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Introduction
Biological network evolution is the physical, genetic, or 
behavioral change in populations of biological networks over 
time. Natural selection is a process that causes biological net-
works to adapt to their environments. Network robustness 
is important in ensuring the stability of phenotypic traits of 
biological networks that are constantly exposed to genetic 
variations and non-genetic environmental disturbances.  
A better understanding of network robustness is paramount for 
understanding biological network evolution. Network robust-
ness can be discussed sensibly only if two cardinal questions 

have been resolved: what is the phenotypic trait of interest in 
network evolution, and what is the network perturbation of 
interest?1–4 There are three principal kinds of network pertur-
bations to which a biological network needs to be robust: sto-
chastic intrinsic molecular noise, environmental change and 
genetic variation.5–7 Stochastic intrinsic molecular noise refers 
to the stochastic fluctuations that occur in any biological net-
work, for example, in the concentration of a biological mole-
cule. Environmental change is the variation in the external 
environment, for example, a change in temperature, salinity, 
or nutrient availability. Genetic variation is genetic change, 
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either through de novo mutation or through recombination in 
the evolutionary process.1 The ability to buffer genetic varia-
tion is called genetic robustness, the noise filtering ability to 
attenuate the effect of intrinsic molecular noise is called noise 
robustness, and the ability to resist environmental change is 
called environmental robustness. The ability to maintain a 
desired phenotypic trait is called phenotypic robustness. In 
order to maintain the desired phenotypic trait, a biological net-
work needs an evolutionary strategy with high network robust-
ness to confer genetic robustness (buffering genetic variation),  
noise robustness (filtering stochastic intrinsic molecular noise), 
and environmental robustness environmental change in the 
evolutionary process.

Network evolvability is defined as the ability to deviate 
from a phenotypic trait to adapt to an environmental change. 
The network evolvability of a biological network appears to 
be the reverse of network robustness. If phenotypic traits are 
robust against genetic variations and external disturbances, 
a network population may be expected to have difficulty 
adapting to an environmental change, as several studies have 
suggested.2,3,10 However, other studies contend that robust 
networks are more adaptable.4–7 The relationship between 
network robustness and network evolvability is complex, 
because robust network populations harbor a large diversity 
of neutral genotypes that may be important in adaptation. 
The study of the evolvability and robustness of biological 
networks is still in its infancy. In fact, network robustness 
allows changes in the structure and components of biological 
networks, due to genetic variations, while still allowing the 
desired phenotypic trait to be maintained. Network evolv-
ability allows some environmental changes to influence a 
biological network, so that a new phenotypic trait of the bio-
logical network may evolve by natural selection, to adapt to 
the new environment.8–11

In the evolutionary process, a population of evolving 
biological networks can be represented by a nonlinear sto-
chastic system with heritable random genetic variations and 
non-heritable random environmental disturbances. A pheno-
typic trait of a biological network can be represented by an 
equilibrium point of the nonlinear stochastic system in the 
fitness landscape (see Fig. 1). There are many variations of 
phenotypes (population) around this equilibrium point, due 
to intrinsic random genetic variations and random environ-
mental disturbances.8–11 When a phenotypic trait is perturbed 
so much that it can transit from the domain of its equilib-
rium point into the domains of other equilibrium points,  
a new phenotypic trait is generated and presented. A heri-
table genetic variation that does not directly help a biological 
network to evolve a new phenotypic trait is neutral. In evolu-
tion, a robust biological network can harbor a large number of 
neutral genetic variations, before a phenotypic trait is pushed 
from one equilibrium point to another one. The capacity to 
harbor these neutral genetic variations is a measure of the 
genetic robustness of the biological network in evolution. If 

the amount of stochastic neutral genetic variations is larger 
than the genetic robustness of a biological network, so that 
a phenotypic trait can transit from one equilibrium point to 
another, a new phenotype is presented to start another period 
of network evolution. Although it has been shown that many 
features of biological networks can arise by non-adaptive 
processes,12 this study will offer a different possible under-
standing of biological network adaptive processes by natural 
selection in evolution.

In this study, the network evolvability in response to 
stochastic environmental changes and genetic variations of a 
nonlinear stochastic network can be formulated for the first 
time as a stochastic game problem, because the environmental 
changes in the evolutionary process are unpredictable. In this 
situation, the minimization of the worst-case phenotypic 
deviation for all possible environmental changes is there-
fore considered as the phenotypic robustness strategy used 
by a biological network to resist the effect of environmental 
changes and to maintain its phenotype in the evolutionary 
process. Therefore, both the network evolvability and the 
phenotypic robustness of a nonlinear stochastic biological 
network in the evolutionary process can be discussed from 
the nonlinear stochastic game perspective. In other words, 
the stochastic biological network wants to minimize network 
evolvability (or maximize network robustness) while the sto-
chastic environmental disturbances try to maximize the net-
work evolvability (or minimize the network robustness). The 
interplay between genetic robustness, environmental robust-
ness, and network robustness in the phenotypic robustness of 
an evolutionary biological network13–15 can also be investi-
gated from the point of view of a stochastic Nash game. In this 
paper, using the evolutionary game strategy, we find that some 
genetic variations in the evolutionary process are selected to 
construct new negative feedback loops to efficiently improve 
network robustness, thereby maximizing the fitness (or mini-
mizing the evolution level) of the biological network in evolu-
tion. We also find that with the evolutionary game strategy, 
a biological network has enough network robustness and that 
the stochastic evolutionary biological network becomes more 
robust near the equilibrium point. This is the so-called ‘phe-
notypic robustness criterion’ of biological networks in the 
evolutionary process. However, when random neutral genetic 
variations harbored by network robustness are accumulated 
to the extent of violating the phenotypic robustness criterion 
new material is provided for more evolutionary paths to other 
phenotypes of the gene network by random drift. In the face of 
a large environmental change, the phenotypic trait of the bio-
logical network cannot be maintained and a phenotype tran-
sition may eventually occur by a shift to another equilibrium  
point. In other words, while the evolutionary game strategy 
can improve the network robustness for the phenotype at the 
beginning, the accumulated neutral genetic variations har-
bored by improved network robustness will finally violate the 
network phenotypic robustness criterion to break down the 
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network phenotype and make a new phenotypic adaptation 
in network evolution.

Based on nonlinear stochastic game theory, the study of 
network robustness and network evolvability needs to solve a 
very difficult Hamilton-Jacobi-Isaac inequality (HJII).16 At 
present, no good way exists to efficiently solve the HJII ana-
lytically or numerically. In this study, a global linearization 
method is employed to interpolate several local linear stochas-
tic systems, at different operation points, to approximate the 
nonlinear stochastic biological network in evolution. In this 
situation, linear stochastic game techniques can be employed 
to solve the nonlinear stochastic evolutionary game problem 
of the biological network, in which the HJII is replaced by a 
set of linear matrix inequalities (LMIs). Based on the global 
linearization technique and linear system theory, the net-
work evolvability and robustness are related to the locations 
of the eigenvalues of the local linearized stochastic evolu-
tionary biological networks. If the eigenvalues are located 
in the far left-hand side of the s-complex domain, then the 
nonlinear stochastic biological network is more robust with 
the phenotypic trait (or the equilibrium point) and less adap-
tive to other equilibrium points (or other phenotypic traits) 
in the evolutionary process. On the other hand, if these 
eigenvalues are near the image axis of the s-complex domain, 
then they are more easily perturbed to the right-hand side of 
the s-complex domain. In this situation, the phenotypic trait 
of the nonlinear stochastic evolutionary biological network 
is less robustly stable but more adaptable to environmental 
change in the evolutionary process. In order to maintain the 
phenotype robustness of the evolutionary biological net-
work, the evolutionary game strategy can select some genetic 
variations to generate adequate negative feedback loops, so 
that the eigenvalues of the local linearized biological net-
work can be shifted to the far left-hand side of the s-complex 

domain. Obviously, the evolutionary game strategy can effi-
ciently enhance network robustness by developing adequate 
negative feedback loops to buffer neutral genetic variations 
and to resist environmental disturbance in the evolutionary 
process.

In this study, we investigate quantitative measures of 
network evolvability and network robustness from a stochas-
tic game theory point of view. The phenotype robustness 
criterion for a nonlinear stochastic evolutionary biological 
network can be measured by solving an evolutionary game 
strategy based on the LMIs of local linearized stochastic bio-
logical networks. That is, if the genetic robustness plus the 
noise robustness and environmental robustness is less than 
the network robustness in each local linearized stochastic 
network, then the phenotypic trait of the nonlinear stochastic 
biological network is robustly stable in the evolutionary pro-
cess. If not, the biological network might evolve to another 
phenotypic trait with the release of accumulated cryptic neu-
tral genetic variations and the aid of strong environmental 
changes. In this study, we first reveal the evolutionary strat-
egy for adaptive fitness of a biological network in evolution 
from a stochastic game perspective, and then we investigate 
the tradeoffs between genetic robustness and environmental 
robustness and the antagonistic properties between network 
robustness and network evolvability from a system theory 
perspective. If there exist m competitive populations and k 
environmental changes in the network evolutionary process, 
then the proposed evolutionary game strategy can be easily 
modified to the n-tuple evolutionary game problem of bio-
logical network with m players (competitive populations) and 
k environmental dynamics. Finally, an in silico example is 
given to illustrate the stochastic evolutionary game of sto-
chastic biological networks and to determine their network 
evolvability and fitness in evolution.

f(x)

ƒ(χ1e)

Other equilibrium point 1
(other phenotypic trait 1)

Other equilibrium point 2
(other phenotypic trait 2)

x

The equilibrium point by natural selection
(phenotypic trait by natural selection)

ƒ(χ2e)
ƒ(χe)

