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Background
Over the last decade, the biological sciences have been 
revolutionized by the development of high-throughput tech-
nologies for the study of gene expression, initially microarrays, 
and then next-generation sequencing (NGS). One result is the 
enormous quantity of data now publicly available for differ-
ent cancer types, from independent researchers and consortia 
such as The Cancer Genome Atlas (TCGA)1 and the Interna-
tional Cancer Genome Consortium (ICGC),2 via online data 
repositories including Sequence Read Archive (SRA),3 gene 
expression omnibus (GEO),4 and ArrayExpress.5,6 With the 
continuing improvement in technologies and decreasing costs, 

transcriptome analysis is becoming routine in cancer research. 
Analysis and interpretation of large data, however, remain an 
ongoing challenge.7

Many tools are available for transcriptome analysis,8–11 but 
their use too often remains limited to those skilled in bioinfor-
matics because these tools have been developed as stand-alone 
packages, written in different programming languages with 
only command-line control, intended for a very specific use 
and/or without support for sharing input and output data with 
other programs.12–15 For instance, Bowtie13 and Samtools15 
are powerful tools for processing raw sequencing reads, but 
are difficult for biologists to install, configure, and use, and 
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require memory-efficient high-performance computational 
resources.

User-friendly web interfaces have been developed,9,10,16,17 
particularly for initial data processing, file-format conversion, 
and downstream functional analysis. However, most such 
interfaces provide only a limited set of tools without auto-
mated procedures for data import; they impose file-format 
and data-size restrictions, are difficult to set up, are expen-
sive to access, and/or have been developed commercially. 
For example, the MEME Suite18 provides powerful tools for 
motif-based sequence analysis and is available free of cost to 
the academic community, but analyzing ChIP-seq reads and 
preparing data for input to MEME can be challenging for a 
biologist with limited informatics skills, and it can likewise 
be difficult to format and redirect their output to programs 
outside the suite, eg for druggability analysis. To address these 
barriers to adoption, we have developed INsPeCT. INsPeCT 
consists of two central types of components: primary modules 
for high-throughput data analysis, and secondary modules for 
gene-list analysis and automated network inference.

Three primary analysis modules are provided for microar-
ray, ChIP-seq, and RNA-seq data. In the microarray data-
analysis framework, for example, a researcher can import data 
available online, or upload data from his or her own computer; 
carry out differential expression analysis and use the list of dif-
ferentially expressed genes to infer a gene regulatory network 
(GRN); conduct pathway, druggability, and survival analysis; 
and/or redirect interesting genes to secondary functional 
analyses.

Two secondary analysis modules are provided: one cov-
ers gene-list analysis, the other provides automated workflows 
for module-based GRN inference and analysis. The gene-list 
analysis framework can be used with any gene list of inter-
est; for a given list of genes, it supports analyses including 
promoter-sequence extraction, druggability analysis, func-
tional enrichment analysis, and transcription factor binding-
site over-representation analysis. In the automated workflow 
framework, researchers can take advantage of our novel 
analytical framework regulatory module network inference 
(RMaNI) for automated identification of cancer subtype-
specific transcriptional module networks, and execute the 
widely used weighted gene co-expression network analysis 
(WGCNA) method, to identify the module network associ-
ated with a clinical variable of interest, for example overall 
survival, relapse-free survival, or metastasis-free survival.

Individual components in INsPeCT have previously been 
benchmarked and/or compared with earlier tools; below, we 
provide leading literature citations. For example, the RMaNI 
framework within INsPeCT supports the inference of modu
les and their condition-specific regulators, based on the 
publicly available learning module networks (LeMoNe) algo-
rithm, which was benchmarked against the state-of-the-art 
genomica and other methods.19,20 Similarly, differential gene-
expression analysis methods edgeR and DEseq, used in the 

RNA-seq framework, were compared against each other.21 
All components in INsPeCT can be executed quickly in a 
fully automated way, without need for specialized informatics  
skills. For the options selected, INsPeCT automatically pre-
pares the input data for downstream analyses. It provides 
result tables and figures in user-friendly formats, and stores 
these outputs as individual R objects so the user can repro-
duce that part of the analysis or perform additional proce-
dures locally without repeating the complete set of operations. 
Overall, INsPeCT is a computational system biology tool to 
integrate the analysis of multiple high-throughput data types 
with advanced downstream functional analysis and network 
inference for cancer transcriptomics. Our focus on usability 
and accessibility will make these advanced tools available to a 
new audience of research scientists.

