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Introduction
Despite their potent anti-inflammatory effects,1–3 corticoster
oids (CSs) are associated with numerous side-effects, 
particularly related to long-term treatment, eg hypergly-
cemia, dyslipidemia, arteriosclerosis, muscle wasting, and 
osteoporosis.4–7 These complex side-effects, which manifest as 
systematic transcriptional changes in multiple tissues,8,9 neces-
sitate approaches to better decipher the pharmacogenomic 

effects of CS to properly assess the balance between their 
advantageous and harmful effects.

There has been an increasing number of recent studies 
that explored the tissue-specificity of gene expression and 
regulation,10,11 especially its interplay with pathology.12–14 
Several databases were developed to establish a knowledge-
base of large-scale data regarding tissue-specific gene expres-
sion, regulation, and disease association in a variety of human 
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tissues.15,16 Furthermore, tissue-specificity has also been 
shown to link with many significant outcomes including 
expression-quantitative trait loci,17 evolution,14,18 and disease-
association,13,19 eg tissue-specific effects of insulin signaling 
in diabetes.20 Consequently, in this study we placed emphasis 
on exploring the tissue-specificity of chronic CS administra-
tion in liver and muscle to obtain a better understanding of 
CS-responsive functions and its side-effects. We first iden-
tified tissue-specific transcriptional dynamics using a novel 
clustering approach proposed in our previous study.21 Subse-
quently, with the hypothesis that common functions activated 
across multiple tissues will be more likely to be important 
CS-responsive functions, the KEGG database was utilized to 
identify such common functions.

However, it has been noted that genes affected by CS 
include both immunosuppressive genes, mostly associated with 
therapeutic effects, and metabolic genes often associated with 
adverse effects whose regulation is mainly controlled by glu-
cocorticoid receptor (GR) through gene-mediated pathways.6 
However, chronic infusion of CS causes a sustained down-
regulation of the receptor (mRNA and thus protein).22,23 
Although several alternative mechanisms have been pro-
posed,24–26 it is still not understood why drug effects remain 
strong even after the down-regulation of GR mRNA to the 
point of almost being eliminated. A plausible explanation is 
that, in addition to direct regulation through glucocorticoid 
response element (GRE) binding sites in the 5′ regulatory 
regions of genes, there are changes in expression that are 
also the indirect results of CS effects because of changes in 
expression of transcription factors (TFs) that act as secondary 
bio-signals directly or indirectly modulating the transcription 
of genes.23,27,28 Therefore, in addition to identifying critical 
transcriptional responses and CS-responsive functions, find-
ing relevant TFs and understanding their relationship with 
CS-responsive functions is also an important aspect in this 
analysis.

Materials and Methods
Datasets. Adrenalectomized (ADX) male Wistar rats 

with body weights of 339 ± 28 g (SD) were housed and main-
tained under constant temperature (22  °C) and humidity 
with a controlled 12-hour light/dark cycle for a period of at 
least two weeks before surgery.22,29 Rats had free access to rat 
chow and 0.9% NaCl drinking water. Forty rats were given 
0.3  mg/kg/hour infusions of methylprednisolone (MPL) 
sodium succinate for more than 168 hours via an Azlet pump. 
The drug solutions were prepared for each rat based on its 
predose body weight. Pumps were subcutaneously implanted 
between the shoulder blades. Animals were sacrificed at vari-
ous times up to seven days, specifically at time-points 6, 10, 
13, 18, 24, 36, 48, 72, 96, and 168  hours. A control group 
of four animals was implanted with a saline-filled pump 
and killed at various times throughout the seven-day study 
period. Liver and gastrocnemius muscle samples from each 

animal were ground into a fine powder in a mortar cooled by 
liquid nitrogen, and RNA was extracted with TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA). The gene expression was 
obtained via the Affymetrix RAE230A array, which consists 
of 15,923 probesets. The data are publicly available through 
the GEO database under accession numbers GDS972 and 
GDS2688 corresponding to the liver and muscle datasets dur-
ing chronic MPL infusion.

Clustering. Utilizing the concept of the agreement 
matrix (AM) in consensus clustering, we recently proposed a 
novel method to identify the core group of probesets showing 
the most agreement indicating they belong to the same pat-
terns of gene expression.21 To produce the AM, a number of 
different clustering methods (hierarchical clustering, divisive 
analysis clustering, partitioning around medoids, fuzzy analy-
sis clustering, k-means, self-organizing map, fuzzy c-means 
clustering, and model-based clustering) along with different 
metrics (Euclidean, Manhattan, and Pearson correlation) 
were used to reduce the bias inherent in the assumption of 
any specific clustering method/metric. After identifying the 
core set of probesets, the AM is reduced correspondingly to 
these selected probesets, and then the hierarchical clustering 
is applied on the reduced AM to obtain significant patterns of 
gene expression. As there should be clusters of genes located 
closely to other clusters in the data and the input number of 
clusters for the core analysis is only suggestive, these clusters 
may not be completely separated. As a result, some significant 
clusters may be not included in the selected subset because of 
the constraint in “clusterable” selection. Therefore, we repeated 
the procedure of selection and clustering on the removed 
domain as proposed by Nguyen et al.30 Subsequently, a trivial-
cluster removal procedure and a merging process were applied 
to obtain final significant patterns of gene expression.30

CS-responsive function identification. We first identi-
fied the pathways from the KEGG database that were enriched 
in each of the gene expression patterns from each tissue 
(P-value ,  0.05, at least five genes) using ArrayTrack.31 An 
intersection between the set of selected pathways in liver and 
those in muscle was performed to extract all common functions 
that were activated in both tissues during MPL infusion.

Promoter extraction and processing. The promoters of 
genes including all transcript-relevant alternative promoters 
were extracted from a rich database of promoter information 
with a default length (500  bp upstream and 100  bp down-
stream of the transcription start site) if there is no experimen-
tally defined length suggested by Genomatix.32 To accelerate 
the process of identifying putative transcriptional regulators, 
promoters were pre-processed as in Nguyen et al.33 Specifically, 
MatInspector34 was applied to scan position weight matrix 
(PWM) matches on those promoter sequences using opti-
mal parameters from MatBase, which ensures that the mini-
mum number of matches found in non-regulatory sequences,  
ie, the false-positive matches, was minimized.32 Each gene 
promoter was then re-modeled to become a list of TF binding 
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sites (TFBSs) ordered by their local positions on the promoter 
sequences and represented by the corresponding TF names 
along with their binding orientations. The conversion supports 
fast search for the presence of a TFBS or a cis-regulatory mod-
ule (CRM) on promoter sequences.