χ1e χe χ2e

figure 1. the equilibrium points of a nonlinear biological network in a phenotypic landscape. the nonlinear stochastic biological network has many local 
equilibrium points (phenotypic traits). the phenotypic landscape of three stable equilibrium points with a vertical scale illustrating the relative network 
robustness of the equilibrium points (phenotypic traits) of the nonlinear stochastic biological network in evolution, ie, the equilibrium point at xe with deeper 
and wider basin, is more robust. Here, xe is the equilibrium point (phenotypic trait) of interest by natural selection.
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The stochastic evolutionary Game of the Linear 
biological Network Under Natural selection
For simplicity of analysis, we first consider a linear biological 
network as follows

 
dx
dt

Ax t= ( ) , (1)

where the state vector x t x t x t x tn

T
( ) = ( ) ( ) ( )



1 2   

denotes the concentrations of n genes in a genetic regulatory 
network, or protein concentrations of n proteins in a protein-
protein interaction network, or the population densities of an 
ecological network with n different species, and xi(t) represents 
the number, density, or biomass of individuals of species i.  
Although we have assumed that there are n different genes, 
proteins or species, these numbers need not be fixed. In fact, 
one feature of Darwinian dynamics is that the evolutionary 
process may determine the number n of genes, proteins, or 
species as a product of the evolutionary network. In the evolu-
tionary network, the interaction matrix A n n∈ ×  among spe-
cies is denoted as
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where aij denotes the interaction from species j to species i, 
ie, A denotes the dynamic interactions between species in a 
biological network from the present generation to the next 
generation.

remark 1. (i) The linear biological network in (1) can be 
considered as a linearized system of a nonlinear biological network  
dx
dt

f x t= ( )( ) at an equilibrium point (phenotypic trait) xe of interest  

by natural selection in Figure 1, ie, A
f x

x x xe

=
∂ ( )

∂ =

. Without  

loss of generality, the origin of the nonlinear biological network is 
always shifted to the equilibrium point (phenotypic trait) xe, ie, 
xe = 0. This detail will be discussed later. (ii) The interaction matrix 
A between species may suffer from environmental disturbances due 
to climate and salinity change, and from random genetic variations 
due to heritable DNA mutation, genetic transition, and recombi-
nation in the evolutionary process.

In the evolutionary process, the biological network (1) 
suffers from both extrinsic disturbances due to environmen-
tal changes as well as intrinsic phenotypic variations due to 
heritable random genetic variations. In order to maintain the 
favorable phenotypic trait at xe = 0 by natural selection (ie, phe-
notypic trait robustness in evolution), the biological network 
needs to select some heritable genetic variations (the evolu-
tionary strategy of the biological network) to improve net-
work robustness so that intrinsic variations and environmental 

disturbances can be resisted. In this situation, the evolutionary 
biological network can be represented as follows

 

dx t
dt

A A p t t x t B tk k
k

N t( )
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1
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where the weighted Poisson point (counting) process17
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0, , (4)

denotes heritable network interaction variations due to some 
genetic variations occurring at t1, t2, …, tp; N(t) denotes a Pois-
son point (counting) process of genetic variation to be selected 
by natural selection at tk, where k = 0, 1, …, p. Amongst these 
s t A p t tk kk

N t
1 1

1( ) = −( )=

( )∑∆  are selected by natural selection to 
change the interaction matrix A, in order to improve network 
robustness to resist an environmental disturbance v(t) due to 
the surrounding change and interference from other competi-
tive populations. In addition, s t A p t tk kk

N t
2 1

2( ) = −( )=

( )∑∆  are 
due to neutral genetic variations, which have no effect on A to 
directly change a phenotypic trait, ie, s(t) = s1(t) + s2(t) in the 
evolutionary process (Fig. 2). The Poisson counting process 
N(t) is denoted by
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with mean λt and variance λt.17 The matrix A n n∈ ×  denotes 
the random phenotypic variation of the biological network 
due to the heritable genetic point variation p(t – tk); occur-
ring at t = tk; υ t m( ) ∈   denotes the effect of environmen-
tal disturbances; and B n m∈ ×  denotes the coupling matrix 
between the environmental disturbance and the biological  
network, 
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where akij = 0 if the kth genetic variation has no phenotypic 
effect on the interaction aij between species i and species j in 
the biological network; bij = 0 if the vj(t) has no effect on the 
species i.
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remark 2. (i) The weighted Poisson point process 
s t A p t t A tk kk

N t
kk

N t
( ) = −( ) = ≥

=

( )

=∑ ∑1 1
0,( ) , denotes the her-

itable network interaction variations accumulated by the biological 
network, some of which are to be selected by natural selection to 
resist environmental disturbances in evolution. Since the weighted 
Poisson point process A p t tk kk

N t −( )=

( )∑ 1
 is a random process due 

to random genetic variations, the stochastic evolutionary network 
in (3) can represent a population of biological networks over all pos-
sible Poisson random genetic variations in the evolutionary process. 
In other words, one possible Poisson genetic variation represents one 
possible biological network in the network population. (ii) The accu-
mulated phenotypic variations s(t) may lead to permanent changes 
in the phenotypic trait. (iii) v(t) denotes external disturbances due 
to environmental changes or stresses, such as temperature or salinity 
or interferences from other competitive populations. Environmen-
tal disturbance can perturb x(t) away from its phenotypic trait at 
the equilibrium point xe = 0. Since the environmental disturbance 
v(t) cannot affect the interaction matrix A of the biological network 
directly, its effect on the biological network is non-heritable. In 
order to resist the effect of the environmental disturbance, some phe-
notypic variations s t A p t tk kk

N t
1 1

1( ) = −( )=

( )∑  are to be selected 
for the biological network to change the network interaction matrix 
A by natural selection, to improve the network robustness (ie, the 
so-called evolutionary strategy of a biological network for pheno-
typic trait robustness in the evolutionary process). The remaining 
genetic variations s t A p t tk kk

N t
2 1

2( ) = −( )=

( )∑ , which have 
no direct phenotypic effect on the network interaction matrix A, 
are called neutral genetic variations, ie, s(t) = s1(t) + s2(t) and 
N(t) = N1(t) + N2(t), where the Poisson processes N1(t) and N2(t) 
have means λ1t and λ2t, respectively, and λ = λ1 + λ2 (see Fig. 2 
(b)).

Therefore, the stochastic gene network under environ-
mental disturbances and natural selection in (3) can be repre-
sented as the following Poisson point process

 

dx t
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where u t s t x t A p t t x tk kk
N t

( ) = ( ) ( ) = −( ) ( )
=

( )∑1 1
1  denotes 

the evolutionary strategy of the biological network to select 
adequate phenotypic variations by natural selection to 
modify the network interaction matrix A, thus improving 
network robustness to tolerate the neutral genetic variations 
and resist the environmental disturbance, maintaining the 
phenotypic trait in the evolutionary process. The main evo-
lutionary problem of the stochastic biological network in (7) 
for natural selection is how to determine the evolutionary 
strategy u t s t x t A p t t x tk kk

N t
( ) = ( ) ( ) = −( ) ( )

=

( )∑1 1
1 , ie, 

how to select some adequate genetic variations to enhance 
system matrix A to improve the network robustness. This 
enables the biological network to tolerate the accumu-
lated neutral genetic variations s t A p t tk kk

N t
2 1

2( ) = −( )=

( )∑  
and efficiently resist the environmental disturbance v(t) 
to achieve phenotypic trait robustness in the evolutionary 
process. Since environmental disturbances are stochastic 
and unpredictable, the phenotypic robustness strategy u(t) 
of the biological network to resist the environmental dis-
turbances is based on the worst-case effect of all possible 
environmental disturbances. Let us denote the set of all 
possible bounded environmental disturbances as L2[0,tp], 
ie, v(t) ∈ L2[0,tp] if ( ) ( )

0
υ υ < ∞∫ pt Tt t dt , where tp denotes 

the present time, ie, L2 [0, tp] denotes the set of all possible 
bounded environmental disturbances to the present time. 
(Unbounded environmental disturbances are not considered 
here because they will lead to the extinction of all biological 
networks.)
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figure 2. (a) the Poisson counting process of genetic variations occurring at tk in the evolutionary process, where tp denotes the present time. (B) the 
Poisson counting process N(t) of genetic variations divided into two parts, (top) genetic variations N1(t) selected by natural selection, and (bottom) neutral 
genetic variations N2(t) in the evolutionary process.

http://www.la-press.com


Chen and Ho

22 Evolutionary Bioinformatics 2014:10

remark 3. (i) The stochastic system in (7) can be considered 
a Darwinian dynamic to describe a linear dynamic biological net-
work underlying natural selection. Darwinian dynamics are sys-
tems of equations that satisfy Darwin’s conditions of variability, 
heritability, and the strategy to survive.18 (ii) If the stochastic bio-
logical network in (7) is robustly stable at xe = 0 (if xe ≠ 0, then 
the origin of the linear dynamic network in (7) must be shifted to 
xe for simplicity of analysis, ie, the phenotypic trait survives at 
xe = 0), then the evolutionary strategy u(t) = s1(t)x(t) is a robust 
evolutionary strategy by natural selection. The Poisson genetic 
variations A p t t x tk kk

N t −( ) ( )
=

( )∑ 1
2  are not selected by natural 

selection, and are called neutral genetic variations without direct 
phenotypic effect on the system matrix A of the genetic network. 
These variations are further accumulated and harbored in the 
deeper basin around the phenotypic trait xe of the robust biological 
network (see Fig. 1).

