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ABSTR ACT: Metabolomics is a relatively new technique that is gaining importance very rapidly. MRS-based metabolomics, in particular, is becom-
ing a useful tool in the study of body fluids, tissue biopsies and whole organisms. Advances in analytical techniques and data analysis methods have 
opened a new opportunity for such technology to contribute in the field of diagnostics. In the MRS approach to the diagnosis of disease, it is important 
that the analysis utilizes all the essential information in the spectra, is robust, and is non-subjective. Although some of the data analytic methods 
widely used in chemical and biological sciences are sketched, a more extensive discussion is given of a 5-stage Statistical Classification Strategy. This 
proposes powerful feature selection methods, based on, for example, genetic algorithms and novel projection techniques. The applications of MRS-
based metabolomics in breast cancer, prostate cancer, colorectal cancer, pancreatic cancer, hepatobiliary cancers, gastric cancer, and brain cancer have 
been reviewed. While the majority of these applications relate to body fluids and tissue biopsies, some in vivo applications have also been included. It 
should be emphasized that the number of subjects studied must be sufficiently large to ensure a robust diagnostic classification. Before MRS-based 
metabolomics can become a widely used clinical tool, however, certain challenges need to be overcome. These include manufacturing user-friendly 
commercial instruments with all the essential features, and educating physicians and medical technologists in the acquisition, analysis, and interpreta-
tion of metabolomics data.
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Introduction
Magnetic resonance is now a common word in medical 
circles thanks to the success of magnetic resonance imag-
ing (MRI). Less well known, and sometimes regarded with 
trepidation, is magnetic resonance spectroscopy, MRS, or 
NMR (nuclear magnetic resonance) to physical scientists. 
The former takes excellent images of soft tissue; the latter 
gives quantitative identification of chemical species in tis-
sues or fluids. A critical factor in treatment of cancer is early 
diagnosis. Imaging reveals whether anatomy is normal or 
abnormal. Spectroscopy measures the chemical content of 
the cells, which must change significantly earlier than ana-
tomical alterations are discernable. Therefore, a combined 

MRI/MRS assessment of a clinical subject is an ideal app
roach to early diagnosis of cancer. It is quickly being accepted 
in medical circles as valuable, but not so rapidly adopted in 
the contemporary approach to cancer screening or diagno-
sis. This is for several reasons: physicians and medical tech-
nologists are not usually trained to do MRS, commercial 
instruments are not well equipped to perform the success-
ful methods already reported in the research literature, and 
additional costs may be incurred if clinics have to hire spe-
cialists in MRS. Despite these barriers, it is clear that the 
extra diagnostic power afforded by MRS will save lives, save 
costs to health care systems, and lead to more accurate fol-
lowing of patient response to treatment for cancer.
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phenylalanine. This work demonstrated the strong potential 
of NMR metabolic phenotyping for the diagnosis, prognosis, 
and management of breast cancer patients.

Serum MRS-analysis has also been performed on sam-
ples obtained from women with advanced metastatic breast 
cancer with the objective of exploring outcome and response 
to treatment.8 Pre-treatment and serial on-treatment serum 
samples were available from an international clinical trial in 
which 579 women with metastatic breast cancer were random-
ized to paclitaxel plus either a targeted anti-HER2 (human 
epidermal growth factor receptor 2) treatment (lapatinib) or 
placebo. Serum metabolomic profiles were obtained using 
600 MHz MRS. Profiles were compared with time to pro-
gression, overall survival and treatment toxicity. The metabo-
lomic profiles did not correlate with outcome or toxicity. In a 
subgroup of patients with HER2-positive disease treated with 
paclitaxel plus lapatinib, metabolomic profiles from patients in 
the upper and lower thirds of the dataset showed significant 
differences for time to progression (N = 22, predictive accu-
racy = 89.6%) and overall survival (N = 16, predictive accu-
racy = 78.0%) suggesting that metabolomics may play a role in 
selecting a subset of patients with HER2-positive disease with 
greater sensitivity to paclitaxel plus lapatinib. A larger cohort 
is required to verify this result. A recent review of MRS of 
cancer signatures in biofluids is given by Duarte and Gil.9

In a study by Mountford et  al,10 fine-needle aspirates 
taken from breast tumours were subjected to 1H MRS and 
the resulting data were analyzed using an SCS-based classi-
fier (see the Appendix). Malignant tissue was distinguished 
from benign lesions with an overall accuracy of 93%. More-
over, from the same spectra, lymph node involvement was 
predicted with an overall accuracy of 95%, and tumor vas-
cular invasion with an overall accuracy of 94%. This is quite 
interesting, given that the pathology, nodal involvement and 
tumor vascular invasion were all predicted by SCS classifica-
tion of the proton MRS spectrum from a fine-needle aspirate 
biopsy taken from the primary breast lesion. In a related study 
by Lean et al,11 1H magnetic resonance (MR) spectra of fine 
needle aspiration biopsies (FNAB) obtained from primary 
breast lesions were analyzed, to assess tumor grade, estrogen 
receptor (ER) status, and progesterone receptor (PgR) status. 
Grade 1 and 2 breast cancers were separated from grade 3 
cancers with a sensitivity and specificity of 96% and 95%, 
respectively. The ER status was predicted with a sensitivity 
of 91% and a specificity of 90%, and the PgR status with a 
sensitivity of 91% and a specificity of 86%. This approach 
allowed an objective method for determining the above prog-
nostic indicators simultaneously with the diagnosis of primary 
pathology and lymph node involvement. It should be noted 
that the n-values in these studies were insufficiently large to 
lead to a robust classifier. A more intensive study of a larger 
cohort is underway.