Putative transcriptional regulator prediction. To 
predict putative transcriptional regulators, we utilized the 
context-specific CRM search technique to identify over-rep-
resented CRMs in the promoter set of a gene battery.33 Each 
gene battery contains a certain set of genes that are hypotheti-
cally co-regulated, ie co-expressed and co-functional in this 
study. With the hypothesis that common functions activated 
across multiple tissues may play important roles in response 
to CS dosing, we applied our previous tool33 to identify TFs 
relevant to CS transcriptional responses. In brief, we compu-
tationally defined a CRM as a list of non-overlapping TFBSs 
ordered by their positions on the promoter sequence and 
characterized with their corresponding binding strand orie
ntation. The procedure first identified all potential TFBSs 
that are common in the corresponding promoter set and then 
searched for all possible combinations of all commonly found 
TFBSs above using the breadth-first search technique. Owing 
to the fact that a CRM can be present on promoters of many 
genes in the background set, we estimated the statistical sig-
nificance of commonly identified CRMs for each gene battery 
vs. those for the background set to select those that are signifi-
cantly over-represented. Subsequently, the selected CRMs are 
decomposed to obtain a list of TFs that are associated with the 
corresponding TFBSs present on CRMs.

Regulatory closeness (RC) definition. Using the 
hypothesis that with the more relevant transcriptional regu-
lators, two gene batteries will share higher closeness of reg-
ulatory mechanisms, the RC was estimated to quantify the 
relationship between gene expression profiles, function, and 
transcriptional regulation. In this study, we defined the RC as 
the common ratio (CR) of relevant TFs shared between two 
gene batteries CR = c/a + c/b, where a and b are the number 
of TFs recognized as relevant transcriptional regulators in 
gene batteries A and B, and c is the number of common TFs 
between the two. Its range therefore is from 0 to 2 where 0.8 
was selected as a cut-off value for high RC.

Results
This study involved infusion of MPL for more than 168 hours 
in ADX rats. Three animals were sacrificed at each of 12 time-
points, and diverse tissues harvested and processed to assess 
gene expression using Affymetrix arrays. The liver and mus-
cle tissues were compared in this analysis (see Materials and 
Methods). The pharmacokinetics of MPL for this study was 
reported previously35 showing steady-state concentrations in 
plasma at six hours and thereafter.

Critical transcriptional responses. To analyze 
gene expression data during chronic MPL infusion, a 
pre-processing step was performed by filtering differentially 

expressed probesets using an ANOVA test (P-value ,0.05) 
implemented in R.36 There were 4,124 probesets in the liver 
dataset and 3,805 probesets in the muscle dataset selected for 
further analysis. All datasets were pre-processed to obtain the 
“true” expression profiles that incorporate the error informa-
tion in replicates instead of taking the simple average expres-
sion profiles for clustering.37 The suggested number of clusters 
(nc*) for both datasets was 7. With the hypothesis that the 
more clusterable the data, the more biologically relevant they 
are, a more clusterable subset from each dataset was extracted 
and then clustered to identify significant expression patterns 
in each tissue during chronic MPL infusion. These signifi-
cant patterns are considered as key transcriptional responses 
because they contain a significant number of co-expressed 
genes that are differentially expressed during chronic CS 
infusion.

For responses in liver, we obtained 12  significant 
patterns with 2,285 genes in total. The expression patterns 
as z-score vs. time of these transcriptional responses are 
shown in Figure  1 with the average expression patterns of 
all genes in each cluster. Although genes may exhibit simple 
or complex patterns of expression during CS administration, 
we only describe them with up- and/or down-regulation in 
this study. In brief, pattern 1 (182 genes) exhibited an early 
down-regulation at six hours post-MPL infusion followed by 
an up-regulation reaching the peak at about 18 hours. Sub-
sequently, it was again down-regulated until 48  hours and 
then gradually returned to the baseline. Genes in patterns 
2 (80 genes), 3 (400 genes), 4 (48 genes), and 5 (429 genes) 
exhibited a fast and robust enhancement in mRNA and 
reached their corresponding maximum peaks at 6, 10, 10, 
and 13 hours, respectively. Although all of them are followed 
by a down-regulation that reaches the baseline at 24 hours, 
patterns 2 and 3  seem to have a slight enhancement before 
returning to the baseline whereas patterns 4 and 5  showed 
slight sustained down-regulation until 48  hours and then 
may (pattern 5) or may not (pattern 4) return to the baseline. 
Patterns 6 (176 genes) and 7 (312 genes) show two other inter-
esting transcriptional responses during chronic MPL infu-
sion because they eventually converged to a new steady state 
in the presence of the drug, namely sustained up-regulation 
(pattern 6) and sustained down-regulation (pattern 7). The 
last five patterns show a strong down-regulation followed by 
a sharp enhancement. Pattern 8 (102 genes) reached a nadir 
at about six hours and then up-regulated to reach the peak 
at 24  hours, which is followed by some fluctuations before 
returning to the baseline. Similarly, patterns 9 (80  genes) 
and 10 (54 genes) exhibited down-regulation in gene expres-
sion reaching a nadir at about 10 hours followed by an up-
regulation to reach the peak at about 24  hours. However, 
genes in pattern 9 eventually reach the baseline whereas 
genes in pattern 10 are stabilized to a new steady state. Addi-
tionally, the 300 genes in cluster 11 and 122 genes in cluster 
12 display declines in mRNA expression at 10 and 13 hours 
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and subsequently show an up-regulation to the peak at about 
36 hours. After that, their expression gradually goes back to 
the baseline (which happens faster for genes in pattern 12).