Implementation
Figure 1 shows the system architecture diagram of INsPeCT. 
INsPeCT is a web- based application with Drupal CMS front 
end and server side tools developed mainly by integrating R22 
and Bioconductor23 packages, Python, Matlab, API-based 
scripts, web-automation, and web-scraping functions. The 
web interface to individual programs has been created using 
Rwui,24 a Java-based application that uses the Apache Struts 
framework. The complete application is running on a high-
performance computing cluster. The platform integrates over 
110 publicly available R, Bioconductor, and custom packages 
and functions for data import, processing, analysis, integra-
tion, and visualization. All packages are currently running 
under R version 2.15.2 and can be easily updated with newer 
versions of R. INsPeCT supports up to 2 GB of data upload 
in any module. INsPeCT is available free of cost from http://
inspect.braembl.org.au. User manual and test datasets can 
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Figure 1. Systems architecture diagram of INsPeCT.
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be accessed from the INsPeCT homepage. For the sample 
datasets provided, approximate run times for complete modu-
lar workflows are: microarray and WGCNA framework for 
less than two hours, ChIP-seq and RNAseq datasets for 
six hours, Gene-lists framework for less than one hour, and 
RMaNI for four hours, depending on the machine load.

INsPeCT: Structure and Functionalities
INsPeCT is organized into five main modules for analysis 
of microarray (Fig.  2B), ChIP-seq (Fig.  2C), RNA-seq raw 
(Fig. 2C), and processed data (Fig. 2D), and secondary analysis 

of gene lists and automated workflows (Fig.  2E). The main 
functionalities in each section are described in detail below.

A. Microarray data. The microarray analysis framework 
of INsPeCT (Fig.  2B) provides a complete analysis work-
flow, from raw data import and differential analysis to gene 
network inference and pathway analysis. Below we describe 
the critical steps and functions. For the different options 
selected, INsPeCT automatically prepares the input data for 
downstream analyses.

Data upload/import and processing. INsPeCT allows the 
uploading of raw or processed data arising from different types 
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Figure 2. Schematic representation of INsPeCT. (A) Overall organization of INsPeCT for data processing; (B) microarray data analysis workflow;  
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of Affymetrix chips and automated online data import from 
the GEO or ArrayExpress databases. The user enters the data-
set accession ID to import it using the online data importer 
function. Uploaded or imported raw data will be processed 
for background correction and normalization using the  
R package limma. We provide five widely used normaliza-
tion methods: RMA, GCRMA, MAS5, PLIER, and dChip. 
Multiple probes can be summarized to one gene using either 
the coefficient of variation or the maximum average expres-
sion methods.25

Differential expression analysis. In INsPeCT, differen-
tially expressed genes can be detected using two widely used 
methods, LIMMA26 and SAM.27 We declare a differential 
gene expression significant if the Benjamini—Hochberg 
(BH) adjusted P-value is at most 0.05. The result of differ-
ential expression analysis is provided as a comma separated 
value (CSV) file, and the data passed to downstream analysis 
modules.

Trend analysis. Users can identify genes with a consistent 
increase or decrease in median expression (monotonic trend) 
across multiple conditions. This analysis is performed using 
a trend analysis function based on the Jonckheere—Terpstra 
(JT) test, and using the SAGx package.28 If this option 
selected, INsPeCT will automatically prepare the input data 
for trend analysis.