Recent progress in the use of high resolution magic angle 
spinning 1H MRS (HRMAS) has resulted in better resolution 

In the MRS approach to the diagnosis of disease, it is 
necessary to develop classifiers that deal with the many spec-
tral components of the spectra. Some of these components 
will be relevant to diagnosis and most may be irrelevant. 
A  robust diagnostic approach must depend on more than a 
single observation (spectral component, or resonance), but not 
on very many in order to avoid over-fitting. The first approach 
to classifier development must involve a reliable determina-
tion of which resonances are most indicative of the disease. 
This may be done by trial and error, a laborious and less than 
thorough approach, or by a systematic statistical approach. 
A  very successful method employs the genetic algorithm 
for feature selection.1,2 Another frequently used method is 
principal component analysis, widely used in chemical and 
biological sciences.3

Once the critically sensitive spectral components have 
been identified, a method to quantify this sensitivity is neces-
sary. One commonly used method is partial least squares dis-
criminant analysis (PLS-DA), where assessment of goodness 
of fit is taken to indicate the accuracy of the method.4 A more 
robust and quantifiable approach is based on a statistical clas-
sification strategy (SCS).5 It has the advantage of determin-
ing sensitivity, specificity and reliability of conclusion reached 
by MRS of potentially cancerous systems. We shall outline 
the methods and provide examples of their application, with a 
detailed description of the statistical methods in the Appen-
dix. At this point we must emphasize an extremely impor-
tant aspect and requirement of metabolomics: the number of 
subjects studied must be sufficiently large to ensure a robust 
diagnostic classification (see Fig. 1).5

Breast Cancer
Breast cancer is the leading cause of cancer deaths among 
women worldwide. Currently, mammography, biopsy and 
blood tests are used for diagnostic purposes. Mammography 
has serious limitations including a high rate of false positives 
and radiation concerns. Histopathology is very subjective and 
prone to errors. Blood-based tests are attractive in that they are 
minimally invasive but suffer from poor sensitivity and speci-
ficity. Thus, a more accurate, non-invasive diagnostic tech-
nique is needed. A number of investigators have attempted to 
use 1H MRS-based metabolomics (serum, biopsy, and in vivo) 
to address this diagnostic challenge. Some of the more recent 
work is reviewed herein, see also Zhang et al.6

In a study by Jobard et al,7 serum samples obtained from 
patients with metastatic breast cancer and those with local-
ized early stage breast cancer were analyzed by 1H MRS. 
The authors were able to differentiate EBC (early stage breast 
cancer) from MBC (metastatic breast cancer) patients (n = 85: 
46 EBC and 39 MBC), which was validated with an indepen-
dent cohort (n = 112: 61 EBC and 51 MBC; 89.8% sensitivity, 
79.3% specificity). Eight significant metabolites were identi-
fied in this discrimination: histidine, acetoacetate, glycerol, 
pyruvate, glycoproteins (N-acetyl), mannose, glutamate and 
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Figure 1. Representation of the risks of reaching conclusions with a sparse data set. Increasing the number of subjects generally lowers the accuracy, 
but this is much closer to the true accuracy. The lower accuracy solution will also be more robust: challenging the resultant classifier with new specimens 
will yield accuracy similar to that found by a reliable classifier.5

and enhanced diagnostic potential of MR metabolomics. In a 
study by Li et al,12 HRMAS 1H MRS studies were performed 
on 31 breast tissue samples (13 cancer and 18 non-cancer) 
obtained by percutaneous core needle biopsy. There was 
good discrimination between cancer and non-cancer samples 
using orthogonal projections to latent structure-discriminant 
analysis (OPLS-DA) multivariate model on the MR spectra. 
Results of a blind test showed 69% sensitivity and 94% speci-
ficity in the prediction of cancer status. A spectral analysis 
showed that in cancer cells, taurine- and choline-containing 
compounds were elevated. This result needs to be verified with 
a larger cohort.

The potential of HRMAS 1H MRS metabolomics to  
predict prognostic factors, such as axillary lymph node status 

and estrogen and progesterone receptor status, was also exp
lored in a recent study by Giskeødegård et al.13 Biopsies from 
breast cancer patients (n =  160) were excised during surgery 
and analyzed. The spectral data were preprocessed and variable 
stability (VAST)-scaled, and training and test sets were gen-
erated using the Kennard-Stone and SPXY sample selection 
algorithms. The data were analyzed by partial least-squares 
discriminant analysis (PLS-DA), probabilistic neural networks 
(PNNs) and Bayesian belief networks (BBNs), and blinded 
samples (n  =  50) were used for verification. Estrogen and 
progesterone receptor status were successfully predicted from 
the MR spectra, and were best predicted by PLS-DA with 
a correct classification of 44 of 50 (88%) and 39 of 50 (78%) 
samples, respectively. Lymph node status was best predicted 
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on prostate tissue. In the study, 1H MRS, 360  MHz, was 
performed on specimens of benign (n  =  66) and malignant 
(n = 21) human prostate tissue from 50 patients, and the spec-
tral data were subjected to multivariate analysis, specifically 
linear-discriminant analysis. On the basis of histopathological 
assessments, an overall classification accuracy of 96.6% was 
achieved, with a sensitivity of 100% and a specificity of 95.5% 
in classifying benign prostatic hyperplasia from prostatic can-
cer. Resonances due to citrate, glutamate, and taurine were 
among the six spectral subregions identified by the algorithm 
as having diagnostic potential. It should be noted that these 
regions were not selected prior to the analysis. A similar work, 
based on a limited cohort size, looked at the zonal variation 
within the prostate.22,23

Extending the application to the study of tumor recur-
rence after radiotherapy, MRS analysis was performed 
on trans-rectal ultrasound-guided prostate biopsies from 
35 patients obtained 18–36 months after external beam radio-
therapy.24 One hundred sixteen tissue specimens were sub-
jected to 1H MRS and analyzed with a multivariate strategy 
specifically developed for biomedical spectra. The sensitivity 
and specificity of MRS in identifying a malignant biopsy were 
88.9% and 92%, respectively, with an overall classification 
accuracy of 91.4%. The diagnostic spectral regions identified 
by the algorithm included those due to choline, creatine, glu-
tamine, and lipid.