Let us denote the phenotypic deviation around xe as 
x t x t xe( ) = ( ) − . Then the evolution level of the stochastic 
biological network due to the effect of all possible bounded 
environmental disturbances in the evolutionary process is 
defined as
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where E(⋅) denotes the expectation of (⋅), Q is a positive defi-
nite weighting matrix, and tp denotes the present time. The 
biological meaning of (8) is that the worst-case (maximum) 
effect of all possible bounded but unpredictable environmental 
disturbances on both phenotypic deviation around xe and the 
evolutionary strategy u(t) is considered as the evolution level of 
the biological network on the basis of the average energy. Since 
the initial phenotypic deviation ( )0x  also has an effect on x t( ) 
and u(t), its effect on the evolution level is considered in the 
denominator of (8). If x(0) = xe or ( )0 0x = , ie, the initial phe-
notypic trait x(0) is at the equilibrium point xe, then the term 

( ) ( )0 0TEx x   in the denominator should be neglected.
The fitness (phenotypic robustness) of the biological net-

work around the phenotypic trait at the equilibrium point xe 
is inversely correlated to the evolution level of the biological 
network and is defined as

 
1.f
e

=  (9)

A biological network with a low evolution level will have 
a high fitness to the phenotypic trait, and vice versa. There-
fore, the fitness maximization of a biological network to the 
phenotypic trait xe is equivalent to the minimization of the 
evolution level, as follows,
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Combining (8) and (10), the evolutionary strategy u(t) for 
the maximization of the fitness of the biological network is 
formulated for the first time as the following stochastic mini-
max evolution (evolutionary game) problem
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The minimum evolution level eo in (11) is called the net-
work evolvability of the biological network in the evolutionary 
process. The physical meaning of network evolvability is the 
minimum worst-case effect of environmental disturbances on 
the biological network with a minimax evolutionary strategy 
u(t). The minimax evolutionary strategy is performed for the 
biological network by natural selection to resist unpredict-
able environmental disturbances from the point of view of the 
game in the evolutionary process. The minimax performance 
in (11) has been used for robust control design under intrin-
sic perturbations and external disturbances.19,20 Therefore, the 
maximum phenotypic robustness (or fitness maximization) 
problem of the evolutionary biological network in (7) can be 
formulated as a stochastic evolutionary game problem in (11), 
ie, how to select ( ) ( )( )

( ) ( ) ( )
=

= − =∑ 1
11

N t
k kk

u t A p t t x t s t x t  to 
achieve the fitness maximization in (10) for the biological net-
work in (7) with the phenotype at xe. The evolutionary strategy 
of a biological network to maintain its phenotypic trait against 
intrinsic parameter fluctuations and environmental distur-
bances is to develop a feasible evolutionary strategy u(t) = s1(t)
x(t) to enhance the biological network with the maximum fit-
ness at xe, or equivalently, to select some genetic variations s1(t) 
to modify the interaction matrix A of the biological network to 
minimize the worst-case (maximum) effect of environmental 
disturbance v(t) on both the variation of the phenotypic trait 
x t( ) and the evolutionary strategy u(t) in (11) on the basis of 
mean energy.

Why is u(t) also considered in the numerator of (11) or (8)? 
The reason is that the biological network aims to achieve the max-
imum fitness fo (or minimum evolution level eo) with a minimum 
effort (or cost). This effort or cost can be described as change a 
change ( )( )1

1
N t

k kk
A p t t

=
−∑  on system matrix A of the biological 

network. There are two players, u(t) and v(t), in the evolutionary 
game problem in (11). The player v(t) will try to maximize the 
effect of environmental disturbances on the deviation of the phe-
notype from its equilibrium point xe, and the other player u(t) will 
try to select some genetic variations to improve network robust-
ness in order to maintain the phenotype around xe by minimizing 
the worst-case phenotypic deviation due to all possible environ-
mental disturbances. In general, it is very difficult to solve the 
stochastic evolutionary game problem in (11) for the stochastic 
gene network in (7). Therefore, the following indirect method is 
employed to solve the stochastic evolutionary game problem16
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 ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2

0
0

0, 0

min max ,
0 0

p

p

p

t TT

tT T
u t v t L t

E x t Qx t u t u t dt
e e

Ex x E v t v t dt ∈  

+
= ≤

+

∫
∫

 

 

 (12)

where the positive value e denotes the upper bound of the 
evolvability eo. The upper bound e of eo will be given before-
hand and then decreased to as small a value as possible to 
approach eo and attain the real minimax problem, which is the 
so-called suboptimal approach to the stochastic evolutionary 
game problem in (11). The suboptimal stochastic evolutionary 
game in (12) is equivalent to the following constrained sto-
chastic Nash game16,21,22

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2 0,

0

min max

0 0 .
p

p

u t v t L t

t TT T TE x t Qx t u t u t ev t v t dt eEx x

 ∈  

+ − ≤∫    

 (13)

Let us denote

 
( ) ( ) ( ) ( ) ( ) ( )( )

0
.pt T T TJ E x t Qx t u t u t ev t v t dt∆= + −∫    (14)

We then need two steps to solve the constrained stochas-
tic game problem in (13). The first step is to solve the following 
stochastic Nash game problem

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
2 0

0

,

min max min max

,
p

p

o u t v t
u t v t L t

t T T T

J J

E x t Qx t u t u t ev t v t dt

∆

 ∈  

= =

+ −∫  

 (15)

and the second step is to solve the following constraint problem

 ( ) ( )0 0 .T
oJ eEx x≤    (16)

By solving (15) and (16) for the constrained stochastic 
Nash game in (13), we get the following result.

Proposition 1. The stochastic evolutionary game problem of 
the evolutionary gene network in (13) can be solved by the follow-
ing evolutionary strategy u*(t) and the worst-case environmental 
disturbance v*(t)

 
( ) ( ) ( ) ( )

( )1
* * *

1

1, ,
N t

T
k k

k
u t s t x A p t t x Px v t B Px

e=
= = − = − =∑  (17)

where the positive definite matrix P is the solution of the following 
Riccati-like inequality

 

2

2
1

1 0
pN

T T T
k k

k
A P PA PP PBB P Q A PA and

e
λ

=
+ − + + + ≤∑  (18)

 0 , P # eI (19)

where ( )2 2p pN N t∆=  represents the total number of neutral 
genetic variations to the present time tp.

Proof. See Supplementary Data Appendix 1.1.
The term 2

2 1
pN T

k kk
A PAλ

=∑  is the effect of random 
genetic variations that are not selected by evolutionary strat-
egy, ie, the effect of neutral genetic mutations on the gene 
network in the evolutionary process. The solution of the evo-
lutionary game in (17) is that based on the worst-case envi-
ronmental disturbance v*(t) on the biological network (due 
to the uncertainty and unpredictability of environmental 
disturbances, the evolutionary strategy u*(t) needs to consider 
the effect of the worst-case disturbance v*(t) from the game’s 
perspective), thus the minimax strategy is to select adequate 
genetic variations as new network interactions amounting to 

( ) ( )( ) ( )1 1*
1 1

N t N t
k k kk k

s t A p t t A P
= =

= − = = −∑ ∑  to enhance the 
system matrix A, which can minimize the evolution level or 
maximize the fitness of the biological network with the phe-
notype at xe. Since e is the upper bound of the evolvability eo in 
the stochastic evolutionary game in (12), the minimum value 
of e in (12) will approach the evolvability 1

o
o

e
f

= , where fo is 

the maximum fitness of the biological network by the mini-
max evolutionary strategy. Therefore, we need to solve the 
following constrained optimization problem for eo or fo in the 
stochastic biological network in evolution

 0

1 mino P
o

e e
f

∆

>
= =  (20)

  subject to (18) and (19).
remark 4. (i) The solution of eo in (20) can be solved by 

decreasing e until no positive solution P . 0 exists in (18) and 
within 0 , P # eI in (19). (ii) After solving eo and fo from (20), 
then the Riccati-like inequality in (18) becomes

 

2

2
1

1 0.
pN

T T T
k k

ko
A P PA PP PBB P Q A PA

e
λ

=
+ − + + + ≤∑  (21)

The inequality can be considered to be the phenotypic trait 
robustness criterion for the stochastic biological network (7) under 
the minimax (game) evolutionary strategy in the evolutionary pro-
cess. For the nominal linear biological network in (1), if ATP + PA 
# 0 for some P . 0, then the biological network is stable based on 
Lyapunov stability, ie, all the eigenvalues of A have to be in the left-
hand side of the complex s-domain (see Fig. 3). Therefore, −(ATP + 
PA) is a measure of network robustness. The term 2

2 1
pN T

k kk
A PAλ

=∑  
is the effect of ( )( )2

1
N t

k kk
A p t t

=
−∑  on the phenotypic trait robust-

ness of the biological network. The term 1 T

o
PBB P Q

e
+  is the effect 

of an environmental disturbance on the phenotypic trait robust-
ness and a measure of the environmental robustness of the biologi-
cal network. If the evolvability eo is small, then the environmental 
robustness of the biological network should be large enough to resist 
the phenotypic effect of environmental changes and vice versa. 
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The term −PP due to the evolutionary strategy u*(t) = −Px (ie, 
( ) ( )( )1*

1
N t

k kk
s t A p t t P

=
= − = −∑ ) could improve the phenotypic 

trait robustness in (21) by enhancing network robustness through 
negative feedback loops −Px as follows

 

2

2
1

1 1
2 2

0.
p

T

N
T T
k k o

k

A P P P A P Q

A PA f PBB Pλ
=

   − + − +      

+ + ≤∑
 

(22)

The eigenvalues of 1
2

A P −    are farther to the left of the com-
plex s-domain than those of A, such that the network robustness of 
the biological network is improved (see Fig. 3). Although the selected 
phenotypic variations up to the amount −Px caused by the minimax 
evolutionary strategy can improve the network robustness, the accu-
mulated random neutral genetic variations ( )( )2