Regulatory impact factor analysis. To identify the tran-
scription factors potentially regulating differentially expressed 
genes across two conditions, regulatory impact factor analysis 
(RIF)29 can be used. We developed an R function to imple-
ment the RIF FORTRAN code. This analysis can be useful to 
priorities transcription factors or microRNAs based on their 
regulatory potential with respect to a given set of genes, or to 
infer a regulatory network. If this option selected, INsPeCT 
will automatically prepare the input data for RIF.

GRN inference. INsPeCT supports several tools for the 
inference GRNs including mutual information-based methods 
(relevance networks,30 ARACNE,31 CLR,32 and MRNET),33 
gene correlation (Pearson, Spearman, and Kendall-tau), partial 
correlation and information theory (PCIT),34 and regression 
trees (GENIE3).35 These tools originate from the MINET, 
PCIT, and GENIE3 R packages.35–37 The Transfac2009.438 
and Tcof-DB39 databases are used for transcription factor 
information. For a comprehensive comparative evaluation of 
these GRN inference methods, please see Ref. 40.

Clustering. Microarray samples can be clustered according 
to their expression similarity using the CLUES, KMEANS, 
PAM, AGNES, FANNY, SOTA, and MCLUST meth-
ods, available from the CLUES, MCLUST, and cluster  
R packages.41–43 The user can compare the performance of these 
tools on their data to select the most-appropriate method.

Signaling pathway impact analysis. A signaling pathway 
impact analysis algorithm is available in the SPIA package.44 It 
uses differential gene expression and log fold changes together 
with signaling pathway topology from the KEGG database 

release 64.045 to identify the pathways that are perturbed in 
an experiment.

Differential gene set analysis. Differential gene set analysis 
can be performed using one of the broad gene-set collections 
from MsigDB.46 INsPeCT currently supports all six gene set 
types (positional, curated, motifs, computational, GO, and 
onogenic signature gene sets). INsPeCT uses the sigpathway 
R package47 for differential gene set analysis.

Modified cancer outlier profile analysis (mCOPA). mCOPA48 
is a new tool for the exploration of cancer datasets and discov-
ery of new cancer subtypes, and can be combined with pathway 
and functional analysis approaches to discover mechanisms 
underpinning heterogeneity in cancers. The biology explored 
by outlier analysis can differ from that uncovered in differen-
tial expression or variance analysis.48

Redirecting analysis to genelist analysis framework. Lists of 
interesting genes identified in microarray analysis (eg, as dif-
ferentially expressed) can be redirected to the genelist analysis 
framework (Fig.  2D) for additional functional analysis. 
Genelist analysis framework is described in more detail below 
(section E).

B. ChIP-seq data. The ChIP-seq analysis framework 
of INsPeCT (Fig. 2C) provides a complete analysis pipeline 
from raw data import to motif discovery and analysis. Below 
we describe the critical steps and functions. For the different 
options selected, INsPeCT automatically prepares the input 
data for downstream analyses.

File-format conversions, mapping reads to a reference genome, 
and quality control. Mapping reads to a reference genome is the 
first step in analysis of ChIP-seq data; we implement Bowtie 
for this purpose. The standard file-format for raw ChIP-seq 
reads used for input to Bowtie is FASTQ , which we then 
convert to SAM, BAM, and sorted BAM formats for fur-
ther analyses. For data that are available in SRA format, we 
provide functionality to convert from SRA to FASTQ. We 
also provide functionality to upload mapped reads in any of 
the SAM, BAM, or sorted BAM file-formats. We implement 
sratoolkit49 and samtools15 for these file-format conversions. 
After mapping reads, we process the data for quality control 
using the FastQC tool.50 INsPeCT provides an interactive 
HTML-based report to review the results of comprehensive 
quality control checks.

Peak calling. Peak calling identifies regions in a genome 
that are enriched with aligned reads. INsPeCT uses the  
R package BayesPeak and peak-calling by coverage value for 
this purpose.51 We input sorted BAM files to these methods, 
which return transcription factor-bounded regions in CSV 
format to the user.