In muscle responses, there are seven significant expression 
patterns with 2,291 genes in total. However, almost all genes 
follow two main transcriptional responses as characterized by 
patterns 1 and 2 in Figure 2. Pattern 1 including 718 genes 
exhibited an early down-regulation during the first 6  hours 
followed by a robust up-regulation to reach the peak at about 
36  hours with expression levels maintained until 96  hours 
before returning to the baseline. In contrast, 1,012 genes in 
cluster 2 expressed an opposite pattern that shows a transient 
up-regulation in expression at six hours during MLP infu-
sion followed by a strong decline reaching the nadir at about 
36 hours. These genes show sustained repression until about 
96 hours and then gradually return to the baseline. Genes in 
cluster 3 (261 genes) exhibited a similar pattern, but there is no 
early transient up-regulation in the first 6 hours, and the nadir 
is reached at about 18 hours. Pattern 4 (76 genes) showed a 
robust, fast down-regulation during the first 10 hours reach-
ing a new steady state without returning to the baseline. 
Pattern 5 (63  genes) characterizes an initial up-regulation 
to the peak at about 10 hours followed by a down-regulation 

to reach the nadir at 96 hours. Patterns 6 (65 genes) and 7 
(96  genes) exhibited a simple up-regulation followed by a 
down-regulation to the baseline. However, genes in pattern 6 
reach the peak faster at about 18 hours, which was maintained 
until 96 hours, whereas genes in pattern 7 reach their peak 
at about 96 hours and then simply return to the baseline (see 
Supplemental Material 1).

CS-responsive genes and functions. To identify specific 
genes and functions caused by drug dosing, we assume that 
co-expressed genes involved in pathways activated by MPL 
are more likely to be important genes and functions. Using the 
KEGG database and ArrayTrack,31 we searched for enriched 
pathways in these co-expressed clusters (P-value ,0.05 with 
at least five genes). Significant pathways that can be consid-
ered as CS-responsive functions were divided into two types: 
one takes place in a tissue-specific manner in one of the two 
tissues (Table  1) and the other consists of those commonly 
activated in both tissues (Table 2). Although there are a large 
proportion of CS-responsive metabolic and signaling pathways 
activated in liver and muscle, metabolic pathways seemingly 
dominate in liver and signaling pathways dominate in muscle. 
In addition, many CS-affected metabolic and signaling func-
tions in liver are different from those in muscle. Specifically 
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Figure 1. Critical dynamic transcriptional responses within individual tissues under chronic corticosteroid administration. Each pattern is characterized by 
the average gene expression profile of the corresponding cluster of genes in the liver dataset. The error bar shows the standard deviation of all probeset 
transcript levels at each time-point in each corresponding pattern.
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for those tissue-specific functions shown in Table 1, liver has 
five enriched metabolic pathways including arginine and pro-
line metabolism, drug metabolism—cytochrome P450, retinol 
metabolism, starch and sucrose metabolism, and valine, leu-
cine, and isoleucine degradation whereas only one signaling 
pathway (TGF-beta signaling). In contrast, muscle genes 
display seven signaling pathways (eg, adipocytokine signal-
ing, NOD-like receptor signaling, B-cell receptor signaling, 
calcium signaling, ErbB signaling, GnRH signaling, and 
phosphatidylinositol signaling) vs. five metabolic pathways  
(eg, fatty acid, glutathione, glycolysis/gluconeogenesis, pyrimi-
dine, and pyruvate metabolism). In addition, there are a number of 
other critical liver-specific (eg, ribosome, antigen processing and  
presentation, and complement and coagulations cascades) 
and muscle-specific (eg, RNA polymerase, DNA replication,  
and Fc gamma R-mediated phagocytosis) functions.

A number of pathways are significantly enriched in both 
tissues. Because these co-expressed genes reflect critical tran-
scriptional responses during MPL infusion, we hypothesize 
that common functions activated across multiple tissues are 
important CS-responsive functions. Furthermore, along with 
the concept of “gene battery,”38,39 we define gene sets associated 
with each function in each corresponding cluster as gene batter-
ies. Table 2 shows 18 common functions activated in both tissues 
during MPL infusion, which include 23 gene batteries in liver 
and 19 in muscle. These functions mainly belong to four path-
way categories including signaling pathways (insulin signaling, 
MAPK signaling, neurotrophin signaling, PPAR signaling, and 

Wnt signaling), metabolic pathways (oxidative phosphorylation, 
pentose phosphate pathway, and purine metabolism), and path-
ways relevant to cellular process (adherens junction, focal adhe-
sion, tight junction, lysosome, and cell cycle relevant processes) 
and information processing (aminoacyl-tRNA biosynthesis, 
proteasome, spliceosome, ubiquitin-mediated proteolysis, and 
ECM—receptor interaction). Additionally, it has been noted 
that expression levels of many CS-affected genes are mediated 
through the binding motifs located on their control regions, 
called GREs. We thus examined the presence of this binding 
site on the promoter of genes in each of the enriched pathways 
to assess the potential effect of GRE on common functions. 
Following the approach in our previous study,30 genes shown 
in bold are those whose promoters contain GRE motifs located 
on conserved regions identified from the corresponding sets of 
orthologous promoters (details in Supplemental Material 2). 
The average ratio between genes containing GRE motifs vs. 
genes without GRE motifs in liver gene batteries is 0.35 where 
7 out of 23 gene batteries have ratios $0.5. The average ratio 
in muscle is 0.47 where there are 10 out of 19 gene batteries 
with ratios $0.5. Also, we find that many CS-responsive genes 
in signaling cascades and information processing pathways  
(eg, MAPK signaling, Wnt signaling, aminoacyl-tRNA biosyn-
thesis, and proteasome) are more likely to be directly regulated 
by the CSs and GR complex in both tissues. Some other func-
tions, eg insulin signaling, PPAR signaling, focal adhesion, and 
cell cycle relevant processes, contain a greater number of genes 
directly regulated by the CS complex in muscle (Table 2).
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Figure 2. Critical dynamic transcriptional responses in muscle under chronic corticosteroid administration. Each pattern is characterized by the average 
gene expression profile of the corresponding cluster of genes in the muscle dataset. The error bar shows the standard deviation of all probeset transcript 
levels at each time-point in each corresponding pattern.
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Table 1. Tissue-specific regulation by functional characterization.