1
N t

k kk
A p t t

=
−∑  

harbored in the robust genetic network during the evolutionary pro-
cess can also lead to a negative effect on the phenotypic trait robustness 
of the biological network (ie, the term 2

2 1
pN T

k kk
A PAλ

=∑  will make 
the network robustness inequality in (22) more difficult to satisfy). 
In this situation, the phenotypic trait robustness criterion in (22) for 
the stochastic biological network in (3) under the minimax (game) 
evolutionary strategy in (11) can be reformulated as follows

 

2

2
1

1

1 1( ) ( ) .
2 2

pN
T T
k k

k o
genetic robustness environmental robustness

T

enhanced network robustness through the evolutionary game strategy

A PA Q PBB P
e

A P P P A P

λ
=

+ +

 ≤ − − + −  

∑






minimax

 (23)

The physical meaning of (23) is that if the enhanced network 
robustness of the biological network through the stochastic minimax 

(game) evolutionary strategy in (11) can confer both genetic 
robustness to tolerate random Poisson phenotypic variations due 
to the accumulated neutral genetic variations and environmental 
robustness to resist environmental disturbance, then the phenotypic 
trait of the biological network is maintained in the evolutionary 
process. Otherwise, the phenotypic trait may not be maintained 
under environmental disturbance and random genetic variations. 
In de Visser et al.23 the evolutionary causes of genetic robustness 
were discussed, using different evolutionary criteria. The correla-
tion with environmental robustness is considered to be the most 
probable cause of genetic robustness in evolution. From (23), based 
on the congruence scenario, it can be seen that the genetic robust-
ness of a biological network is a by-product of the environmental 
robustness of the biological network. This is because environmen-
tal changes are more frequent than genetic variations in evolution, 
ie, when a biological network has developed network robustness to 
resist environmental disturbances, it would simultaneously provide 
genetic robustness to tolerate genetic variations.

(iii) By the stochastic minimax (game) evolutionary strategy 
in (11), the total accumulated network inter-action variations 

1 1( ) ( )
1 1

( )N t N t
k k kk k

A p t t A
= =

− =∑ ∑  are chosen by natural selection 
to the amount of −P to construct negative feedback loops −Px(t) in 
(17). The stochastic evolutionary biological network is thus of the 
following form

 

2 ( )

1

( ) ( ) ( ) ( ) ( ) ( ).
N t

k k
k

dx t A P x t A p t t x t B t
dt

υ
=

= − + − +∑  (24)

Since the eigenvalues of A−P are in the farther left-hand side 
of the complex s-domain, the biological network has been made 
more robust by the minimax evolutionary strategy to resist all 
possible environmental disturbances in (24). (iv) An evolution-
ary biological network in (24) with greater network robustness 
in (23) will provide a greater buffer to harbor numerous neu-

Image axis

Real axis

The eigenvalue locations of AThe eigenvalue locations of A – – P

s – domain

1

2

figure 3. the eigenvalues of system matrix A in the evolution network are shifted further to the left-hand side of the s-domain by the evolutionary strategy 

u* = −Px, ie, the eigenvalues of 
1
2

A P−  are farther left than those of A.
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tral genetic variations simultaneously in the evolutionary pro-
cess1,2,4 (these neutral genetic variations 2 ( )

1
( )N t

k kk
A p t t

=
−∑   

have no obvious phenotypic effect on the system matrix A of the 
biological network). However, a large amount of neutral genetic 
variations may provide raw material for new evolutionary pos-
sibilities. Therefore, a robust biological network may finally lead 
to network evolution in the long run when the accumulated neu-
tral genetic variations 2 ( )

1
( )N t

k kk
A p t t

=
−∑  are large enough, ie, 

the term 2
2 1

N p T
k kk

A PAλ
=∑  in (22) or (23) is large enough that 

the phenotypic trait robustness criterion is violated. (v) In order to 
provide a buffer against the accumulated neutral genetic variations 
and all possible environmental disturbances, a biological network 
needs to develop negative feedback loops to improve its network 
robustness. This is the minimax evolutionary strategy u*(t) = −Px, 
providing negative feedback loops to enhance network robustness 
in (22) or (23). Furthermore, hubs and redundant mechanisms are 
frequently found in biological networks to provide efficient responses 
to external stimuli and to attenuate the effect of genetic variations, 
respectively. They are therefore also favored by natural selection to 
improve the phenotypic trait robustness of the biological network in 
the evolutionary process. The evolutionary game strategy through 
negative feedback interactions u*(t) = −Px in a genetic network 
might result in these hubs and redundant mechanisms, in order to 
improve phenotypic trait robustness in the evolutionary process.

The stochastic Game of Nonlinear biological 
Network evolution
In real biological networks, the system dynamics in (1) are 
always nonlinear and should be modified as follows

 
dx t

dt
f x( ) ( ),=  (25)

where f(x) denotes the nonlinear interactive vector among n dif-
ferent species in the biological network. For a nonlinear stochastic 
biological network with stochastic heritable random parameter 
fluctuations and non-heritable environmental disturbances in 
the evolutionary process, the stochastic biological network in (7) 
is modified as in the following Poisson point process

21

2

( )

1
( )( )

1 1
( )

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

N t

k k
k

N tN t

k k k k
k k

N t

k k
k

dx t f x f x p t t B t
dt

f x f x p t t f x p t t B t

f x u t f x p t t B t

υ

υ

υ

=

= =

=

= + − +

= + − + − +

= + + − +

∑

∑ ∑

∑

 (26)

with

21 ( )( )( )

1 1 1
( ) ( ) ( ) ( ) ( ) ( ),

N tN tN t

k k k k k k
k k k

f x p t t f x p t t f x p t t
= = =

− = − + −∑ ∑ ∑

where fk(x), for k = 1, 2, …, N(t), denotes the nonlinear 
stochastic heritable phenotypic variations due to Poisson ran-
dom genetic variations in the evolutionary process. Sources 
of these random genetic variations include DNA muta-
tion, deletion, recombination, duplication, inversion, and 
translocation of chromosomes in the evolutionary process. 
The nonlinear stochastic system in (26) represents a non-
linear biological net-work under the evolutionary strategy 

1 ( )
1

( ) ( ) ( )N t
k kk

u t f x p t t
=

= −∑  by natural selection, the neutral 

genetic variations 2 ( )
1

( ) ( )N t
k kk

f x p t t
=

−∑ , and the environ-
mental disturbances v(t) in the evolutionary process.

For the nonlinear stochastic biological network in (26), 
there exist many equilibrium points (phenotypic traits) (see 
Fig. 1). Suppose that the phenotypic trait near a stable equi-
librium point xe is of interest in natural selection. For con-
venience of analysis, the origin of the nonlinear stochastic 
biological network in (26) is shifted to the equilibrium point 
(phenotypic trait) xe. In this case, if the shifted nonlinear sto-
chastic network is robustly stable at the origin, then the equi-
librium point (phenotypic trait) of interest in natural selection 
is also robustly stable. Therefore, the analysis of the minimax 
evolutionary strategy of the nonlinear stochastic biological 
network in evolution is simplified. Let us denote the pheno-
typic deviation around the phenotype at xe as x t x t xe( ) ( )= −
, so then the following shifted nonlinear stochastic biological 
network is obtained

 

2

( )

1
( )

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ).

N t

k k
k

N t

k k
k

dx t f x B t f x p t t
dt

f x B t u t f x p t t

υ

υ

=

=

= + + −

= + + + −

∑

∑



 

 

 (27)

For convenience of notation, we denote f x xe( )+  and 
f x xe( )+  as f x( )  and f xk ( ) , respectively. In this situa-
tion, the origin ( ) 0x t =  of the nonlinear stochastic bio-
logical network in (27) is at the equilibrium point xe of 
the original nonlinear stochastic network in (26), and 

1 ( )
1 1

( ) ( ) ( ) ( )N t
k kk

u t s x f x p t t
=

= = −∑   denotes the evolutionary 
strategy of the biological network to select some phenotypic 
variations by natural selection to improve the network robust-
ness, and thus tolerate the effect of neutral genetic variations 

2 ( )
1

( ) ( )N t
k kk

f x p t t
=

−∑  , as well as to resist the environmental 
disturbances v(t). To maintain the robustness of the pheno-
typic trait at xe, which is favored by natural selection, the robust 
evolution of the nonlinear stochastic biological network is to 
develop an evolutionary strategy u(t) to select some genetic 
variations to solve the stochastic minimax evolutionary game 
problem in (11) or (12). By considering the nonlinear stochas-
tic minimax evolution problem (11) of the nonlinear stochastic 
biological network in (27), we get the following result.