The adoption of a widely known technique in solid state 
MRS, magic angle spinning, to tissue NMR has led to the 

by BBN with 34 of 50 samples correctly classified, indicating a 
relationship between metabolic profile and lymph node status 
as suggested earlier by the study by Mountford et al.10

In a study by Bathen et al,14 the feasibility of HRMAS 
1H  MRS of small tissue biopsies to distinguish between 
tumor and non-involved adjacent tissue was investigated. 
With the current methods, delineation of the tumor bor-
ders during breast cancer surgery is challenging. The surgery 
is repeated often because of poor delineation. In this study, 
328 tissue samples from 228 breast cancer patients were ana-
lyzed using HRMAS 1H MRS. PLS-DA was applied to dis-
criminate between tumor and non-involved adjacent tissue. 
Using double cross-validation, high sensitivity and specific-
ity, of 91% and 93% respectively, were achieved. Analysis of 
the loading profiles from both principal component analysis 
(PCA) and PLS-DA showed the choline-containing metabo-
lites as main biomarkers for tumor content, with phosphocho-
line being especially high in tumor tissue. Other metabolites 
with diagnostic potential included glycine, taurine and glu-
cose. This cohort was of adequate size for reliability of conclu-
sions. A review of this and other work has appeared.15

In vivo MRS of the breast is also being advanced in many 
centers to complement MRI examinations in order to improve 
the diagnostic specificity.16–20 Malignant breast tissues show 
elevated water-to-fat ratio and total choline levels. Moreover, 
these levels have also been shown to change in response to 
treatment, and hence can be used to monitor and predict treat-
ment response. While the choline peak has been of particular 
interest in breast cancer diagnostics via in vivo MRS, its detec-
tion rate needs to be improved with technological advances for 
it to be of clinical utility. Furthermore, with the increasing 
number of patients undergoing in vivo MRS of the breast, 
it may be worthwhile to subject the whole spectral region to 
metabolomics analysis instead of only focusing on choline.

Prostate Cancer
Prostate cancer is the most common cancer among men in the 
western world. A number of clinical challenges remain in the 
diagnosis and management of this disease. The widely used 
PSA test has become somewhat controversial lately. Some of 
the clinical challenges encountered in the diagnosis of pros-
tate cancer include detecting cancers in subjects with low PSA 
values, differentiating aggressive from quiescent tumors, and 
detecting high grade prostate intraepithelial neoplasia (PIN). 
In order to address some of these challenges, the use of NMR 
spectroscopy (on tissues and fluids and subsequently in vivo) 
has been explored since the 1990s. While the earlier work 
focused primarily on tissue extracts and cell cultures, the first 
article on MRS of intact prostate tissue appeared in 1997.21 
This approach helped maintain the architecture of the tis-
sue and thus enabled histopathological analysis on the same 
tissue. The spectra obtained were closer in appearance to the 
in vivo situation than those obtained from extracts. Further-
more, this was the first metabolomics analysis (using SCS) 

Figure 2. 1H MR spectra (360 MHz, 37°C) of prostate tissue specimens. 
A, cancer (Gleason grade: 3 + 3). Chos, cholines; Crs. creatines; Lac. 
lactic acid; Tau, taurine; HOD, partially deuterated water. Although 
certain substances are assigned on figure, this does not imply that these 
are the only substances contributing to a particular resonance. B. BPH 
(Benign Prostatic Hyperplasia).21
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biomarkers, CEA and TIMP-1 and traditional 1H MRS-based 
metabolomic measurements that showed promising results in 
the early detection of colorectal cancer.37

Both HRMAS NMR and gas chromatograpy-mass 
spectrometry were combined for the global metabolic pro-
filing of biopsied colon tissue from CRC patients and their 
matched controls.38 Orthogonal partial least-squares discrim-
inant (OPLS-DA) analysis models generated from metabolic 
profiles from 1H MRS and MS discriminated normal from 
malignant samples. A 1H MRS study of tissue from CRC 
reported a number of metabolites including choline and lipids 
as diagnostic markers of colon cancer.39 It was suggested that 
the use of 1H MRS can be an adjunct to current pathologi-
cal procedures. A combination of 1D and 2D 1H MRS was 
used to detect metabolites in colon tumors and normal mucosa 
after extraction using perchloric acid.40 The high myo-inositol 
and taurine levels in tumors and the reciprocal changes found 
in normal mucosa were reported to be possible malignancy 
markers. Another 1H MRS study reported elevated taurine 
levels and reduced exogenous polyethyleneglycol as the pos-
sible malignancy markers in tissue biopsies.41

31P MRS studies have identified a number of individual 
metabolites including phospholipids in malignant and non-
malignant tissue.42–45 It has been shown that lipids such as 
lysophosphatidylcholine and phosphatidylcholine plasmalo-
gen are elevated whereas sphingomyelin and phosphatidyleth-
anolamine plasmalogen are significantly reduced in malignant 
tissue.42 These lipid profiles may be used to estimate malig-
nant propensity and aggressiveness of disease, and provide 
prognostic information. Saponified phospholipid extracts of 
malignant and normal tissue specimens generated character-
istic phosphodiester profiles, which were used to differentiate 
malignant from normal samples.45

Fucolipids accumulation in human colonic adenocar-
cinoma was investigated by isolating two neutral fucolipids 
from colonic tissue and characterizing them using a number 
of methods including 1H MRS and MS.46 An investigation of 
plasma membrane using 1H-1H COSY experiments has iden-
tified fucose shed from human malignant colorectal cells.47

1H MRS studies of fecal extracts from patients with CRC 
and healthy individuals were able to characterize the meta-
bolic differences between the two groups.48,49 The differentia-
tion between controls and patients with CRC is reported to 
open avenues for developing new, efficient, high-throughput 
screening protocols for CRC. In a recent 1H MRS study on 
a large number of cancer patients and controls, the 1H MRS 
data were subjected to preprocessing, feature selection and 
classifier development stages of the SCS to obtain high clas-
sification accuracy.49

Suitability of a rat model to study human colon cancer 
has been investigated using colon tissue from both rats and 
humans.50,51 The levels of lipid in human and rat colon have 
been shown to be similar and tumors contained significantly 
more taurine than pure control mucosa.51 The results suggested 

enhancement of resolution of the spectra. HRMAS has been 
able to generate spectra with resolution equivalent to those 
of extracts but with the tissue architecture maintained intact. 
Such an approach allowed the detection and analysis of more 
metabolites that have diagnostic potential in prostate cancer 
and is proving to be a useful tool for cancer metabolomics.25–28

1H MRS has also been useful in analyzing body fluids to 
detect changes in composition reflecting the disease process. 
To this end, prostatic fluids and semen have been analyzed 
with the objective of developing a non-invasive screening test 
for prostate cancer. In a study reported by Kline et al,29 ROC 
curves analysis of the citrate levels determined in semen and 
prostatic fluids showed that such measurements outperformed 
PSA testing for detecting prostate cancer. In another study 
by Serkova et  al,30 the logistic regression models indicated 
that the absolute concentrations of citrate, myo-inositol and 
spermine determined in prostatic secretions were highly pre-
dictive of prostate cancer.