No. Liver-specific  
functions*

Muscle-specific  
functions*

1 Ribosome (1)$ Adipocytokine signaling  
pathway (1)

2 TGF-beta signaling  
pathway (3)

Fatty acid metabolism (1)

3 Ribosome (5) Glutathione metabolism (1)

4 Arginine and proline  
metabolism (6)

NOD-like receptor signaling  
pathway (1)

5 Antigen processing  
and presentation (7)

Pyrimidine metabolism (1)

6 Cell adhesion  
molecules (7)

RNA polymerase (1)

7 Complement and  
coagulation  
cascades (7)

B cell receptor signaling  
pathway (2)

8 Leukocyte  
transendothelial  
migration (7)

Calcium signaling pathway (2)

9 Systemic lupus  
erythematosus (7)

DNA replication (2)

10 Complement  
and coagulation  
cascades (11)

ErbB signaling pathway (2)

11 Drug metabolism— 
cytochrome P450 (11)

Fc gamma R-mediated  
phagocytosis (2)

12 Retinol metabolism (11) Gap junction (2)

13 Starch and sucrose  
metabolism (11)

Glycolysis/Gluconeogenesis (2)

14 Valine, leucine  
and isoleucine  
degradation (11)

GnRH signaling pathway (2)

15 Long-term potentiation (2)

16 Melanogenesis (2)

17 Natural killer cell mediated  
cytotoxicity (2)

18 Phosphatidylinositol signaling  
system (2)

19 Pyruvate metabolism (2)

20 Regulation of actin  
cytoskeleton (2)

Notes: *Functions are KEGG pathways that are enriched by sets of 
coexpressed genes in corresponding expression patterns. (x)$, corresponding 
expression patterns of functions.

Potential transcriptional regulators of CS-responsive 
common functions. During chronic infusion, MPL con-
centrations reach and remain at a stable steady state after 
six hours.35 The drug binds to cytosolic GRs and then rap-
idly translocates into the nucleus to alter the expression of 
target-genes. As GRs are greatly diminished in response to 
CSs,22,23,27,28 mRNA levels of CS target-genes should quickly 
return to the baseline. However, as observed in Table 2 many 
gene data sets exhibit a long-term response before returning 
to baseline or even reach a new steady state without return-
ing. In addition to a number of possibilities (eg, multiple 

GR isoforms, multiple GREs with different affinities to the 
drug—receptor complex, multiple receptors that can mediate 
the effect of CSs),35,40 we hypothesize that these effects can be 
caused by the regulation of secondary bio-signals where TFs 
are the most likely candidates. After activation by CSs, they in 
turn further modulate the expression of their target-genes as a 
continuous cascade of events that were initiated by the drug.

Consequently, with the hypothesis that common functions 
activated across multiple tissues are more likely to be important 
as CS-responsive, the gene batteries selected in Table 2 were 
further analyzed to predict putative transcriptional regulators 
that are potential secondary bio-signals relevant to the regula-
tion of transcriptional responses. For 18 common functions 
expressed across multiple patterns, we found 23 critical gene 
batteries in liver responses and 19 in muscle responses. Using 
the context-specific CRM search technique, a set of TFs asso-
ciated with TFBSs in CRMs that are statistically significantly 
present on the corresponding promoter set was extracted for 
each gene battery (see Materials and Methods). Frequent TFs 
present in more than 20% of all gene batteries in each tis-
sue are shown in bold (Tables 3 and 4). Specifically, we have 
22 frequent TFs relevant to the regulation of transcriptional 
responses in liver and 20 in muscle. Among them, 17 relevant 
TFs are common including CLOX, CREB, CTCF, E2FF, 
EGRF, ETSF, FKHD, HOMF, HOXF, NKXH, NR2F, 
OCT1, RXRF, SORY, SP1F, STAT, and ZBPF. Almost all 
TF families consist of TF members that are recognized as dif-
ferentially expressed genes in one or both tissues (see Supple-
mental Material 2). This finding highlights the possibility that 
secondary bio-signals are involved in the regulatory complexi-
ties of expression changes for CS-affected genes.

Putative functional regulatory networks. As biologi-
cal processes do not happen in isolation, we defined a hypo-
thetical quantity, called the “regulatory closeness,” which 
putatively reflects the similarity of transcriptional regulatory 
mechanisms between two gene batteries to characterize the 
relationship among expression, function, and transcriptional 
regulation (see Materials and Methods). We graphed these 
relationships in a so-called functional regulatory network with 
nodes representing gene batteries and edges high transcrip-
tional regulatory similarities (RC $0.8 in this case). Figure 3 
exhibits corresponding functional regulatory networks in 
liver (top) and in muscle (bottom). Gene batteries having no 
relationship of high RC with any other gene battery are not 
displayed in the graph. The edges present on both graphs are 
displayed in “red” color. As a result, we have 19 gene batteries 
with 25 edges for the functional regulatory network in liver 
and 19 gene batteries with 38 edges in muscle. The networks 
show that gene batteries with similar expression patterns are 
better connected to each other than batteries with different 
expression patterns. This is the main reason why muscle that 
has the same number of gene batteries as liver contains more 
connections. Moreover, under the same condition and for the 
same function, involved genes can exhibit different expression 
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Table 2. Detailed information of selected gene batteries in liver and muscle.

No. Functions Liver Muscle

Patterns Genes Patterns Genes

1 Adherens junction 7 actn1, ctnna1, iqgap1,  
ptprm, rac2

2 actn3, ctnnb1, fyn, iqgap1, loc679869,  
met, ptprf, ptprm, pvrl2, rac1

2 Aminoacyl-tRNA  
biosynthesis

5 aars, eprs, farsa, farsb,  
mars2, tars, wars, yars

1 cars, gars, kars, lars, mars, nars,  
qars, sars, tars

3 ECM-receptor interaction 7 cd47, col1a2, col3a1,  
lamc1, reln

2 chad, col1a1, col1a2, col3a1, col4a1,  
col5a1, col5a2, col5a3, col6a1,  
col6a2, fn1, itgb1, lamb1, lamc1, tnc

4 Focal adhesion 7 actn1, ccnd1, col1a2,  
col3a1, igf1, lamc1,  
rac2, rap1b, reln

2 actn3, cav3, chad, col1a1, col1a2,  
col3a1, col4a1, col5a1, col5a2,  
col5a3, col6a1, col6a2, ctnnb1,  
egf, fn1, fyn, hras, itgb1, lamb1,  
lamc1, met, mylpf, pak1, pdgfa,  
ppp1r12a, prkcb, rac1, tnc

