores as 
being proportional to probability-based differences 
with respect to the null and (assumed) alternative 
hypotheses still hold true.

3 Generalization to the Optimality-
Based Defi nition Approach
In some cases where the true disease model λ is 
fully or partially unknown the usage of the NCP-
optimal score function (10) based on an estimate 
(or assumption) λ̂ may be considered to lack 
robustness and applicability. In order to reduce 
unnecessary usage-avoidance we will next try to 
further generalize this approach, hence increasing 
its practical usefulness. More explicitly, our sug-
gested method is adapted to include prior, assumed 
or intuitive, information on λ in a more direct sense 
than what is available through using explicit ver-
sions, but still avoiding the assumption of a single 
plausible genetic disease model.

3.1 Algorithm
Begin with choosing d distinct genetic disease 
models

 { , ,..., } ,λ λ λ1 2 d ∈Λ

with inheritance distributions under corresponding 
alternatives

 P P w i di i= =( | ); , ,..., .λ 1 2

Now, a simple generalization to the previous 
score in (10) is given by

 S w
P w

d
i

m

i

d

( )
[ ( | ) ]

∝
− −

=∑ λ 2
1  , (16)

where d in the denominator in principle is unnec-
essary (according to the standardization) but makes 
comparisons between (10) and (16) possible in a 
natural way.

A further generalization arises if adopting a 
Bayesian perspective with respect to the prior 
distribution of possible disease models.20 Fix d and 
let π = (π1, π2,…,πd), with Σ

i
d

i= =1 1π , be the vector 

of prior probabilities corresponding to the d distinct 
disease models. This leads to (16) being general-
ized into

 S w P w
i i

m

i

d

( ) [ ( | ) ].∝ − −

=
∑ π λ 2

1

 (17)

One may note that (16) is the special case of 
(17) where π = (1/d, 1/d,…,1/d) and that (10) cor-
respond to d = 1 and hence π = π1 = 1 for a single 
disease model λ1. Finally, observe that the NCP-
optimality property (Ängquist et al. 2007) is kept 
if (in a somewhat abstract sense) π, given the pres-
ent knowledge-base, is the true probability distribu-
tion with respect to the present genetic disease 
model-ambiguity.

4 A Small Simulation Study
For illustrational purposes we include a small-scale 
simulation analyses in this section. We perform 
power calculations for various settings and present 
them through ROC-curves, i.e. as plots with sig-
nifi cance levels versus power with respect to a set 
of underlying score thresholds (Selin, 1965; 
Bradley, 1996). The results are given, and 
graphically displayed, in Figures 4–6.

4.1 Simulation set-up
Consider a pedigree consisting of two parents of 
unknown phenotypes and M siblings. For instance, 
Pedigree 3 in Figure 1 is such a pedigree with 
M = 5. We construct three homogeneous pedigree 
sets, i.e. a set consisting of pedigrees with similar 
structure and phenotype setting only, based on three 
distinct such pedigrees with M = 6: (i) Pedigree 1 
consisting of 4 affected and 2 unaffected siblings. 
(ii) Pedigree 2 consisting of 3 affected and 3 unaf-
fected siblings. (iii) Pedigree 3 consisting of 2 
affected and 4 unaffected siblings. The number of 
pedigrees in each pedigree set is put to N = 15.

Further, for each case we use a genome consist-
ing of a single chromosome of length G = 4 
Morgans, J = 2000 simulations and score thresh-
olds ranging from T = 3 to T = 10. The analyses 
are made with respect to fi ve distinct score func-
tions: The S1 = Spairs function in (5), the S2 = Sall 
function in (6), the extended version, S3, using (7) 
for Spairs, the extended version, S4, using (7) for 

20Subjective or empirically objective perspective; for concepts see e.g. 
Winkler (1972) and Gelman et al. (2004).
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Figure 4. Power calculations for Pedigree 1 and score functions S1-S5. Presented as ROC-curves with signifi cance levels α(T) vs. powers 
β(T) for score thresholds T. (Logarithmic X/Y-scales.) Upper and lower panel uses penetrance vectors f = (0.02, 0.2, 0.8) and f = (0.02, 0.8, 0.8) 
respectively.