Over the last decade, in vivo MRS studies of the pros-
tate have been performed in a number of Institutions with 
UCSF, Nijmegen Medical Centre, and the Sloan Memo-
rial Cancer Center being the most notable ones. The in vivo 
results mirrored more or less what was observed in the ex vivo 
studies.31–34 While these centers generated a number of 
reports on the use of MRS/MRSI in addressing diagnostic 
problems in the prostate, the number of patients/subjects 
enrolled in a given study has not been large enough for a 
robust metabolomics analysis. However, given the founda-
tion laid by the ex vivo work and increasingly larger patient 
cohorts to be enrolled in these studies, such analysis could be 
done in the not-so-distant future.

Colorectal Cancer
A recent study utilized HR-MAS 1H MRS spectroscopy to  
analyze metabolites in intact tumor samples (n  =  83) and 
samples of adjacent mucosa (n = 87) obtained from 26 patients 
undergoing surgical resection for CRC. OPLS-DA of 
metabolic profiles identified marked biochemical differ-
ences between cancer tissue and adjacent mucosa (R2 = 0.72; 
Q2 = 0.45; AUC = 0.91). Taurine, isoglutamine, choline, lac-
tate, phenylalanine and tyrosine were elevated in tumor tissue, 
whereas lipids and triglycerides were decreased.35 In another 
study, 1H MRS was used to profile the serum metabolome 
in patients with metastatic CRC (mCRC) and determine 
whether a disease signature may exist that is strong enough to 
predict overall survival. In 153 patients with mCRC and 139 
healthy subjects, two independent sets of serum samples were 
analyzed. In the training set, 1H MRS metabolomic profiling 
discriminated patients with CRC from healthy subjects with a 
cross-validated accuracy of 100%. In the validation set, 96.7% 
of subjects were correctly classified. Patients from the training 
set with maximally divergent overall survival were chosen to 
construct an overall survival predictor.36 Plasma samples were 
analyzed by combining fluorescence spectroscopy with other 
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hepatobiliary malignancies.57 An HR-MAS 1H MRS of liver 
tissue was used to explore biomarkers for liver cancer.58 In an 
animal model of HCC with metastatic lung cancer, alterations 
in glycolysis including glycine- and choline-metabolism were 
observed.59 Bile homeostasis was studied using 1H MRS to dis-
tinguish liver diseases, including HCC, from liver disease–free 
controls.60 A recent study utilized orthogonal projection of latent 
structure (OPLS) analysis to differentiate serum 1H MRS spec-
tral patterns of HCC from those of alcoholic cirrhosis patients.61 
Glutamate, acetate, and N-acetylglycoproteins were found to be 
elevated in HCC patients compared to cirrhotic patients.

Cholangiocarcinoma (CC)
There are a few studies on 1H MRS-based metabolomics of bile 
in the diagnosis of cholangiocarcinoma.62–65 A study on bile 
from cholangiocarcinoma patients (with and without primary 
sclerosing cholangitis) reported a reduction in the levels of major 
bile metabolites such as phosphatidylcholine, bile acids and 
cholesterol compared to benign diseases.62 Using SCS-derived 
classifiers, the 1H MR spectral patterns of CC were differenti-
ated from the benign control group with an accuracy of 88%. 
PLS-DA methods were used to differentiate bile 1H  MRS 
spectral patterns of CC from those of benign cases.63,65

Pancreatic Cancer
Several studies have focused on understanding metabolic 
alterations in pancreatic cancer. A partial least square dis-
criminant function (PLS-DF) model was used to distinguish 
1H MRS spectral data of plasma extracts from pancreatic 
cancer patients and healthy controls, with an accuracy of 
~92%.66 Recently, OPLS-DA methods have been utilized 
to distinguish 1H MRS spectral patterns of urine and serum 
samples from pancreatic cancer patients and benign/healthy 
controls.67–69 An 1H MRS study of an animal model reported 
elevated levels of taurine and lactate in perchloric acid extracts 
of cancerous pancreatic tissue samples when compared to con-
trols.70 An HRMAS 1H MRS study of cancerous pancreatic 
tissue reported decreased levels of phosphocholine and glyc-
erophosphocholine.71 Based on the lipid contents in intact 
pancreas and pancreatic tissue specimens, in vivo human and 
animal model studies differentiated pancreatic cancer and 
chronic pancreatitis;71,72 the total lipid content was elevated in 
pancreatic cancer compared with chronic pancreatitis. Several 
investigations have focused on the analysis of bile and pancre-
atic juice from patients with pancreatitis and pancreatic cancer 
using 1H/31P MRS.64,73–76 One study reported reduced levels 
of phosphatidylcholine,64 while another found elevated levels 
of D-glucuronic acid in bile samples from pancreatic cancer 
patients.74 The 1H MR spectrum of pancreatic juice shows the 
presence of a battery of amino acids (valine, leucine, and isoleu-
cine, alanine, threonine, glutamine, lysine, tyrosine, histidine, 
phenylalanine, tryptophan) and other small molecules such as 
lactate, acetate, formate, urea, and glucose.75,76 The spectrum 
from a pancreatic cancer patient showed the absence/decreased 

that rat colon is a good model for the investigation of human 
colon carcinogenesis. In a separate 1H MRS study, data from 
colonic mucosa and tumor samples of a rat model were analyzed 
with multivariate methods and shown that aberrant crypt foci 
represent one of the earliest events in colon carcinogenesis.52