Proposition 2. For the nonlinear stochastic biological net-
work in (27), the nonlinear stochastic evolutionary game problem 
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in (13) is solved by the following minimax evolutionary strategy 
u*(t) and the worst-case environmental disturbance v*(t)

1 ( )

1

1 ( )* ( ) * ( ) ( ) ( ) ,
2

1 ( )* ( ) ,
2

N t

k k
k

T

V xu t s x f x p t t
x

V xt B
e x

υ

=

∂ = = − = −   ∂
∂ =   ∂

∑ 

 







 
(28)

where the positive function ( ) 0V x >  is the positive solution of the 
following (HJII)

2 2

2 2
1

( ) 1 ( ) ( )( )
4

1 ( ) ( )
4
1 ( )( ) ( ) 0
2

p

T T
T

T
T

N
T
k k

k

V x V x V xf x x Qx
x x x

V x V xBB
e x x

V xf x f x
x

λ
=

∂ ∂ ∂     + − +          ∂ ∂ ∂
∂ ∂    +      ∂ ∂

∂
≤

∂∑

  

  

  



 



 

(29)

 with ( (0)) (0) (0).TV x ex x≤    (30)

Proof. See Supplementary Data Appendix 1.2.
The last term in (29) is the effect of random neutral 

genetic variations, which are not selected by natural selection 
but are harbored by network robustness in the evolutionary 
process.10,11 The biological meaning of the evolutionary strat-
egy in (28) is that the worst-case environmental disturbance 
v*(t) represents the worst-case effect of all possible uncertain 
environmental disturbances on both the phenotypic deviation 
and the evolutionary strategy of the biological network in the 
stochastic game (12). In addition, the minimax evolutionary 
game strategy u*(t) in (28) denotes that, if the number of phe-
notypic variations selected by natural selection is equal to the 
number of negative feedback loops 1 ( )

2
V x

x
∂ −   ∂





, then the 
worst-case effect of all possible environmental disturbances 
on the phenotypic trait will be minimized; ie, the phenotypic 
trait of the biological network will achieve the maximum fit-
ness or the minimum evolution of xe in (12) or (20). Since e is 
the upper bound of the evolvability eo of the stochastic evolu-
tionary network in (12), eo could be approached for the non-
linear stochastic evolutionary network in (26) by minimizing 
its upper bound e as follows

 

( ) 0

1 min

subject to(29)and(30).

o V x
o

e e
f >

= =
  (31)

remark 5. (i) In general, the solution of the network evolv-
ability eo in (31) could be obtained by decreasing e until the HJII in 
(29) has no positive solution ( ) 0V x > . (ii) After solving fo and eo 
in (31), then the HJII in (29) can be modified as

 

2 2

2 2
1

( ) 1 ( ) ( )( )
4

1 ( ) ( )
4

1 ( )( ) ( ) 0
2

p

T T
T

T
T

o
N

T
k k

k

V x V x V xf x x Qx
x x x

V x V xBB
e x x

V xf x f x
x

λ
=

∂ ∂ ∂     + − +          ∂ ∂ ∂
∂ ∂    +      ∂ ∂

∂
≤

∂∑

  

  

  



 



 (32)

with ( (0)) (0) (0)T
oV x e x x≤   . This HJII can be consid-

ered as the phenotypic trait robustness criterion of the nonlinear 
stochastic biological network in (27) with the minimax evolu-
tionary game strategy u*(t) in the evolutionary process. The term 

1 ( ) ( )
4

T
T

o

V x V xBB
e x x

∂ ∂   
      ∂ ∂

 

 

 is due to the effect of envi-

ronmental disturbances on the biological network, and is con-
sidered as a measure of environmental robustness. The term 

2
2

2 21
1 ( )( ) ( )
2

pN T
k kk

V xf x f x
x

λ
=

∂
∂∑ 

 



 is the random effect of the accu-
mulated random neutral genetic variations on the biological network 

in the evolutionary process. The term 1 ( ) ( )
4

TV x V x
x x

∂ ∂   −       ∂ ∂
 

 

 is 

due to the mini-max evolutionary game strategy u*(t), ie, the  
robust effect of phenotypic variations 1 ( )

1
( ) ( )N t

k kk
f x p t t

=
−∑ 

, which are selected by natural selection to construct the negative 

feedback loops 1 ( )
2

V x
x

∂ −   ∂




 to minimize the worst-case effect of 

all possible environmental disturbances. When the biological net-
work is free of genetic fluctuations, environmental disturbances, 
and the evolutionary game strategy as in (25), ie, in the nominal 
nonlinear network case in (25), the Lyapunov stability criterion at 

the equilibrium xe is 
( ) ( ) 0

TV x f x
x

∂  ≤  ∂






, and ( ) ( )
TV x f x

x
∂ 

  ∂






 

can be considered as the measure of phenotypic stability of xe for the 
nominal biological network in (25). With the minimax evolution-
ary game strategy u*(t) to improve the network robust stability of 
the biological network in (26) and to maintain the phenotype at xe 
in order to resist the effects of genetic variations and environmental 
disturbances, the phenotypic trait robustness criterion of the evolu-
tionary biological network in (32) can be rewritten as follows

2 2

2 2
1

1 ( )( ) ( )
2

1 ( ) ( )
4

( ) 1 ( )( )
4

pN
T
k k

k
genetic robustness

T
T T

o
environmental robustness

T

ne

V xf x f x
x

V x V xx Qx BB
e x x

V x V xf x
x x

λ
=

∂
+

∂

∂ ∂   +       ∂ ∂

∂ ∂    ≤ − −        ∂ ∂

∑ 

 





 

 

 



 



 

twork robustness through the minimax evolutionary game strategy


 

(33)

From the right-hand side of  (33), it is apparent that the minimax 
evolutionary game strategy can improve the network robustness in the 
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evolutionary process by making ( ) 1 ( )( )
4

TV x V xf x
x x

∂ ∂    × −        ∂ ∂
 



 

 
more negative, letting the basin of the phenotypic trait at xe become 
much deeper and wider in Figure 1. The physical meaning of the 
phenotypic trait robustness criterion in (33) is that if the enhanced 
network robustness by the mini-max evolutionary game strategy can 
confer enough genetic robustness to buffer random neutral genetic 
variations and enough environmental robustness to resist environ-
mental disturbances, then the phenotypic trait of the nonlinear sto-
chastic biological network in (27) is maintained in the evolutionary 
process. By substituting the minimax evolutionary game strategy 
u*(t) into the nonlinear stochastic biological network in (27), we get

2 ( )

1

( ) 1 ( )( ) ( ) ( ) ( ).
2

N t

k k
k

dx t V xf x B t f x p t t
dt x

υ
=

∂ = − + + −  ∂ ∑ 

 



 (34)

Since the term 1 ( )( )
2

V xf x
x

∂
−

∂






 will make the nonlinear sto-
chastic biological network more robustly stable than f x( )  due to 
the negative feedback ∂

−
∂




1 ( ) ,
2

V x
x

 the biological network with the 
minimax evolutionary strategy will be more robust to tolerate the 
random neutral genetic variations and to resist the environmental 
disturbances v(t) in (34) in the evolutionary process. (iii) If the net-
work robustness on the right-hand side of (33) is improved by the 
minimax evolutionary game strategy so that the genetic robustness 
is increased, then the nonlinear biological network can harbor a 
large amount of neutral genetic variations. If the stochastic neutral 
genetic variations are accumulated in a sufficiently large amount 
in (27) or (34) in the evolutionary process, so that the phenotypic 
trait robustness criterion in (33) may finally be violated, then they 
may provide raw material for a new evolutionary possibility,  
causing a transition from one phenotypic trait to another through 
genetic drift;6,7 for example, from the basin xe to another basin x1e 
in Figure 1. At first sight, one might expect an evolutionary strat-
egy to significantly improve network robustness to slow or even 
stop the evolution of a phenotypic trait in a biological network, 
but, because the more robust phenotypic trait can harbor a large 
number of neutral genetic variations, the robust phenotypic trait 
of the stochastic biological network might show increased rather 
than decreased evolutionary potential, in the long term of the bio-
logical network’s evolution. The reasons why increasing network 
robustness may eventually lead to increasing network evolution 
include the accumulation of hidden neutral genetic variations that 
may be useful for later evolution. This is why network robustness 
is intrinsic to evolution and can eventually improve evolution.5,6 
This study extends these evolution results from the genetic level to 
the nonlinear stochastic gene network level, using the systematic 
methods in (32) and (33) from the point of the view of a stochastic 
evolutionary game. (iv) The tradeoff between network robustness 
and the evolvability of the nonlinear stochastic biological network 
in evolution can be seen from the phenotypic trait robustness crite-
rion in (33); ie, genetic robustness plus environmental robustness 
is less than or equal to network robustness. In this phenotypic trait 
robustness criterion, if the biological network has less evolvability 

(a small eo or a large fitness fo) in evolution, then its environmental 
robustness becomes larger. In this situation, the network robustness 
has to be enough large to confer a large environmental robustness to 
resist environmental disturbances in order to maintain the pheno-
typic trait robustness, ie, less evolvability implies a larger network 
robustness, and vice versa. (v) In general, the cost of the minimax 
evolutionary strategy in selecting phenotypic variations as negative 

feedback loops ( )* ( ) V xu t
x

∂
= −

∂
1
2





 in order to improve network 
robustness and resist environmental disturbances is much higher.24 
In the case of the stress-avoidance strategy (u(t) = 0), the basin of 
the equilibrium point xe in Figure 1 becomes shallow, ie, the term 

( ) ( )( )
TV x V xf x

x x
∂ ∂    −        ∂ ∂

1
4

 



 

 on the right-hand side of (33) 

is reduced to ( ) ( )
TV x f x

x
∂ 

  ∂






 and is less negative. In this case, 

network robustness becomes smaller and environmental robustness 
must also be smaller in evolution, so that the evolvability eo will 
become larger and the biological network will be more adaptive 
in responding to environmental stresses and rapid environmental 
changes.24

The stochastic evolutionary Game of the Nonlinear 
stochastic biological Network based on the Global 
Linearization Method
In general, it is still very difficult to solve the HJII-constrained 
optimization problem in (31) for the stochastic minimax evo-
lutionary strategy in a nonlinear stochastic biological network 
in evolution or the HJII problem in (33) for the phenotypic 
trait robustness criterion of a nonlinear stochastic biologi-
cal network under natural selection in evolution. At present, 
there is no good method to solve the nonlinear partial differ-
ential HJII problem either analytically or numerically.19,25,27  
In this case, in order to simplify the stochastic evolution-
ary game problem, the global linearization technique28,29 
is employed to interpolate a nonlinear stochastic biological 
network with a set of local stochastic linearized biological 
networks.