Peak annotation, filtering, and extracting peak sequence 
regions. The R package ChiPpeakAnno8 is employed to 
retrieve the gene location, distance relative to the correspond-
ing transcription start site (TSS), and further annotations. We 
currently use the latest human genome assembly, GRCh37, 
for this purpose. At the end of this step we provide peaks 
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annotated with chromosomal peak location, strand, feature 
and TSS information, gene symbol, and Ensembl and Entrez 
gene IDs in a CSV file. We also provide plots with distance to 
TSS for visualization. Using the annotated peak data we per-
form GO enrichment analysis using the hypergeometric test 
with a BH-adjusted P-value cutoff set to 0.05. The output of 
GO enrichment analysis is provided as a CSV file. We provide 
functionality to extract the promoter sequences in FASTA 
format for a user-specified region that can be visualized in any 
standard genome browser.

Normalization and differential binding analysis. Researchers 
can perform differential binding analysis of the peaks identi-
fied in two different conditions, eg in a case/control experi-
mental design. We perform reads per kilobase of sequence 
range per million mapped reads (RPKM) normalization and 
quality control plots for samples. Differential binding analysis 
can be carried out using two approaches: via the DESeq pack-
age, or using the edgeR package .52,53 If all these tools are cho-
sen, we compute overlaps of differential peaks across methods 
and provide consensus peaks for user-specified fold-change, 
number of peaks, and a Venn plot for visual inspection of the 
result.

Motif analyses. Motif discovery is of obvious relevance in 
ChIP-seq analysis. INsPeCT integrates the widely used MEME 
Suite of tools18 for motif discovery, comparison, and analysis. 
We use MEME-ChIP,54 which was specifically designed for 
analysis of ChIP-seq data. MEME-ChIP performs different 
motif analyses on the input data and includes the MEME,55 
TOMTOM,56 SPAMO,57 DREME,58 CENTRIMO,59 and 
AME60 tools. An interactive HTML file is provided that sum-
marizes the results and provides links to the results for each 
program. It also displays interactive plots for visual inspection.

Redirecting interesting genes to genelist analysis framework. 
An interesting gene list identified in ChIP-seq analysis, for 
instance differential peaks, can be redirected to the gene-
list analysis framework (Fig.  2D) for additional functional 
analysis.

C. RNA-seq data. The RNA-seq analysis framework of 
INsPeCT (Fig. 2C and D) provides a complete analysis work-
flow for raw or processed data analysis. Below we describe the 
critical steps and functions. For the different options selected, 
INsPeCT automatically prepares the input data for down-
stream analyses.

File-format conversions and data processing. INsPeCT pro-
vides a data-upload functionality for the raw sequence read 
formats FASTQ and SRA, and for mapped and aligned reads 
in the SAM or BAM formats. We also provide functionality 
for automated online data import from the ArrayExpress 
database using the ArrayExpressHTS package.61

Alignment, annotation, normalization, and dispersion esti-
mation. We provide three aligner options, Tophat,62 Bowtie,13 
and Bwa,12 for aligning reads against a reference genome or 
transcriptome. A read count table in CSV format is provided as 
output. For annotating read count data we use Bioconductor’s 

human annotation database,63 and apply the Trimmed Mean 
of M component technique64 for normalization of read counts. 
We provide multi-dimensional scaling plot for visual inspec-
tion. We use edgeR53 to estimate the overall dataset disper-
sion to detect the overall biological variability, followed by 
gene-wise dispersion estimation for detecting possible trend 
in average count size.

Differential gene expression analysis. To detect differ-
entially expressed genes we implement the edgeR pack-
age.53 The BH-adjusted P-value threshold for significance 
is 0.05. Different CSV files are produced giving results for 
coefficients, fitted values, gene annotations, and differen-
tial expression. List of significant genes with read counts 
are produced for further analyses. A gene list can also be 
redirected to the gene-list analysis framework (Fig. 2D) for 
functional analysis.