Figure 5. Power calculations for Pedigree 2. See caption of Figure 4.
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Sall, the NCP-optimal score function S5 in (10). All 
score functions are standardized through (11) and 
calculations are performed using the NPL score 
approach (12).

Finally, we used two genetic models, λ1 and λ2, 
where both correspond to disease allele frequency 
p = 0.01, but with distinct penetrance vectors,

 f = (f0, f1, f2) = (0.02, 0.20, 0.80) and
 (0.02, 0.80, 0.80)

respectively. Here fi denotes the probability for an 
individual, having a disease genotype consisting 
of i disease alleles and 2 − i normal alleles, of being 
affected.

4.2 Results and discussion
It is quite hard to draw very certain conclusions 
from such a small study, once more note that this 
section is in some sense a side-track, but a few 
general observations of some interest may be 
stated: (i) S2 performs better than S1 for Pedigree 1, 
whereas the opposite is true for Pedigree 2–3 under λ2. 

In other words their relative performance is 
affected by the pedigree structure as noted above. 
(ii) The extended versions S3 and S4 often outper-
forms the traditional (nonextended) versions S1 and 
S2. These extensions seem somewhat more favour-
able for Pedigree 3 than for Pedigree 1, which 
seems reasonable since the latter pedigree has a 
structure more directed towards unaffected indi-
viduals. They also seem more advantageous under 
λ2 than for λ1, which might be explained by the 
latter model having more IBD-sharing discrimination 
power within the subgroup of unaffecteds; accord-
ing to a higher disease penetrance for disease 
heterozygotes. (iii) The NCP-optimal score func-
tion S5 is performance-wise much better under λ2. 
Probably mainly follows from similar reasoning 
as given in the last sentence under (ii).
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Figure 6. Power calculations for Pedigree 3. See caption of Figure 4.

10−3 10−2 10−1

10−3

10−2

10−1

Pedigree 3

α(T)

β(
T

)

10−3 10−2 10−1

10−1

100

S1

S2

S3

S4

S5



131

Score functions in NPL analysis

Bioinformatics and Biology Insights 2008:2

I am grateful also towards two anonymous 
reviewers for several insightful comments and 
suggestions.

References
Ängquist, L., Anevski, D. and Luthman, H. Unconditional two-locus non-

parametric linkage analysis: On composite null hypotheses with and 
without gene-gene interaction (Tech. Rep. No. 2005:28). Lund: 
Department of Mathematical Statistics, Lund University.

Ängquist, L. 2006, June. Some notes on the choice of score function in 
nonparametric linkage analysis. (Free download from homepage: 
‘http://www.maths.lth.se/matstat/staff/larsa/’).

Ängquist, L. 2007. Pointwise and genomewide signifi cance calculations in 
gene mapping through nonparametric linkage analysis: Theory, 
algorithms and applications (Doctoral Thesis No. 2006:15). Lund: 
Department of Mathematical Statistics, Lund University.

Ängquist, L., Hössjer, O. and Groop, L. 2007. Strategies for conditional 
two-locus nonparametric linkage analysis (Tech. Rep. No. 2007:1). 
Lund: Department of Mathematical Statistics, Lund University. 
(Accepted for publication by ‘Human Heredity’; will most likely 
appear in forthcoming 2008, 66:2 issue).

Balding, D.J. 2006. A tutorial on statistical methods for population asso-
ciation studies. Nature Reviews Genetics, 7:781–91.

Bradley, A.P. 1996. ROC curves and the χ2 test. Pattern Recognition Letters, 
17:287–94.

Cappé, O., Moulines, E. and Rydén, T. 2005. Inference in hidden Markov 
models [Springer Series in Statistics]. New York: Springer.