Using the global linearization method, we suppose that 
all the global linearizations of the nonlinear stochastic bio-
logical network in (27) are bounded by a polytope, consisting 
of M vertices as28,29
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∀  (35)

where C0 denotes the convex hull of the polytope with M ver-
tices. That is, if the local linearized systems at all x are inside 
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the convex hull C0, then the evolutionary trajectory x of the 
nonlinear stochastic evolutionary network in (27) will belong 
to the convex combination of the stable trajectories of the fol-
lowing M local linearized networks, defined at M vertices of 
the polytope28,29

( )( ) ( ) ( ) ( ) , , , .
N t

i ki k
k

dx t A x B t u t A p t t x i M
dt

υ
=

= + + + − =∑
2

1

1


  

 (36)

Based on the global linearization theory,29 if (35) holds, 
then every evolutionary trajectory of the nonlinear stochas-
tic biological network in (27) can be represented by a convex 
combination of the M local linearized biological networks in 
(36). This combination can be represented by

( )( ) ( ) ( ) ( ) ( ) ,
N tM

i i ki k
i k

dx t x A x B t u t A p t t x
dt

α υ
= =

 
= + + + − 

 
∑ ∑

2

1 1



  

 (37)

where the interpolation function α i x( )  satisfies 
0 1≤ ≤α i x( )  and α ii

M x( )
=∑ =

1
1 , ie, the evolu-tion-

ary trajectory of the nonlinear stochastic biological 
network in (27) can be represented by the evolutionary 
trajectory of the interpolated biological network in (37).  
In (37), the evolutionary strategy u t f x p t tkk

N t
k( ) ( ) ( )( )= −

=∑ 1
1

  
can be constructed as α i ki kk

N t
i
M x A p t t x( ) ( )( )

 −
== ∑∑ 11
1  by the 

global linearization technique. For the minimax evolutionary 
strategy problem (11) of the interpolated evolutionary biologi-
cal network in (37), we get the following result.

Proposition 3. For the interpolated evolutionary biological 
network in (37), the stochastic evolutionary game problem in (13) 
is solved by the following minimax evolutionary strategy u*(t) and 
the worst-case environmental disturbance v*(t)

( )

* ( ) ( ) ( ) , * ( ) ,
N tM

T
i ki k

i k
u t x A p t t x Px t B Px

e
α υ

= =
= − = − =∑ ∑

1

1 1

1
   

 (38)

where the positive definite matrix P is the solution of the following 
Riccati-like inequalities
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 0 < ≤P eI  (40)

Proof. See Supplementary Data Appendix 1.3.
remark 6. (i) In comparison with Proposition 1 of the sto-

chastic linear biological network, the Riccati-like inequality in (18) 
is based only on the local linearized network at x t( ) = 0 , while 
the Riccati-like inequalities in (39) are based on M local linear-
ized networks in (36) at the M vertices of the polytope in (35). 

Therefore, the result of the minimax evolutionary game strategy 
in Proposition 3 is more suitable for nonlinear stochastic biological 
networks in evolution. (ii) The Riccati-like inequalities in (39) can 
be considered as the local linearized HJII in (29) at M vertices of 
the polytope in (35). In general, it is very difficult to solve the HJII. 
However, it is very easy to solve the Riccati-like inequalities in 
(39) by transforming (39) into equivalent linear matrix inequali-
ties (LMIs)
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 (41)

and X P= >−∆ 1 0 , for i = 1,…,M,
using the Schur complement transformation method.29 These 
can be easily solved by the LMI toolbox in Matlab.

Since e in (39) is the upper bound of the evolvability of 
the evolutionary game in (12), the minimum value of e will 
approach the evolvability e

fo
o

=
1 . Therefore, we need to solve 

the following constrained optimization problem for eo or fo in 
the nonlinear stochastic biological network in evolution

 

1
0f

e e
o

o P
= =

>
min  (42)

subject to (40) and (41).
remark 7. (i) The eo can be solved by decreasing e until (41) 

has no positive solution P within 0 , P # eI with the help of the 
LMI toolbox in Matlab. (ii) After solving eo and fo from (42), the 
Riccati-like inequalities in (39) and (40) then need to be modified 
as
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e

PBB P A PA

i M

i
T

i
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 (43)

 0 , P # eoI. (44)

After solving P in (43), then u t Px* ( ) = −   and 
v t

e
B Px

o

T* ( ) =
1

  in (38) form the minimax evolutionary strat-
egy in (11)     for the nonlinear stochastic biological network in evolu-
tion. (iii) With the minimax evolutionary strategy, the Riccati-like 
inequalities in (43) and (44) can be considered as the phenotypic 
trait robustness criteria of the biological network in evolution. If 
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(43) and (44) are satisfied, then the phenotypic trait of the nonlinear 
stochastic biological network in (27) or (37) is maintained in the 
basin around the equilibrium point xe under environmental distur-
bances and neutral genetic variations in the evolutionary process. 
If (43) and (44) have no positive solution P with 0 , P # eoI, 
then the phenotypic trait at xe might not exist again or might tran-
sit to another phenotypic trait at another equilibrium point under 
environmental disturbances and genetic variations in evolution. 
(iii) The minimax evolutionary strategy u*(t) in (38) can enhance 
network robustness by shifting the eigenvalues of the local linear 
networks farther to the far left-hand side of the s-complex domain 
as follows
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(45)

That is, every interaction matrix so that Ai of the local lin-

earized biological networks is shifted by −
1
2

P  so that eigen-

values of A Pi −





1
2

 are on the farther left-hand side of the 

s-complex domain, and thus the evolutionary network is more 
robust to simultaneously tolerate local genetic variations and 
resist environmental disturbances. In general, the minimax evo-
lutionary game strategy is to select the total network variations 

α i ki kk
N t

i
M x A p t t P( ) −( ) = −

== ∑∑ 11
1 ( ) , which consist of nega-

tive feedback loops for some positive matrix P. This is in order to select 
adequate genetic variations to form negative feedback circuits in the 
biological network, so as to improve network robustness by resisting 
environmental disturbances and attenuating the effects of neutral 
genetic variation in the evolutionary process. (iv) The phenotypic 
trait robustness criterion in (45) can be reformulated as follows
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local network robustness through the evolutionary gminimax aame strategy

i M
  

, , , .= 1

 (46)

The biological meaning in (46) is that if the enhanced 
local network robustness of each local linearized biological 
network by the minimax evolutionary game strategy can con-
fer both local neutral genetic robustness to buffer local genetic 
variations and local environmental robustness to resist the local 
environmental disturbance in evolution, then the phenotypic 
trait of the nonlinear stochastic biological network with the 
minimax evolutionary game strategy can be maintained in the 
basin of the equilibrium point at xe in the evolutionary process. 
(v) Since the minimax evolutionary game strategy can improve 
the local network robustness of local linearized networks on 
the right-hand side of (46), the nonlinear stochastic biological 
network will harbor more neutral genetic variations and will 
have greater environmental robustness to decrease the evolv-
ability eo (or increase the fitness fo) to attenuate the effect of 
environmental stimulus. However, when the harbored neutral 
genetic variations are accumulated to the extent that the first 
term on the left-hand side of (46) becomes very large and the 
phenotypic robustness criterion in (46) cannot be guaranteed in 
the evolutionary process the phenotype of the biological network 
might be shifted, with the help of an environmental distur-
bance, from one equilibrium point to another equilibrium point 
in Figure 1 and start another period of network evolution at 
the other equilibrium point (phenotype) favored by natural 
selection.

remark 8. If we consider that network evolution can only 
be plausibly studied at a population level, the evolutionary game 
should naturally invoke an n-tuple game with m-players under k 
environmental dynamics. In this n-tuple evolutionary game prob-
lem, the linear stochastic biological network in (7) should be modi-
fied as
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where ui(t) denotes the ith decision variable from other play-
ers (ie, other competitive populations) and vj(t) denotes the jth 
 environmental dynamics. Further, the evolutionary game problem 
in (11) should be modified as the following n-tuple evolutionary 
game
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The decision variables ui(t) from other players and vj(t) from 
environmental dynamics are decided to maximize their effect on 
the phenotypic deviation x t( )  and evolutionary strategy u(t) of 
the evolutionary network while the evolutionary strategy u(t) is 
decided by the evolutionary network to minimize the worst-case 
phenotypic deviation and the effort (or cost) of evolutionary strat-
egy. For simplicity of solving this n-tuple evolutionary game in the 
evolutionary network problem, the stochastic network dynamics in 
(47) can be represented by

 
dx t

dt
Ax t u t s t x t BV t
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= ( ) + ( ) + ( ) ( ) + ( )

2 ,  (49)

where
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In this situation, the n-tuple game in (48) is reduced to the 
2-tuple game in (11), ie, the decision variable v(t) of the 2-tuple 
game in (11) can represent V (t) of m-players and k environmen-
tal dynamics in (47) and the n-tuple evolutionary game problem 
in (48) can be replaced by the 2-tuple evolutionary game in (11). 
Similarly, the result of the nonlinear stochastic evolutionary game 
problems in (26) and (11) can be easily extended to an n-tuple game 
problem of nonlinear stochastic network with m-players (popula-
tions) and k environmental dynamics. Therefore, the proposed theo-
retical approach to evolutionary game strategy naturally invokes an 
n-tuple game with m competitive populations and k environmen-
tal disturbances if B and V (t) in (7) can be replaced by B = [B1 B2 
… Bm D1 D2 … Dk] and V (t) = [u1(t) u2(t) … um(t) v1(t) v2(t) … 
vk(t)] of the evolutionary network in (49), respectively.