3 grb2, igf1, map2k1, ik3cd, vwf

5 Insulin signaling pathway 6 eif4ebp1, fasn, fbp1,  
mtor, ppp1r3b, ppp1r3c

2 calm3, fbp2, flot1, flot2, hras, phka1,  
phkg1, prkaa2, prkab2, prkar1a,  
prkci, ptprf, rhoq,sh2b2

6 Lysosome 11 acp2, ctsh, dnase2b,  
fuca1, glb1, hexa, lamp2

1 acp2, ap1 m1, ap3b1, ap3d1,  
atp6v0a1, atp6v0d1, cln5, cltb,  
ctsf, ctsl1, gaa, gga1, lgmn

7 MAPK signaling pathway 3 cdc42, gadd45a, il1r,  
kras, map2k1ip1, mapk14,  
max, pla2 g12a, srf, tp53

2 cacna2d1, cacng1, dusp14, dusp6,  
egf, evi1, hras, map2k6, pak1, pdgfa,  
ppp3ca, ppp3cb, ppp3r1, prkcb,  
rac1, rasa1, srf, tgfb2

8 Neurotrophin signaling  
pathway

5 akt1, arhgdia, bad, rac1,  
tp53, ywhae, ywhag,  
ywhah, ywhaz

2 calm3, camk2a, camk2d, camk2 g,  
hras, maged1, pdk1, rac1, sh2b2,  
ywhaq, ywhaz

9 Cell cycle relevant- 
processes

5 ppp2r1a, ppp2r5a, rbx1,  
ywhae, ywhag, ywhah,  
ywhaz

2 anapc1, calm3, camk2a, camk2d,  
camk2 g, ccnb2, cdc2, espl1, itpr1,  
ppp2r5a, ppp2r5c, ppp3ca, ppp3cb,  
ppp3r1, slk, ywhaq, ywhaz

6 atp5e, atp5l, cox6a1,  
cox8a, ndufa1, ndufb6,  
ndufs5, ndufs6, ndufv2,  
ndufv3, sdhd, uqcr, uqcrq

10 Oxidative phosphorylation 11 atp5a1, atp5c1, atp5i,  
atp5o, cox6c, cox7a2,  
cox7b, ndufa11, ndufa2,  
ndufa4, ndufa6

5 atp5 j, cox5a, cox7a2, ndufb2, uqcrh

8 atp5f1, atp5h, cox4i1,  
cox5b, sdhc, ndufa3,  
ndufb4, ndufb7, ndufb9 

11 Pentose phosphate pathway 6 aldob, fbp1, gpi, pgls, pgm1 2 fbp2, g6pd, gpi, pfkp, pgm1

12 PPAR signaling pathway 12 acaa1, acox2, acsl1, apoa1,  
scp2

1 acadl, acox1, acsl4, cpt1b, cpt2,  
ehhadh, nr1h3, slc27a1

13 Proteasome 5 psma3, psma5, psmb1,  
psmb2, psmc4, psmd13,  
psmd3, psmd4, psmd8

1 psma1, psma2, psma3, psma4, 
psma5,  
psma7, psmb2, psmb3, psmb4, 
psmb7,  
psmc1, psmc2, psmc4, psmc5,  
psmd11, psmd13, psmd1, psmd3,  
psmd4, psmd6, psmd7, psmd8

14 Purine metabolism 5 adsl, ak2, gart, guk1,  
nt5c3, pole4, polr3d, prps2

1 adcy2, ampd3, impdh2, pde2a, pde4b,  
pold4, polr1a, polr1b, polr1c, polr1e,  
polr2e, polr2f

15 Spliceosome 3 bat1, hnrnpa1, hnrnpk,  
lsm5, pcbp1, magoh,  
nhp2l1, plrg, prpf19, 
rbm17, rbm8, sf3b2,  
sf3b4, sfrs1, snrpb

1 bud31, cherp, cwc15, hnrnpu, ncbp1,  
pcbp1, prpf3, prpf6, sart1, thoc1,  
usp39, wbp11

(Continued)
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in which these clustered genes are involved suggests that 
each cluster is enriched with specific biological functions. 
For example, most of the genes from cluster 6 are present 
in pathways involved in performing or regulating energy 
metabolism (oxidative phosphorylation, pentose phosphate 
pathway, and starch and sucrose metabolism). Similarly, 
genes from cluster 7 are primarily involved in pathways regu-
lating immune response and inflammation (complement and 
coagulation cascades, leukocyte transendothelial migration, 
antigen processing and presentation) or associated processes 
(cell adhesion, ECM—receptor interaction, focal adhesion). 
It is interesting to see that the expression of genes in cluster 
6 is up-regulated over time with continuous MPL infusion 
reaching a plateau. In contrast, expression of genes in clus-
ter 7 is continuously down-regulated, ultimately reaching a 
plateau. These observations go well with the fact that CSs 
repress inflammation and immune response cascades that 
lead to their therapeutic applications while steroid effects on 
metabolic processes lead to their adverse effects. The CSs, 
being potent anti-inflammatory agents, not only repress 
inflammatory signaling but also affect immune cell traffick-
ing. This is confirmed by the continuous down-regulation of 
genes involved in leukocyte migration and associated pro-
cesses including cell adhesion. Another interesting observa-
tion is the development of tolerance, which is a commonly 
observed phenomenon in chronic CS treatment because of 
the down-regulation in the expression of GRs that mediate 
their genomic effects. For example, in liver gene expression, 
clusters 1, 2, 3, 4, and 5  show clear tolerance, which may 
occur because of the down-regulation in receptor expression 
following CS dosing.