Clayton, D. and Hills, M. 1993. Statistical models in epidemiology. Oxford: 
Oxford University Press.

Donnelly, K.P. 1983. The probability that related individuals share some 
section of the genome identical by descent. Theoretical Population 
Biology, 23:34–64.

Edwards, A.W.F. 1992. Likelihood: Expanded edition (Second Edition ed.). 
New York: John Hopkins University Press.

Feingold, E., Brown, P.O. and Siegmund, D. 1993. Gaussian models for 
genetic linkage analysis using complete high-resolution maps of 
identity by descent. American Journal of Human Genetics, 
53:234–51.

Garthwaite, P.H., Jolliffe, I.T. and Jones, B. 1995. Statistical inference. 
London: Prentice Hall.

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. 2004. Bayesian data 
analysis (Second Edition ed.) [Texts in Statistical Science]. Boca 
Raton (Florida): Chapman k and Hall/CRC.

Gudbjartsson, D.F., Jonasson, K., Frigge, M. and Kong, A. 2000. ALLEGRO, 
a new computer program for multipoint linkage analysis. Nature 
Genetics, 25:12–3.

Haines, J.L. and Pericak-Vance, M.A. Eds. 2006. Genetic analysis of 
complex disease. New York: Wiley-Liss.

Hand, D.J., Mannila, H. and Smyth, P. 2001. Principles of data mining. 
Cambridge, Massachusetts: The MIT Press.

Hössjer, O. 2003. Determining inheritance distributions via stochastic 
penetrances. Journal of the American Statistical Association, 
98:1035–51.

Hössjer, O. 2005. Information and effective number of meioses in linkage 
analysis. Journal of Mathematical Biology, 50(2):208–32.

Khoury, M.J., Beaty, T.H. and Cohen, B.C. 1993. Fundamentals of genetic 
epidemiology [Monographs un Epidemiology and Biostatistics, 
Volume 22]. New York and Oxford: Oxford University Press.

Kong, A. and Cox, N. 1997. Allele-sharing models: LOD scores and accurate 
linkage tests. American Journal of Human Genetics, 61:1179–88.

Kruglyak, L., Daly, M.J. and Lander, E.S. 1995. Rapid multipoint linkage 
analysis of recessive traits in nuclear families, including homozygos-
ity mapping. American Journal of Human Genetics, 56:519–27.

Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. and Lander, E.S. 1996. Para-
metric and nonparametric linkage analysis: A unifi ed multipoint 
approach. American Journal of Human Genetics, 58:1347–63.

Lander, E.S. and Green, P. 1987. Construction of multilocus genetic linkage 
maps in humans. Proceedings of the National Academy of Sciences 
of the United States of America, 85:2363–7.

McPeek, M.S. 1999. Optimal allele-sharing statistics for genetic mapping 
using affected relatives. Genetic Epidemiology, 16:225–49.

Nicolae, D.L. 1999, Jun. Allele sharing models in gene mapping: A likeli-
hood approach (Doctoral Thesis). Chicago: Department of Statistics, 
University of Chicago.

Ott, J. 1999. Analysis of human genetic linkage (Third ed.). New York: The 
John Hopkins University Press.

Selin, I. 1965. Detection theory [The RAND Corporation]. Princeton, New 
Jersey: Princeton University Press.

Siegmund, D. and Yakir, B. 2007. The statistics of gene mapping [Statistics 
for Biology and Health]. New York: Springer.

Strachan, T. and Read, A.P. 2003. Human molecular genetics (Third ed.). 
London and New York: Garland Science.

Strauch, K., Fimmers, R., Kurz, T., Deichmann, K.A., Wienker, T.F. and 
Baur, M.P. 2000. Parametric and nonparametric multipoint linkage 
analysis with imprinting and two-locus-trait models: Application to mite 
sensitization. American Journal of Human Genetics, 66:1945–57.

Weeks, D.E. and Lange, K. 1988. The affected-pedigree-member method 
of linkage analysis. American Journal of Human Genetics, 
42:315–26.