simulation example
Consider the generic inhibition and activation model in evolu-
tion in Figure 4, which is a known metabolic pathway and has 
been widely used for imitating characteristics of a real meta-
bolic pathway.30,31 In this metabolic pathway, the metabolite 
X3 converted from the metabolite X2 inhibits an early step in 
its own production pathway, which is the synthesis of X1. The 

metabolite X2 is converted from the metabolite X1, which is a 
divergence branching point. The degradation processes of X1 
into X2 or X4 are independent of each other. Then, the metab-
olite X4 modulates downstream to activate the transformation 
of X3. Let’s denote x1(t), x2(t), x3(t), and x4(t) as the concentra-
tions of metabolites X1, X2, X3, and X4, respectively. Based on 
the metabolic pathway30,31 in evolution in Figure 4, we have 
the following metabolic reaction network
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  (50)

with
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where α1, … , α4 and β1, … , β4 are the rate constants of net 
influxes and effluxes with kinetic orders gij and hij, i, j ∈ S 
and S = { }∆ 1 2 3 4, , , . The parameters λ1k, … , λ4k are repre-
sented as weights of the random phenotypic variations of the 
biological network, which have no direct phenotypic effect 
on the network. The parameters of this metabolic reaction 
network are chosen as follows:

α α α α β β β

β
1 2 3 4 1 2 3

4 13 21

12 8 3 2 10 3 5

6 0 8 0 5

= = = = = = =

= = − =

; ; ; ; ; ; ;
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= = = = = 88

0 1 0 04 0 1 0 042 2

;

. ; . ; . ; . .EV V EV E Eik ik ik ik= = = = =λ λ

The mean of the Poisson process p(t) is imposed on λ = 0.01. The 
equilibrium point xe of the nominal metabolic reaction network is 

x x x xe e e e
T T

1 2 3 4 0 400 2 006 2 228 0 143, , , . , . , . , .  [ ]  simulated 
from the initial condition x T0 1 4 2 25 1 25 0 45( ) = [ ]∆ . , . , . , . . For 
simplicity of analysis, the state of the network is shifted via the 

figure 4. a real branched metabolic pathway of the generic inhibition and 
activation model where X1, … , X4 are metabolites.
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form x t x t xe( ) = ( ) − . Thus, the new equilibrium point of 
the phenotype concerned is at xe = ×04 1 throughout this simu-
lation example.

Based on the above evolutionary game strategy, the fol-
lowing phenotypic variations in the network in (50)
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 (51)

are selected by natural selection to construct negative feedback 
circuits to modify the metabolic reaction network, in order 
to resist environmental disturbance and tolerate the following 
effect due to neutral genetic variations

 

λ α

λ α

λ α

λ α

1 1 3

2 2 3

3 3 2

4 4 1

13

21

32

41

k
g

k
g

k
g

k
g

x t

x t

x t

x t

× ( )

× ( )

× ( )

× ( )

























−( )
=

( )

∑
k

N t

kp t t
1

2

, (52)

where the Poisson counting process N(t) = N1(t) + N2(t) for 
genetic variations in the evolutionary process is described in 
Figure 6. The evolutionary game strategy in Proposition 3 is 
to select genetic variations to construct the following negative 
feedback loops to improve the network robustness
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(53)

where P is solved from the constrained optimization problem 
in (42). Based on the minimax game, the global lineariza-
tion technique and the LMI toolbox in Matlab, the following 
result is obtained
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 (54)

We also find the evolvability eo 0 7843.  and the maximum 
fitness f o 1 2750. . The simulation result of the metabolic 
reaction network with the evolutionary game strategy is 

shown in Figure 5. It can be seen that the phenotypic trait of 
the metabolic reaction network is maintained at the equilib-
rium point xe = ×04 1 or xe

T
 0 400 2 006 2 228 0 143. , . , . , .[ ]  for 

a period of time from t = 0 to t = 383 in Figure 5, and the 
evolvability of the metabolic reaction network by the evolu-
tionary game strategy in this period is estimated with vi(t), 
i = 1, … , 4, standard white noises, by a Monte Carlo simula-
tion with 10000 runs, as follows

E x t Qx t u t u t dt

Ex x E v t v t dt

T T

T T

 

 

( ) ( ) + ( ) ( )( )
( ) ( ) + ( ) ( )

∫0

383

0
0 0

3383 0 7066 0 7843
∫

≤ = . . .eo  (55)

From the calculation of the evolvability of the metabolic 
reaction network in (55), it can be seen that the estimated evolv-
ability eo by the proposed method is conservative. The main 
reasons are the conservativeness of the global linearization 
and the LMIs used to approximate the nonlinear stochastic 
reaction network and the HJIIs, respectively. Furthermore, 
the convex optimization method employed by the LMI tool-
box in Matlab to solve the LMI constraints for evolvability in 
(42) can also lead to conservative results.

From the simulation results in Figure 5, it can be seen 
that by the evolutionary game strategy, as the neutral genetic 
variations are continually accumulated, after the negative 
feedback loops in (53) have been constructed by the evolution-
ary game strategy (see Fig. 6), the environmental disturbance 
can be buffered and neutral genetic variations can be tolerated 
by the metabolic reaction network only for a certain period of 
evolution time (from t = 0 to t = 383). However, when the neu-
tral genetic mutations accumulate to the extent that the phe-
notypic trait robustness criterion of the evolutionary biological 
network in (33) or (46) is violated at approximately t = 383, the 
network stability will be destroyed and the phenotype tran-
sits to another equilibrium to begin another period of network 
evolution.

discussion
In this study, a population of evolutionary biological net-
works with genetic variations selected by natural selection to 
resist intrinsic genetic variations and buffer environmental 
disturbances, maintaining its phenotypic trait, is modeled as 
a robust nonlinear stochastic stabilization system. Since envi-
ronmental disturbances are uncertain and unpredictable, in 
order to maintain the robust stability of the phenotypic trait of 
interest by natural selection, the minimax evolutionary game 
strategy for phenotypic trait robustness in (11) is developed to 
select adequate phenotypic variations by natural selection for 
improving network robustness. This minimizes the worst-case 
effect of uncertain environmental disturbances on the pheno-
typic deviation from its phenotypic trait in the evolutionary 
process. The minimax design scheme has been widely used for 
robust control in robot systems,21,16 robust synthetic biology 
design,32,22 and robust reference control of economic systems16 
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when some system parameters are perturbative and external 
disturbances are uncertain and unpredictable, so that their 
worst-case effect on system performance has to be as small a 
value as possible.32,23,18,33,21,16,22,45,46 With the minimax evolu-
tionary game strategy, the phenotypic trait robustness criterion 
of the biological network in evolution is found to be: genetic 
robustness plus environmental robustness is less than or equal  

to enhanced network robustness. That is, if the enhanced net-
work robustness by the evolutionary game strategy can con-
fer both genetic robustness to buffer random neutral genetic 
variations and environmental robustness to resist environmen-
tal disturbances in the evolutionary process, then the network 
phenotypic trait is robustly stable in the basin around the 
equilibrium point at xe of interest by natural selection. The 
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figure 5. the trajectories of the metabolic reaction network with states   x x1 4, ,  where x t x t xi i ei( ) = ( ) − , for i = 1, …, 4, suffering from 
environmental disturbances v1(t), … , v4(t) and the Poisson genetic variations with the Poisson counting processes N(t) = N1(t) + N2(t) are shown in 
figure 6. it can be seen that the evolutionary game strategy can maintain phenotype stability around xe for a period of time from t = 0 to t = 383. However, 
when neutral genetic variations are continually accumulated by the robust network, it is seen that the phenotype robustness criterion in (46) is violated, 
and the phenotype of the metabolic reaction network becomes perturbed by neutral genetic variations after t = 383, finally shifting to another equilibrium 
point to start another evolutionary period.
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Counting process N1(t) for genetic variations selected by natural selection
and the evolution strategy to construct feedback loops finished at t = 133
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figure 6. Poisson counting processes of genetic variations in the evolutionary process, for (a) N(t) = N1(t) + N2(t). (B) N1(t), denoting the counting process 
of genetic variations selected for constructing negative feedback loops u Px* = −   by natural selection. (C) N2(t), denoting the neutral genetic variations 
harbored by the robust network, without direct effect on the network phenotype.
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minimax evolutionary game strategy can improve network 
robustness to enhance phenotypic trait robustness by modify-
ing the network interaction matrix A by A P−





1
2

 in (23) 

(or f x( )by f x V x
x



( ) −
∂ ( )

∂






1
4

 in (33)) through negative  

feedback loops, which could decrease the evolvability eo of 
the biological network in the evolutionary process. This result 
extends the idea of Waddington34 from the gene level to the 
biological network level. Based on the phenotypic trait robust-
ness criterion in (23), (33), or (46), the correlation between 
genetic robustness, environmental robustness, and network 
robustness by recent genomic experiments in yeast35 (genes 
with similar robustness to genetic, environmental, and pheno-
typic perturbations in evolution) can be rationally explained 
from the network robustness perspective. That is, if the net-
work robustness of a biological network is enhanced by the 
minimax evolutionary game strategy (ie, the basin of xe in  
Figure 1 becomes larger and deeper), then more neutral genetic 
variations and environmental disturbances can be overcome 
singly or simultaneously, and the phenotypic trait can be main-
tained by the minimax evolutionary game strategy through 
natural selection during the evolutionary process. The fitness 
fo of the biological network, which is inversely proportional to 
the evolvability eo, is increased by the minimax evolutionary 
game strategy via natural selection in Proposition 2, so that 
the phenotypic trait is more robust in (33) due to the larger and 
deeper basin caused by the adaptive negative feedback loops 

u t f x p t t V x
xk kk

N t* ( ) = ( ) −( ) = −
∂ ( )

∂




=

( )∑ 





1
21

1  in the evo-

lutionary process. However, when large amounts of neutral 
genetic variations are accumulated continuously to enhance 
network robustness through the minimax evolutionary game 
strategy, they may provide more raw material for new evolu-
tionary possibilities through random genetic drift.34 Therefore, 
the minimax evolutionary game strategy may improve the net-
work robustness to maintain the phenotypic trait in a period of 
evolutionary process, and may eventually improve the evolution 
of the biological network in the long term. This phenomenon 
has been illustrated by the in silico example of the evolutionary 
genetic regulatory network in Figure 5.