Table 2. (Continued)

No. Functions Liver Muscle

Patterns Genes Patterns Genes

5 dhx15, eftud2, hnrnpc,  
lsm7, lsm8, prpf8, smndc1,  
snrpe

16 Tight junction 3 cdc42, kras, ppp2ca,  
ppp2cb, spna2, vapa

2 actn3, amotl1, cldn5, ctnnb1, cttn,  
epb4.1l2, exoc4, f11r, hras, myh3,  
mylpf, prkcb, prkci

7 actn1, amotl1, cldn3,  
ctnna1, exoc3, ocln, rras2

17 Ubiquitin mediated  
proteolysis

3 prpf19, uba2, ube2d3,  
ube2g2, ube2 j2, ube2n,  
ube2 s, vhl

1 anapc7, birc3, herc4, keap1, klhl9,  
pias4, ube2d3, ube2 g1, ube2 j1,  
ube2l3, ube4a

5 cdc34, rbx1, rchy1, syvn1,  
ube2d3, ube2e3, ube2f,  
ube2 j1

18 Wnt signaling pathway 3 ppp2ca, ppp2cb, psen1,  
ruvbl1, senp2, smad4, tp53

2 camk2a, camk2d, camk2 g, ctnnb1,  
ctnnbip1, daam1, loc679869,  
ppp2r5a, ppp2r5c, ppp3ca, ppp3cb,  
ppp3r1, prkcb, rac1

Notes: +genes shown in bold type are those whose promoters contain GRE (Glucocorticoid Receptor Element) binding sites. Details are listed in supplemental 
material 2.

patterns in liver than muscle. Also, even in the same tissue, 
different sets of genes with the same function can have dif-
ferent expression patterns (eg, gene battery “tight junction” in 
liver). Additionally, gene expression patterns in liver are more 
diverse than those in muscle, which may result in the potential 
capability of sharing common regulatory mechanisms among 
gene batteries, which is higher in muscle. These results pro-
vide an overview landscape of tissue-specific expression and 
regulation under chronic MPL infusion through critically 
identified transcriptional responses and CS-affected functions 
as well as their transcriptional regulatory relationships.

Discussion
Although CSs affect gene expression in multiple tissues, the 
array of genes that are regulated by these steroids is diverse, 
highly tissue specific, and depends on their functions in the 
tissues. Liver is an organ that plays a critical role in perform-
ing and regulating important physiological processes such 
as energy metabolism, detoxification, inflammation, and 
immune responses against pathogens. Muscle plays a key role 
in maintaining systemic energy homeostasis and accounts 
for 80% of insulin-directed glucose disposal. In addition, 
both liver and muscle are important sites for immune reac-
tions caused by different immune cell types. Therefore, we 
explored tissue-specific CS-responsive gene expression pro-
files, their functional significance, and the effect of secondary 
bio-signals in the form of TFs to gain better insight into CS 
pharmacogenomics.

In this study, 2,285 differentially expressed genes in 
liver during chronic MPL infusion were parsed into 12 dis-
tinct temporal clusters. Functional analysis of the pathways 
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Table 3. Functions and transcriptional regulators of gene batteries in liver.

No. Functions Patterns Transcription factors*

1 Adherens junction 7 ZBPF, ETSF, SP1F, EBOX, EGRF, NKXH, ZF5F, GATA, IRXF, E2FF, EVI1,  
HAND, STAF, AP2F, PAX5

2 Aminoacyl-tRNA biosynthesis 5 MYBL, P53F, GATA, NKXH, YY1F, CAAT, E2FF, EBOX, ETSF, HESF, HNF1,  
HOMF, PARF, SP1F

3 ECM-receptor interaction 7 CTCF, MYOD, ZF5F, E2FF, CDEF, AHRR, HESF, EGRF, NRF1, PAX5, GLIF,  
MAZF, EKLF, SP1F, ETSF

4 Focal adhesion 7 NKXH, ETSF, RUSH, TBPF, SORY, PARF, HOXC, ZBPF, MYT1, SIXF, MZF1,  
CLOX, CREB, DMRT, HOXF

5 Insulin signaling pathway 6 CAAT, CLOX, EBOX, EVI1, NEUR, NR2F, RXRF

6 Lysosome 11 FKHD, SNAP, ZBPF, CLOX, HEAT, HOMF, PAX3, OCT1, BRNF, E2FF, MYT1,  
PRDF

7 MAPK signaling pathway 3 HOMF, LHXF, HOXF, TBPF, FKHD, HESF, MYT1, AP4R, NKXH, E2FF, ETSF,  
RXRF, SORY, STAT, ZBPF

8 Neurotrophin signaling pathway 5 CREB, EGRF, ETSF, HOXF, ZBPF, CTCF

9 Cell cycle relevant-processes 5 NRF1, EGRF, EKLF, E2FF, HESF, CREB, NR2F, SP1F, GLIF, MAZF, MYBL,  
SRFF, CTCF, PAX5, RXRF

10 Oxidative phosphorylation 6 ETSF, NKXH, OCT1, RUSH, SRFF

10a Oxidative phosphorylation 11 IRFF, ABDB, FKHD, HOXF, CLOX, CREB, CTCF, E2FF, LHXF, NKXH, NR2F,  
SORY

10b Oxidative phosphorylation 8 ETSF, NFKB, SP1F, STAT, ZBPF

11 Pentose phosphate pathway 6 FKHD, BRNF, GREF, CLOX, RXRF, CAAT, HOXF, SIXF, ZFHX, BRN5, E2FF,  
NR2F, SP1F

12 PPAR signaling pathway 12 PARF, NFKB, HOXF, P53F, CREB, ETSF, LEFF, NR2F, GKLF, STAT, SP1F,  
CEBP, NKXH, CLOX, MOKF

13 Proteasome 5 CAAT, ETSF, CLOX, MYBL, NFAT, STAT

14 Purine metabolism 5 ETSF, EKLF, CAAT, SP1F, NFKB, NRSF, SORY, BRNF, CART, CLOX, GREF

15 Spliceosome 3 HOXF, ABDB, ETSF, CDXF, EVI1, GATA, HOMF, SORY

15a Spliceosome 5 HOMF, SORY, BRNF, HOXF, OCT1, PDX1, CLOX, FKHD, HBOX, MYBL,  
NKXH, NR2F

16 Tight junction 3 NRF1, HESF, SP1F, NKXH, LEFF, MYT1, EGRF, CAAT, EKLF, ETSF, FKHD,  
GATA

16a Tight junction 7 ZFHX, ETSF, EBOX, STAT, OCT1, CREB, EGRF, HNF1, NRSF, PARF, RXRF,  
ZF5F, ZFTR

17 Ubiquitin mediated proteolysis 3 ABDB, OCT1, HOXH, NFAT, BRNF, CREB, SP1F, STAT, DLXF, CLOX, E2FF,  
HAND, HNF6, HOMF, XBBF

17a Ubiquitin mediated proteolysis 5 EGRF, ETSF, ZBPF, HESF, NRF1, E2FF, PAX9, SP1F, DMRT, CTCF, HNF1,  
EBOX, FKHD, MAZF, ZF5F

18 Wnt signaling pathway 3 NKXH, AP4R, HOMF, MYT1, SORY, DLXF, TBPF, HOXF, E2FF, OCT1, ATBF,  
LHXF, BRNF, GKLF, FKHD

Notes: *TFs associated with overrepresented cis-regulatory modules. if the number of associated TFs is $15, only the first 15 most frequently-associated TFs in 
statistical significant CRMs are reported. TFs shown in bold type are those present commonly more than 20% across all gene batteries.