Whittemore, A.S. 1996. Genome scanning for linkage: An overview. 
American Journal of Human Genetics, 59:704–16.

Whittemore, A.S. and Halpern, J. 1994. A class of tests for linkage using 
affected pedigree members. Biometrics, 50:118–27.

Winkler, R.L. 1972. An introduction to Bayesian inference and decision. 
New York: Holt, Rinehart and Winston, Inc.

Ziegler, A. and Koenig, I.R. 2006. A statistical approach to genetic epide-
miology: Concepts and applications. Weinheim: Wiley-WCH.



132

Ängquist

Bioinformatics and Biology Insights 2008:2

21Formally, the range of indices are i, j = 1,2,3 and k = 0,1,2.
22Since 1 and 2 have ancestrally the same (founder) genotypes according 

to full IBD-sharing.

Appendix
Some Technicalities

A Equivalence regarding IBD-sharing 
Structures
Vaguely speaking equivalent IBD-sharing struc-
tures means that these structures correspond to 
structurally similar (exchangeable) genetic 
inheritance. Consider two structures, A and B 
say. In its simplest form this above property 
correspond to cases where A is transformed to 
B if the inheritances of two individuals, of 
similar pedigree structure positions, are switched 
(permuted).
Example 9 (Equivalent AST-structures) Assume 
an affected sib-trio (AST) pedigree as shown in 
Figure 2. Order the three affected siblings as Sib-
ling 1, 2 and 3 respectively. Quite naturally, let 
IBD(i, j) = k mean that the ith and jth sibling share 
k alleles IBD.21

If IBD(1, 2) = 2 and IBD(1, 3) = 0, implicitly 
IBD(2, 3) = 0.22 Now, permute Sibling 1 and Sibling 3. 
This leads to IBD(1, 2) = 0 and IBD(1, 3) = 0, and 
IBD(2, 3) = 2. These two cases, i.e. the correspond-
ing inheritance vectors, are assumed to produce 
equivalent IBD-sharing structures.

B Criterion regarding unstandardized 
score function equivalence
Formulating criterions for producing equivalent 
(equivalence classes of) score functions turns out 
to be most straightforwardly achieved using the 
general score function defi nition (3).

When n = 2, given an underlying score distribu-
tion under H0, there is only one type of standardized 
score function defi nition, i.e. regardless of the 
instantiation of the unstandardized scores, s1 and 
s2, one ends up with the same standardized func-
tion. Explicitly, all score functions are equiva-
lent.

In the same manner, when n = 3, for each value 
(constant) c ∈ [0, ∞] the relation

 s3 − s2 = c(s2 − s1) (18)

defi nes a single specifi c equivalence class.23 The 
meaning of this is that all unstandardized score 

functions fulfi lling the above relation with the same 
c are forced to become equivalent.
Example 10 (Equivalence class of Spairs and Sall) 
For an ASP, as noted above, Spairs and Sall are 
equivalent. The whole corresponding equivalence 
class, including these two instances, are defi ned 
through using c = 1 in (18). This class is constituted 
by all symmetric score functions, i.e. such functions 
obeying s3 − s2 = s2 − s1.

Finally consider an arbitrary n � 3. Here, each 
ordered vector of constants (c1, c2,…,cn-1) where 
all ck ∈ [0, 1], with natural restricting constraint 
Σk

n
kc=

− =1
1 1, and the vector moreover fulfi lls

 
s s

s s
c k nk k

n
k

+ −
−

⎡

⎣
⎢

⎤

⎦
⎥ = = −1

1

1 2 1; , ,..., ,

then defi nes an equivalence class of (unstandard-
ized) score functions in the same sense as above.

23The extreme cases c = 0 and c = ∞ in (18) calls for specifi c interpretations. 
In the former case s3 = s2 and in the latter case s2 = s1. In both cases, as 
always, the specifi c numerical scores are then defi ned through the prop-
erties of standardization.
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