The combined effects of everolimus and irinotecan in 
CRC cell lines were evaluated in vitro and in vivo. Both drugs 
demonstrated synergistic anti-proliferative effects in multiple 
CRC cell lines in vitro. Everolimus demonstrated signifi-
cant tumor growth inhibition in HT29 and HCT116 tumor 
xenografts alone and also when combined with irinotecan. 
1H MRS-based metabolomic analysis showed that everolimus 
caused a decrease in glycolysis in both tumor types, whilst 
irinotecan treatment resulted in a profound accumulation of 
lipids in HT29 tumors, indicating a cytotoxic effect.53

Hepatocellular Carcinoma (HCC)
A number of studies have focused on understanding metabolic 
changes in malignant hepatobiliary diseases.54,55 Analysis of 
1H MRS data using SCS is reported to distinguish normal liver 
tissue from HCC with an accuracy of 100%.56 Measurement 
of lactate in serum and bile using 1H MRS spectroscopy has 
also been reported to be potentially useful for the detection of 

Figure 3. Mean and ± one standard deviation about the mean of (A) the 
412 1D 1H MR spectra (400 MHz, 300 K) for the normal samples and (B) 
of the 111 1D 1H MR spectra (400 MHz, 300 K) for the colorectal cancer 
samples.49
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normal and pathological/malignant sites has been studied by 
1H MRS.80 The normal gastric tissue showed the presence of 
lipids, alanine, N-acetyl neuraminic acid, and glutathione, 
whereas the cancerous tissue showed decreased levels of lipids, 
and significant levels of lactate and choline.80 Another study 
revealed that the presence of biochemicals such as glycine, 
alanine, free choline, and triglycerides in gastric tissue would 
serve as possible biomarkers of neoplastic transformations.81

Brain Cancer
Although this was one of the first cancers to be studied in detail, 
cohorts were small and very little use was made of advanced 
statistical methods. The use of tissue 1H MRS metabolomics 
in this area has been explored by a few investigators. Somorjai 
et al demonstrated how classification accuracy can be improved 
when both different data preprocessing methods and comput-
erized consensus diagnosis (CCD, the precursor of the SCS) 
are applied to 1H MR spectra of astrocytomas, meningiomas, 
and epileptic brain tissue.82 The MR spectra (360 MHz) of 
tissue specimens (biopsies) from subjects with meningiomas 
(95; 26 cases), astrocytomas (74; 26 cases), and epilepsy (37; 
8 cases) were preprocessed by several methods. Each data 
set was partitioned into training and validation sets. Robust 
classification was carried out via linear discriminant analysis 
(LDA), artificial neural nets (NN), and CCD, and the results 
were compared with histopathological diagnosis of the MR 

levels of the above common metabolites, except for elevated 
levels of lactate and glucose, compared to the benign cases.76

Gallbladder Cancer
An NMR study aimed at investigating gallbladder carcino-
genesis showed clear differences in bile, gallbladder tissue and 
gallstone composition between cancerous and benign gallblad-
ders.77,78 Bile samples from cancer patients showed reduced 
levels of some conjugated bile acids and elevated levels of urea, 
whereas tissue specimens showed increased levels of choline 
containing metabolites. The levels of cholesterol in gallstones 
were significantly decreased whereas calcium and magnesium 
were significantly elevated in gallbladder cancer (GBC) patients 
compared to those of benign gallbladder diseases (chronic chole-
cystitis and xanthogranulomatous cholecystitis).78 Similarly, 1H 
HRMAS analysis of gallbladder tissue showed elevated levels of 
phospholipids and cholesterol lipids and decreased levels of cho-
lesterol and triacylglycerol in GBC patients compared to those 
of chronic cholecystitis and xanthogranulomatous cholecysti-
tis.79 Such alterations in different lipid components in benign 
and malignant disease may aid in the identification of the bio-
logical pathways involved in the carcinogenesis of gallbladder.

Gastric Cancer
A few studies have focused on the understanding of metabolic 
changes in gastric cancer.80,81 Human gastric mucosa from 

Figure 4. 1H MRS spectra (360 MHz) of bile from (a) control, (b) chronic pancreatitis and (c) pancreatic cancer patients showing the relative levels of 
D-Glucuronate. It can be seen that the levels of D-Glucuronate are highly elevated in the pancreatic cancer patient.74
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and, whereas conventional preoperative clinical diagnosis 
misclassified 20 of 91 tumors, the LDA approach missed 
only 1. Thus, it was concluded that a pattern-recognition anal-
ysis of the biochemical information obtained from 1H MRS 
can help in the accurate, noninvasive diagnosis of the most 
prevalent types of supratentorial brain tumors.

Preul et al87 performed pattern analysis of spectroscopic 
imaging (1H MRSI) data in a variety of situations related to the 
clinical management of patients with brain tumors and other 
cerebral space-occupying lesions (SOLs). They demonstrated 
how the LDA-LOO-based classification of in vivo 1H MRSI 
spectral patterns could lead to quick, accurate and non-invasive 
discrimination amongst tissue arising from the five most com-
mon types of supratentorial tumors found in adults. Their find-
ings suggest that pattern recognition analysis of 1H MRSI data 
can significantly improve the diagnostic specificity and surgi-
cal management of patients with certain cerebral SOLs.

The effect on classification accuracy of using different TE 
values in the in vivo spectroscopy of brain was also investigated 
by Majos et al.88 In this study, 151 patients with brain tumors 
(37 meningiomas, 12 low grade astrocytomas, 16 anaplastic 
astrocytomas, 54 glioblastomas, and 32 metastases) were ret-
rospectively selected from a series of 378 consecutive examina-
tions of brain masses. Single-voxel (SV) 1H MRS, TE 30 ms 
and 136 ms, was performed with point-resolved spectroscopy 
in all cases. Overall, tumor classification was slightly better at 
short TE (123 of 151 cases, 81% correctly classified), than at 
long TE (118 of 151 cases, 78% correctly classified).