In muscle responses during CS infusion, 2,291 differentially 
expressed genes were parsed into seven distinct temporal 
clusters. Similar to liver, genes present in pathways regulat-
ing immune response (B-cell receptor signaling pathway, Fc 
gamma R-mediated phagocytosis, chemokine signaling path-
way) and related processes (ECM—receptor interaction, focal 
adhesion) are down-regulated in muscle during MPL infu-
sion (clusters 2 and 3), although the specific immune regulat-
ing pathways are different between these two tissues. In the 
case of energy metabolism in muscle, genes involved in oxi-
dative phosphorylation show a robust up-regulation followed 

by the development of tolerance, genes involved in fatty acid 
metabolism show a transient down-regulation followed by a 
robust up-regulation (cluster 1), and genes involved in gly-
colysis, pyruvate metabolism, and pentose phosphate path-
way show exactly the opposite expression profile with initial 
transient up-regulation followed by robust down-regulation 
(cluster 2). This observation is consistent with the fact that 
glucocorticoids direct the muscle to use free fatty acids as the 
primary energy source, producing NADPH which is used for 
the production of ATPs through oxidative phosphorylation. 
Furthermore, the observation that genes involved in glycolysis 
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and pyruvate metabolism are down-regulated confirms that 
GC decrease the dependence of muscle on glucose, which 
helps in the maintenance of proper plasma glucose concen-
trations. It is interesting to see that, even though the genes 
involved in oxidative phosphorylation are up-regulated both 
in liver and muscle at some point in time after MPL dosing, 
the expression profiles are very different between the two tis-
sues with the liver showing three different sets of expression 
patterns and muscle showing the development of tolerance by 
10 hours after the start of MPL infusion. Furthermore, expres-
sion of genes involved in ubiquitin-mediated proteolysis falls 
under cluster 1, where the genes show a robust up-regulation 
in muscle suggesting that the proteasomal machinery is acti-
vated by MPL. This is one of the important causes of clini-
cal side-effects of CS, which is muscle wasting caused by the 
breakdown of muscle proteins to provide the amino acid car-
bon for gluconeogenesis in liver.

Apart from the above-mentioned processes that are 
affected by CSs in both liver and muscle, CSs have tissue-
specific effects on certain processes and pathways. For exam-
ple, they cause up-regulation in the expression of ribosomal 

genes in liver, but have no effects on muscle ribosomal gene 
expression. In liver, clusters 1 and 5 consist of ribosomal genes 
that show an up-regulation of expression with MPL infusion 
with the peak expression occurring at 18 and 10 hours after 
the start of drug infusion and the development of tolerance 
thereafter. CSs are known to cause hypertrophy in liver, and 
up-regulation of expression ribosomal genes is a part of the 
process of increasing the cell mass, which is not observed 
in muscle. Similarly, genes involved in the metabolism of 
drugs and retinol show initial down-regulation followed by 
a rebound in expression in liver after the drug infusion, while 
the expression of these genes is unaffected in muscle. Xeno-
biotic and retinol metabolism primarily occur in liver, and the 
muscle has no role in these processes; hence, the expression of 
these genes is not affected in muscle. However, the expression 
of genes present in pathways involved in adipocytokine signal-
ing, calcium signaling, ErbB signaling, GnRH signaling, and 
phosphatidylinositol signaling are all affected by CS dosing in 
muscle, but the drug has no effects on these genes in liver, at 
least in part because of the higher relevance for these signaling 
pathways in muscle compared to liver.

Table 4. Functions and transcriptional regulators of gene batteries in muscle.

No. Functions Patterns Transcription factors*

1 Adherens junction 2 E2FF, NR2F, SP1F, RXRF, NKXH, HOXF, ETSF, EVI1, BRNF, FKHD,  
MYBL, SORY, OCT1, CTCF, EGRF

2 Aminoacyl-tRNA biosynthesis 1 HOXF, ETSF, NKX6, OCT1, CREB, RUSH, STAT, HOMF, P53F

3 ECM-receptor interaction 2 ETSF, RXRF, SP1F, NR2F, CTCF, E2FF, GKLF, GLIF, NEUR, SORY, SRFF

4 Focal adhesion 2 EGRF, SP1F, ETSF, RXRF, ZBPF, CTCF

4a Focal adhesion 3 NR2F, EGRF, OCT1, ETSF, MYOD, NOLF, SORY, RXRF, GLIF, MZF1, EKLF,  
EREF, EVI1, HOMF, NKXH

5 Insulin signaling pathway 2 EGRF, ZBPF, AHRR, E2FF, EBOX, MAZF, SP1F, CTCF, GLIF, HESF, HOXF,  
SNAP

6 Lysosome 1 EBOX, ETSF, EGRF, GRHL, ABDB, AHRR, CREB, CTCF, HOMF, MAZF, NR2F

7 MAPK signaling pathway 2 E2FF, NKXH, EGRF, OCT1, HOXF, CTCF, FKHD, HOMF, NKX6, PAX6, ZBPF

8 Neurotrophin signaling pathway 2 ZBPF, HESF, SP1F, PLAG, EGRF, ETSF, E2FF, EKLF, MAZF, GLIF

9 Cell cycle relevant-processes 2 HOMF, HOXF, FKHD, ETSF, NKXH, CREB, LHXF, E2FF, ZF5F, HEAT, STAT,  
EKLF, CTCF, CLOX, ZBPF

10 Oxidative phosphorylation 5 PAX5, BRNF, NR2F, ETSF, HNF1, FKHD, IRFF, AP1F, SORY, HNF6, HOXF,  
FAST, CREB, MYBL, OVOL