D. Gene-list analysis framework. The gene-list analysis 
framework (Fig. 2E) has been developed to provide functional 
analysis for researchers who may not have raw data for analysis 
but have previously identified interesting genes using another 
package or approach. Below we summarize some of the analy-
sis options. For the different options selected, INsPeCT auto-
matically prepares the input data for further analyses.

Promoter analysis. Automated retrieval of genomic sequences, 
annotation of promoter sequences, detection of CpG islands, and 
sequence analysis can be performed using Biomart resources65 
and the MEME Suite of tools.18

Motif discovery and analysis. With MEME Suite,18  
a researcher can discover motifs using MEME and DREME, 
search sequence databases with motifs using MAST,66 compare 
a motif to all motifs in a database using TOMTOM, associate 
motifs with GO terms via their putative target genes using 
GOMO, or analyze motif enrichment using CentriMo.

Druggability analysis. Proteins that are the targets of cur-
rent Food and Drug Administration (FDA)-approved anti-
cancer drugs can be identified using a druggability analysis 
function developed using the Cancer Resource67 database.

Enrichment analysis. Gene set enrichment analysis 
(GSEA) and GO enrichment analysis are performed using 
the GSEA and DAVID tools through the GSEA API46 
and DAVID-WS,68 respectively. Gene enrichment dis-
equilibrium analysis are performed using the R package 
EDanalysis.69

Transcription factor binding site (TFBS) over-representation 
analysis. The identification of over-represented single or com-
binations of TFBSs in sets of co-expressed genes can be per-
formed using oPOSSUM.70

E. Automated workflows. Network inference can be a 
powerful tool in understanding how interactions are disrupted 
and rewired and identifying novel regulatory interactions and 
broader systemic disruptions in key oncogenic processes. We 
provide users with two automated workflows for module-based 
GRN inference and analysis to understand genetic architec-
ture and underlying biology in a given system: WGCNA and 
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a novel method that we call RMaNI. We briefly summarize 
these workflows below.

WGCNA. This workflow is based on a general framework 
for WGCNA available as an R package.71,72 It finds modules 
of highly correlated genes across microarray samples, associ-
ated with the external sample traits. We provide functions 
for automated network construction, module detection, gene 
selection, calculations of topological properties, and data visu-
alization, and export the network in Cytoscape- and VisAnt-
compatible formats.73,74 This workflow takes processed 
expression data and associated patient information as input, 
and provides several output files in CSV format and graphics 
in portable network graphics (PNG) format. This workflow 
is suitable for users who have access to microarray expres-
sion data and clinical metadata such as survival information. 
Importantly, this approach does not require expression data 
for normal controls.

RMaNI. RMaNI is a novel analytical workflow we devel-
oped for the inference and analysis of cancer-subtype specific 
modules.75 It implements the LeMoNe algorithm76 for model-
based co-clustering of expression data, and RIF29 to identify 
relevant regulatory factors. LeMoNe uses a Gibbs sampling 
procedure to iteratively update the cluster assignment of both 
genes and conditions. It takes processed expression data as 
input, and provides several output files in CSV format and 
graphics in PNG format. This workflow is suitable for users 
who have access to microarray expression data for normal and 
multiple cancer subtypes. One significant advantage of LeM-
oNe over WGCNA is that it uses a model-based approach 
for clustering genes, and while selecting thresholds does not 
assume that networks necessarily have a scale-free topology.

Conclusion
INsPeCT is an innovative framework that provides an easy-
to-use interface to a comprehensive, integrated suite of tools 
for rapid in-silico analysis of microarray, ChIP-seq and RNA-
seq data, and/or lists of genes. It also provides access to the 
novel analytical framework RMaNI, and to the widely used 
WGCNA tool for inference and analysis of transcriptional 
regulatory networks using microarray data. Our web server 
makes available a set of tools and analytical workflows that 
would otherwise be challenging for non-expert users to install 
and apply. In future, we will integrate more tools and work-
flows to meet the distinct needs of researchers confronting the 
complexity of cancer transcriptomics.
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