In pathological situations, the 1H MRS profile changes, 
and this has been particularly well described for brain tumors. 
However, radiologists are frequently unfamiliar with the 
interpretation of MRS data, and for this reason, the useful-
ness of decision-support systems (DSS) in MRS data analysis 
has been explored. INTERPRET DSS (version 3.0) allows 
radiologists, medical physicists, biochemists or anyone with 
a minimum knowledge of what an MR spectrum is, to enter 
their own SV raw data, acquired at 1.5 T, and to analyze 
them.89 The system is expected to help in the categorization of 
MR spectra from abnormal brain masses.

Conclusion
Clearly there has been considerable effort to use magnetic 
resonance spectroscopy to diagnose cancer early and to follow 
the progress of treatment. Many types of cancer have been 
investigated, but very few of them in a comprehensive, robust 
manner. Metabolomics, the use of reliable statistical meth-
ods, is now well accepted as an alternative to simpler methods 
such as visual inspection. Once the methods have been made 
simpler to use, there is little doubt that metabolomics will 
be the standard analysis. In vivo spectroscopy, after a rapid 
start on brain cancer, has only slowly gained momentum. The 
slowness is in part due to the poor quality of hardware and 
software supplied by the major manufacturers, and to the dif-
ficulty of recruiting cohorts of sufficient size to yield methods 

specimens. The spectra-based average three-class classifica-
tion accuracies determined by LDA and NN increased from 
81.7% (unnormalized data sets) to 89.9% (normalized). CCD 
increased the classification accuracy of the normalized sets to 
an average of 91.8%.

The histopathological grading of oligodendrogliomas, 
which is essential for better therapeutic management of these 
patients, is still controversial. In a study by Erb et  al,83 the 
metabolomes of 34 human brain biopsies, histopathologically 
classified as low-grade (LGO, N = 10) and high-grade (HGO, 
N  =  24) oligodendrogliomas, were studied using HRMAS 
1H MRS and multivariate analysis. Despite the small cohort, 
the classification model yielded a distinction between LGOs 
and HGOs and provided some useful insights into the dif-
ferent metabolic pathways that underlie malignancy grading, 
with HGOs showing the presence of tumoral hypoxia. The 
statistical model was then used to study biopsy samples that 
were classified as intermediate oligodendrogliomas (N  =  6) 
and glioblastomas (GBMs) (N = 30) by histopathology. The 
results revealed a gradient of tumoral hypoxia increasing in 
the following direction: LGOs, intermediate oligodendro-
gliomas, HGOs and GBMs. Interestingly, clinical assessment 
of the patient correlated better with the metabolomics results 
than with the histopathological analysis.

Analyses of CSF and serum have also been performed 
with the objective of detecting brain malignancies from the 
changes exhibited in lipid composition. In a study reported by 
Srivastava et al, higher levels of cholesterol and phospholipids 
were observed in sera obtained from tumor patients compared 
to normal individuals.84 Similarly, in the CSF analysis, cho-
lesterol, cholesterol esters, and choline-containing phospho-
lipids were absent in normal individuals and patients with 
other neurological (non-malignant) disorders.

In brain tumors, diagnosing tumor type and grade non-
invasively has been a clinical challenge. Such information would 
be useful for designing treatment and management strategies. 
Interestingly, most of the 1H MRS in vivo to date has been 
done on the brain. This is primarily due to the reduced effects of 
motion and lipid contamination in the brain. In a classification 
(using LDA) of MR spectra obtained in vivo, all non-astrocytic 
tumors were classified correctly.85 The result with the astrocytic 
tumors was not as good, possibly due to some spectra show-
ing very little lipid signal. This analysis had both training and 
independent (test) sets, which should be the case in a rigorous 
metabolomics analysis, but involved only a small cohort.

Although conventional 1H  MR imaging has increased 
our ability to detect brain tumors, it has not enhanced to 
nearly the same degree our ability to diagnose tumor type. 
Using 1H MRS, Preul et al characterized and classified tis-
sue from normal brains, as well as tissue from the five most 
common types of adult supratentorial brain tumors.86 These 
six tissue types differed in their pattern across the six metabo-
lites measured. ‘Leave-one-out’ LDA (LDA-LOO) based on 
these resonance profiles correctly classified 104 of 105 spectra, 
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has been formulated with clinical utility in mind: the eventual 
classifiers would provide accurate, reliable diagnosis/prognosis, 
and when appropriate, predict class membership based on the 
fewest possible discriminatory features. Ideally, these few fea-
tures would be interpretable in terms of biochemically, medi-
cally relevant entities (biomarkers). These two interrelated 
aspects are generally neither appreciated nor considered for 
the development of classifiers of clinical relevance. The SCS 
is compared with current data analytic practices frequently 
used by chemometricians in, for example, magnetic resonance 
(MR) spectroscopy. The means to extract discriminatory spec-
tral features and create robust classifiers that can reliably dis-
criminate diseases and disease states is outlined. The approach 
can identify features that retain spectral identity, and pro-
visionally relate these features, averaged sub-regions of the 
spectra, to specific chemical entities (metabolites). Particular 
emphasis is placed on describing the steps required to help cre-
ate classifiers whose accuracy doesn’t deteriorate significantly 
when presented with new, unknown samples.

Notwithstanding the above ambitious goals, clinical 
requirements and exigencies strongly suggest adopting a 
two-phase approach to diagnosis/prognosis. In the first phase 
the emphasis ought to be on providing as accurate and rapid 
diagnosis as possible, without any attempt to identify biomark-
ers. The latter should be the goal of the second, research phase, 
with a view of providing prognosis on disease progression.

Reliable classification of biomedical data, spectra in partic-
ular, is especially difficult, and demands a “divide and conquer” 
approach. Relying on this approach, the SCS evolved gradually 
and now consists of five stages. All these stages are data-driven, 
and only the goal, Data → Results, is ultimately of relevance.