11 Pentose phosphate pathway 2 NR2F, TBPF, CLOX, GATA, HOXF, PAX2, TALE

12 PPAR signaling pathway 1 CLOX, ETSF, EVI1, GATA, NKXH, NR2F, STAT, ZBPF

13 Proteasome 1 HOXF, ETSF, HOMF, E2FF, STAT, NKXH, CLOX, EVI1, CAAT

14 Purine metabolism 1 RXRF, ETSF, HOXF, STAT, NKXH, PAX6, PAX8, SORY, TBPF, EREF, AP1R,  
CAAT, CREB, FKHD, NR2F

15 Spliceosome 1 CREB, ETSF, HEAT, EVI1, E2FF, HNF6, HOXF, ABDB, CLOX, DMRT, IRFF,  
MYT1, NFKB

16 Tight junction 2 PAX5, OCT1, HOXC, SP1F, NR2F, TBPF, NKXH

17 Ubiquitin mediated proteolysis 1 HOXF, BRNF, FKHD, TBPF, NKXH, LHXF, SORY, HOMF, NKX6, PARF, OCT1,  
CDXF, GATA, YY1F, ETSF

18 Wnt signaling pathway 2 ETSF, CREB, HOMF, HOXF, EGRF, NKXH

Notes: *TFs associated with overrepresented cis-regulatory modules. If the number of associated TFs is $15, only the first 15 most frequently-associated TFs in 
statistical significant CRMs are reported. TFs shown in bold type are those present commonly more than 20% across all gene batteries.
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Figure 3. Tissue-specific regulation represented by putative functional regulatory networks (top: liver; bottom: muscle). Each node represents a gene 
battery which is a set of coexpressed genes sharing a common function (pathway). Edges characterize the regulatory closeness between two gene 
batteries if the ratio of sharing common transcriptional regulators is greater than 0.8; ‘red’ edges express high regulatory closeness that occurs in both 
liver and muscle. Although these gene batteries are involved in similar functions under chronic corticosteroid administration, their expression patterns and 
transcriptional regulatory relationships are specific in liver vs. in muscle.

Although the plasma concentrations of MPL attained 
steady state and remained almost constant from six hours after 
the start of the infusion, the GR mRNA expression and the 
receptor density are diminished because of the negative feedback 
regulation. This will cause a drastic reduction in the activated 

drug receptor complex, which is the primary driving force for 
the changes in gene expression. Hence, if the gene expres-
sion changes in these animals are caused only by the activated 
drug–receptor complex in the nucleus, then the expression 
profile for all the genes would go to a steady-state expression 
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close to the baseline because of the marked tolerance caused by 
the drastic reduction in receptor density. However, from the 
expression profiles in both tissues, there are many genes that 
show long-term responses. It is well known that CS can regu-
late the expression of many TFs, and hence, we hypothesized 
that many of the long-term responses in the gene expression 
profiles are caused by other TFs that are affected and differen-
tially expressed by CS. As shown in Tables 3 and 4, we were 
able to computationally identify the important TFs that could 
be involved in CS-responsive transcriptional profiles. Further-
more, from this analysis we could see that CSs regulate many 
of these TFs even at genomic levels (see Supplemental Mate-
rial 2). For example, important regulators of inflammation 
and immune response (eg, nuclear factor kappa-B (NF-κB), 
interferon regulatory factor (IRF)) are found to be involved 
in pathogenesis of inflammatory disorders when CSs are used 
as therapeutic drugs. In this analysis, both are identified as 
potential TFs that are relevant to the CS-responsive transcrip-
tion profiles, and their members are also down-regulated at 
the genomic level by CS in both liver and muscle. Similarly, 
many other TFs including STAT, CREB, and RXRF, which 
play important roles in energy metabolism and many signal-
ing pathways, are also identified as potential TFs with distinct 
expression profiles during CS dosing. These results suggest 
that many TFs act as secondary bio-signals in controlling CS-
responsive transcriptional behaviors, which in turn regulate 
the processes that are involved in both the therapeutic effects 
(caused by anti-inflammatory effects and immune suppression) 
and adverse effects (impact on metabolic processes).

Although similar pathways are affected by CS in both 
tissues, the genes and their expression patterns can be very 
different depending on significance of that pathway in 
each tissue. For example, as shown in Figure 4, the insulin 

signaling pathway is affected by MPL in both liver and mus-
cle, but the individual genes that are CS-responsive and the 
expression patterns are very different between the two tissues. 
Among these, there is a tissue-specific coherent set of genes 
that are significantly coexpressed and regulate a certain set 
of different/similar downstream functions dependent on the 
tissue. Insulin signaling plays an important role in regulat-
ing many aspects of energy metabolism (protein synthesis and 
lipid and carbohydrate metabolism) and cell cycle processes 
(proliferation, differentiation, and apoptosis). Components of 
insulin signaling pathway that are involved in protein synthe-
sis are responsive to CS only in liver, whereas genes involved 
in anti-lipolysis, proliferation, and differentiation are respon-
sive to CS only in muscle. However, genes involved in gly-
cogenesis, glycolysis, and lipogenesis are CS-responsive in 
both liver and muscle, although the expression patterns are 
very different between the two tissues. The mTOR and EIF-
4EBP1 genes are continuously up-regulated only in liver with 
MPL infusion. They play an important role in activating liver 
protein synthesis, which is required to support the increase in 
liver mass caused by CS. As this phenomenon is not observed 
in muscle, these proteins may not be relevant and hence are 
not CS-responsive. Similarly, muscle is the major consumer 
of lipids as the energy source with high CS concentrations, 
and hence PRKAR1A, the gene involved in anti-lipolysis, is 
down-regulated only in muscle and is not affected in liver. It is 
also important to remember that TFs in the form of secondary 
bio-signals play an important role in regulating tissue-specific 
expression. As shown in Figure 4, all TFs involved in insulin 
signaling except for EBOX are different between the two tis-
sues and hence result in regulating different genes involved in 
the same pathway and also cause differences in the expression 
profiles. This observation reinforces the tissue-specificity of 

Figure 4. Tissue-specific expression within individual functions—a case of insulin signaling pathway. The left subfigure shows an abstract of the insulin 
signaling pathway where expressed genes in liver and muscle and their corresponding downstream affected functions are included. The right panel 
displays the tissue-specific regulation of genes within the same functional category; putative TFs are those significantly overrepresented on the promoters 
of corresponding genes.
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transcriptional responses during MPL infusion (see more in 
Supplemental Material 3).
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