From the phenotypic trait robustness criteria in (23) and 
(33), it is observed that there are two ways to improve phe-
notypic trait robustness in evolution. One way is to improve 
the network robustness (ie, to make the right-hand side of 
(23) or (33) as large a value as possible so that the pheno-
typic trait robustness criterion always holds), and the other 
way is to reduce the effect of neutral genetic variations and 
environmental disturbances on the biological network (ie, to 
make the left-hand side of (23) or (33) as small a value as pos-
sible). The minimax evolutionary game strategy is to select 
heritable phenotypic variations such that u*(t) = −Px in (17) 

for linear biological networks or u t V x
x

* ( ) = −
∂ ( )

∂






1
2





 in 

(28) for nonlinear biological networks, in order to develop 

negative feedback loops as the first way to improve the network 
robustness on the right-hand side of (23) or (33) to resist envi-
ronmental disturbances. This is why there are many negative 
feedback loops in biological networks – to improve the network 
robustness. Furthermore, there are numerous redundant, mod-
ular, and scale-free structures in biological networks, which 
are helpful in attenuating the effect of intrinsic neutral genetic 
variations and environmental disturbances on the left-hand side 
of (23) or (33), which is the second way to maintain the pheno-
typic trait in the evolutionary process. Therefore, based on the 
phenotypic trait robustness criterion of the evolutionary bio-
logical network, we can gain a deeper evolutionary insight into 
the development of negative feedback, redundant, modular, and 
scale-free structures for biological networks by adaptive or non-
adaptive processes12 in evolution. In different levels of biological 
networks, two favored strategies can improve phenotypic trait 
robustness in evolution. One is to improve the network robust-
ness to tolerate more intrinsic neutral genetic variations and 
to resist environmental disturbances. Negative feedback is the 
systematic mechanism to improve network robustness, and it is 
favored by natural selection at different levels of the biological 
network in evolution, which matches the minimax evolutionary 
game strategy in this study. Another strategy is to reduce the 
effect of intrinsic neutral genetic variations and environmental 
disturbances on different biological networks. Redundancies 
and repairs are the mechanisms of this strategy, and are also 
favored by natural selection. This is why there are many dif-
ferent redundancies from duplicated genes in gene regulatory 
networks, redundant pathways in biological chemical networks, 
and species redundancies in ecological networks.23

Recently, synthetic biology has focused on the ratio-
nal construction of biological systems based on engineer-
ing principles to fulfill a particular purpose and to allow a 
better understanding of biological design, using synthetic 
circuits.36–44 High-throughput techniques are necessary to 
determine what is evolved and how engineered genetic net-
works in vivo mimic the evolutionary processes of genetic 
networks. An approach involving network evolution has been 
used to rationally design a synthetic network with a desired 
behavior in the host cell.41 Unfortunately, synthetic biologists 
are faced with the uncertainties of modeling variation, evolu-
tionary genetic variation, and environmental disturbances in 
vivo (ie, the phenotypic trait robustness problem of the syn-
thetic biological network).38–40 Given this situation, a robust 
synthetic network design is currently an important topic in 
the field of synthetic biology.41–45 As the intrinsic genetic per-
turbations and environmental disturbances are unpredictable 
for synthetic biologists, the proposed minimax evolutionary 
game strategy should be an efficient robust design method for 
a synthetic gene network with evolutionary genetic variations, 
intrinsic uncertainties, and environmental disturbances.41–45

The contributions of this study include the following: 
(i) The Poisson point process in (7) is used to model genetic 
variations in stochastic gene network; (ii) the evolution level 
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(8) is defined for the stochastic biological network in the 
evolutionary process, ie, the worst-case effect of all possible 
environmental disturbances on the phenotypic deviation 
around xe and the effect (cost) of evolutionary strategy u(t). 
Then, the fitness of the biological network around the phe-
notypic trait is inversely correlated to the evolution level of 
the biological network in (9). Therefore, the problem of evolv-
ability or fitness can be considered as the minimax evolution-
ary game problem in (11). Based on the evolutionary game 
strategy, we also find some accumulated genetic variations can 
provide negative feedback via natural selection to maximize 
the robust stability of networks; (iii) then the global linear-
ization method is proposed to solve the nonlinear stochastic 
game problem for the evolutionary game strategy of nonlinear 
stochastic biological network in the evolutionary process; (iv) 
based on the evolutionary game strategy in (17) or (28), we 
could obtain the phenotypic trait robustness criterion in (23) 
or (33) for stochastic biological networks in evolution. Finally, 
the phenotypic trait robustness criterion is further analyzed 
for the evolutionary network to get insight into evolutionary 
game strategy from the systematic point of view.

In the conventional evolution network,18 the evolvability 
and fitness of biological networks are not well defined. There-
fore, the evolutionary game problem is not easily formulated 
for evolutionary biological networks. Actually, they only solve 
some evolutionary optimization problems without considering 
random genetic variations and environmental disturbances. 
Further, these methods could not provide an efficient method 
to solve Hamilton-Jacobi equations (HJE) for evolutionary 
problems. Hence, it is not easy to get insight into the evolu-
tionary mechanisms of nonlinear biological networks from the 
systematic point of view.

conclusion
In this study, biological networks with random genetic varia-
tions and uncertain environmental disturbances in the evolu-
tionary process are described as nonlinear stochastic systems. 
In order to maintain the phenotypic trait favored by natural 
selection, a biological network needs to select some heritable 
phenotypic variations to improve network robustness, so as to 
tolerate neutral genetic variations and to buffer environmental 
disturbances in the evolutionary process. Since the environ-
mental disturbances are uncertain and unpredictable, the evo-
lutionary strategy of a biological network needs to minimize the 
worst-case effect of all possible bounded environmental distur-
bances (ie, to perform the minimax evolutionary game strategy) 
in the evolutionary process. We have found that the minimax 
evolutionary game strategy of a biological network is equiva-
lent to accumulating some phenotypic variations due to ran-
dom genetic variations to approach a robust negative feedback 
scheme, in order to efficiently improve the network robustness, 
resist the uncertain environmental disturbances, and toler-
ate neutral genetic variations. However, those harbored ran-
dom neutral genetic variations also have an effect on network 

robustness when they accumulate to a large enough amount, 
serving to provide raw material for new adaptation and evolu-
tionary innovation. If network robustness can be improved by 
the minimax evolutionary game strategy, conferring both envi-
ronmental robustness against the environmental disturbance as 
well as genetic robustness to tolerate the neutral genetic varia-
tions, then the phenotypic trait of the biological network can 
be maintained in the evolutionary process. Otherwise, the phe-
notypic trait at an equilibrium point might be destroyed and 
shifted to another phenotypic trait at a neighboring equilibrium 
point to commence another period of network evolution.

In general, to gain insight into the minimax evolutionary 
game strategy of a nonlinear evolutionary biological network, it 
is necessary to solve a difficult optimization problem constrained 
by a Hamilton-Jacobi-Isaac inequality (HJII). A global lineariza-
tion technique is employed to simplify the minimax evolutionary 
game problem, ie, the HJII-constrained optimization problem 
for the minimax evolutionary game strategy can be simplified 
to an equivalent optimization problem constrained by linear 
matrix inequalities (LMIs). Based on the global linearization 
technique, the tradeoff between evolvability, genetic robustness, 
and network robustness based on the minimax game strategy in 
evolution can be easily discussed from the local stability robust-
ness and local filtering ability of a set of local evolutionary bio-
logical networks on the basis of linear system theory. Finally, 
the proposed evolutionary game strategy is also extended to an 
n-tuple evolutionary game problem of a population of biological 
networks with m players (competitive populations) and k envi-
ronmental dynamics in the evolutionary process.
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supplementary data: Appendix
The proof of proposition 1 is in the supplementary 

data 1.1.
The proof of proposition 2 is in the supplementary 

data 1.2.
The proof of proposition 3 is in the supplementary 

data 1.3.
1.1. Proof of Proposition 1:
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where V x t t x t Px t P PT T( ( ), ) ( ) ( ), .∆ = ≥ 0  By using the Itô 
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Then we get the solution of minimax game as
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By the inequality
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 P ≤ eI (A7)

which is the inequality
 0 < P ≤ eI.

Q.E.D.
1.2. Proof of Proposition 2:
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By the Itô formula1,2,3,4,5,6,7,8 for nonlinear stochastic network
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Substituting (A9) into (A8), we get
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By the fact that
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Substituting (A11) and (A12) into (A10), we get
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Then we get the minimax solution
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By the inequality constraint
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T≤  ( ) ( ),0 0

we get

 EV x eEx xT( ( )) ( ) ( )  0 0 0≤ s (A16)

which in the inequality
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Q.E.D.
1.3. Proof of Proposition 3:

Since we replace the nonlinear stochastic biological network
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by the interpolated biological network
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with V x ex xT( ( )) ( ) ( )  0 0 0≤ s. If we choose V x x PxT( ) ,  =  by 
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The above inequality holds if the Riccati-like inequalities
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which are the solution of minimax evolutionary game 
problem
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