The five stages are:

	 1.	 Display/visualization
	 2.	 Preprocessing
	 3.	 Feature selection/extraction/generation
	 4.	 Classifier development
	 5.	 Classifier aggregation/fusion

At Stage 1 potential outliers are identified and removed.93

Stage 2 handles various needed/appropriate preprocess-
ing steps, including peak alignment, area normalization, spec-
tral filtering, as well as various data transformations (eg, power, 
logarithmic and exponential, computation of various deriva-
tives, rank ordering, etc.).93–96 By backtracking to Stage 1, the 
consequences of the Stage 2 operations can then be visualized 
and assessed.

Stage 3, feature selection/extraction/generation, is a 
crucial stage of the classification strategy: it is essential (and 
feasible) for spectra, for which the majority of the d spectral 
features is either redundant (correlated) or irrelevant (noise). 
Thus, reducing the number of features, (feature space dimen-
sionality (FSD) reduction) is essential for achieving the requi-
site, acceptable SFR  5.

with reliable conclusions. A hopeful thrust towards solution of 
the first problem is now being made in a consensus report cur-
rently under preparation by members of the community and 
to be published in Radiology in early 2014. It will deal with 
the problems of complexity of the methods, outline standard 
procedures, and make recommendations for suppliers for min-
imum spectroscopic packages. On the statistical side, there is 
a rapid pace of development of methods, but still no document 
capable of making it sufficiently clear for non-mathematicians. 
We attempt in this appendix to clarify most of the issues, 
especially the need for adequate numbers of patients and nor-
mal subjects to make a cancer classifier robust and accurate.

Appendix
Classification Strategy
R.L. Somorjai and A.E. Nikulin

Several spectroscopic techniques provide the means to create 
noninvasive, early clinical procedures that lead to robust 
diagnoses/prognoses. Magnetic resonance (MR), infrared 
(IR), Raman and mass spectroscopy are the prime candidates 
for analyzing biofluids and tissues. MR spectroscopy has an 
additional clinical advantage in that it can also be applied in 
vivo, of significance in the clinic.

Having acquired biomedical spectra, the next step is to 
develop analytical procedures that can reliably classify these 
spectra (eg, assign them with high confidence to either the 
disease or the healthy group). However, biomedical spectra 
are characterized by a typically large (~1000–~10000) number 
d  of spectral features (dimensions); these initial features are 
the spectral intensity values at the measurement frequencies. 
In addition, there is the difficulty and/or cost of acquiring a 
statistically meaningful number N of biomedical samples; the 
number N of case +  control samples (instances) is generally 
very limited, in the range of 10–100 (“dataset sparsity”).90

A small N leads to a sample-to-feature ratio (SFR), 
N/dq, that is 1/20 to 1/500, instead of an SFR of at least 5 but 
preferably even larger.91 The latter SFR values are needed in 
order to develop a classifier with high generalization capabil-
ity, ie, one that assigns samples of unknown class correctly and 
with high probability.

An appropriately large SFR value is necessary. However, 
even if the SFR is adequately large, sufficiency is not guaran-
teed for small sample sizes; this latter caveat has not been fully 
appreciated before.90 There exists no single, data-independent, 
best “black box” classification algorithm,92 especially not for 
the wide range of biomedical datasets. As a consequence, the 
choice of preprocessing methodology, classifier development, 
etc, is necessarily data-dependent and should be data-driven. 
This can be achieved by formulating and realizing a flexible 
classification strategy. This was the objective sought over the 
last dozen years.93 The approach is called the Statistical Clas-
sification Strategy (SCS). It evolved in response to the need 
to classify biomedical data robustly. In particular, the strategy 
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A Genetic-Algorithm-based Optimal Region Selection 
algorithm (GA_ORS) is used for such feature extraction.2 
GA_ORS’s input is F, the maximum number of features 
(distinct sub-regions) required. GA_ORS minimizes simul-
taneously the misclassification error and the classification 
“fuzziness” (ie, increases “crispness”, the reliability of the class 
assignment probabilities). Furthermore, the type of required 
mathematical operation on the fk adjacent data points com-
prising the kth feature (sub-region) can be readily specified. 
Generally, simple averaging is used: the new feature gk is the 
average of the spectral intensities of the fk adjacent, original 
data points. For MR spectra, such averaging is particularly 
meaningful, since the averaged regions frequently correspond 
to, and estimate, specific peak areas. Averaging also increases 
the signal-to-noise ratio (ie, corrects partially for the presence 
of noise), a bonus. GA_ORS provides an optimized version of 
binning, because the F gks may be interpreted as F bins with 
different, optimized widths; F, the number of features, is an 
input parameter, but unlike D in binning, its optimal value is 
directly tied to the desired classifier optimization.

Several algorithmic enhancements and constraints were 
incorporated into the GA_ORS software. These turned out 
to be both necessary and useful for reducing the possibility 
of bias. In particular, selecting spectral sub-regions that are 
only accidentally discriminatory due to sample scarcity are 
avoided. For details, consult Nikulin et al (1998) and Somorjai 
(2001).2,101

Using proper feature extraction, even the simplest classi-
fiers frequently outperform more sophisticated (eg, nonlinear) 
variants.102,103 Because of its low complexity, and easy imple-
mentation, we generally employ the simple LDA (linear dis-
criminant analysis) with leave-one-out crossvalidation.

The GA_ORS approach has been very successful. For 
its application to the classification of biomedical MR and IR 
spectra, see Somorjai et al (1995) and Lean et al (2002).104,105

When the currently best features are still inadequate 
to give good classification results, a simple feature genera-
tion approach frequently works well. It augments the current 
F-term feature set by all F(F + 1)/2 interaction (ie, quadratic) 
terms.106 The peak ratios or peak area ratios, a/b, (favored in 
MR spectroscopy), may also be included, gaining an addi-
tional F(F-1) terms. This produces a total of G = F(3F + 1)/2 
possible features. (Even for moderate F, G is fairly large: for 
F = 3, G = 15, for F = 10, G = 155). The recommended and 
generally successful procedure is to select an “optimal” subset 
from these G features.

Having obtained G discriminatory features that satisfy 
the SFR appropriate for the dataset size, the next step 
(Stage 4) is to develop a reliable classifier with high general-
ization power (ie, with prediction accuracy for unknown sam-
ples comparable to the accuracies obtained for the training set 
samples). Ideally, one would like to partition the dataset into 
three subsets: a training set, a monitoring (tuning) set and an 
independent validation (test) set. However, when the sample 

Feature selection is used to find a subset of the original 
features when feature adjacency (consecutive data points) lacks 
physical relevance. The more general feature extraction also 
finds functional combinations of the original spectral features. 
Spectroscopists use the sub-optimal binning, ie, the reduction 
of the original d features into d/D (D  2) new ones, each 
constructed by averaging D adjacent data points.

In general, no non-exhaustive feature selection method 
can be guaranteed to find the subset that produces the small-
est classification error (optimal subset). In fact, for all possible 
feature subsets of the d original features, any ordering of the 
classification errors may occur.97 Thus, there is no guarantee 
that the bestL-feature subset consists of the firstL “best” fea-
tures selected and ordered via any univariate method.

Chemometricians tend to use SIMCA, Soft Independent 
Modelling of Class Analogies, forming the basis of the read-
ily available software SIMCA-P.98 The strategy of SIMCA-P 
is to rely almost exclusively on principal component analy-
sis (PCA), and for classification, on its supervised versions, 
partial least squares (PLS) or principal component regression 
(PCR). For 2-class problems, PLS and PCR are equivalent. 
Henceforth, SIMCA will denote the entire corpus of the 
PCA/PLS/PCR-based methodology.

In SIMCA, one first carries out PCA99 as an unsuper-
vised (no information regarding class membership) feature 
selection/generation approach. It replaces the d original fea-
tures by d orthogonal latent variables, the principal compo-
nents (PCs). These are linear combinations of the original 
features, and generally bear little resemblance to them. They 
are designed to find the directions of maximal variability in 
the initial, d-feature space. Thus, the dataset extends most 
along the first PC; the second PC is orthogonal to the first 
one, and accounts for most of the remaining variability, etc. 
Plotting the first 2–3 PCs we can visualize how the dataset 
behaves in the 2–3 dimensions that account for most of the 
data variance. However, directions of maximal variability are 
not necessarily the directions of maximal class separability.

Partial Least Squares Discriminant Analysis, PLS-
DA,98,100 is designed to satisfy this separability requirement 
by rotating the PCs such that the maximum separation 
among classes is obtained. Thus, PLS-DA is a supervised, 
regression-based classifier that maximizes the correlation with 
the matrix Y of class labels. (Note that linear discriminant 
analysis (LDA) achieves the same goal much more simply and 
without the need for PLS-DA’s more involved mathematical 
paraphernalia).

Additional, threshold-based processing using score plots 
and weight/loading plots is required to identify which of the 
original features is relevant (feature extraction).

These indirect, frequently convoluted problems led to the 
development of a specific feature extraction method,1,2 whose 
most important advantage is that it retains spectral identity: 
the new features are functions (typically the averages) of adja-
cent spectral data points and hence readily interpretable.
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led to changing the philosophy regarding feature selection 
and classifier development. A two-stage classifier develop-
ment process is now advocated, with different goals for the 
different stages.

At the first stage, the only requirement is that the 
classifier(s) provide fast, reliable diagnoses for the clinician. 
By general consensus, this is what clinical collaborators seem 
to want first. Thus, it appears that for this diagnostic stage, the 
clinician doesn’t need or require any causal (chemically, bio-
logically identifiable) interpretation of the distinction between 
the diseased and non-diseased states.

The goal of the second stage is to provide, based on 
the robust classifiers developed, reliable decision support for 
prognosis; this would require explicit research effort, not 
necessarily of direct and immediate clinical relevance, and 
identification of the molecular, biological causes of the disease 
state(s), (ie, discovery of biomarkers or panels of biomarkers).

An additional impetus for promoting the above-described 
two-stage approach is the discovery that after completion of the 
initial selection of interpretable features, the results can be fur-
ther improved by using a dissimilarity/distance-based classifi-
cation approach.112,113 For each instance, the derived two new 
features, its two dissimilarities (distances) to the two classes may 
be complicated, generally nonlinear combinations of the origi-
nal features. However, interpretability is not lost, only disguised; 
one may readily backtrack to the original feature selection stage 
and identify the starting feature set. The major advantage of this 
dissimilarity-based approach is that there is a great deal of flex-
ibility in choosing the types of dissimilarities (ie, class proximity 
measures such as class centroids, k-nearest neighbors, average 
distances to members of the two classes, etc). Additional flex-
ibility is conferred on the approach by being able to select from 
a great variety of ways to calculate dissimilarities and distances 
(dissimilarity/distance measures).114–116 An important bonus is that 
this new, derived feature set is necessarily two-dimensional, 
hence the classification results are immediately visualizable in a 
class proximity plane, eg, using Stage 1 of the SCS.

A clinically important concept, crispness, (C), was also 
introduced and used. C is the fraction of overall class assign-
ments in the probability range of 0.75  C  1.0 that the clas-
sifier affirmed to be reliably classifiable to either class. Note that 
the crisp instances (ie, those with class assignment probabilities 
 0.75), are the only ones that are clinically relevant. This mir-
rors clinical practice: a patient will not be declared healthy, or 
submitted to some clinical procedure such as operation, unless 
the clinician is sufficiently confident in his/her diagnosis.

Stage 5, the classifier aggregation/fusion stage, is invoked 
if “everything else fails”, ie, if despite using Stages 1–4, the 
classifier is still inaccurate and/or unreliable. The operational 
idea for aggregation is that if a single classifier failed, combin-
ing several classifiers may produce classification results that 
are more accurate and robust.

Conventional classifier aggregation methods typically 
combine the class probabilities of M different classifiers 

size is small, such partitioning is neither feasible nor advisable. 
Then, the simplest approach is to use the entire dataset when 
developing the classifier. However, this resubstitution method 
is known to give an optimistically biased error estimate (EE) 
of the classification accuracy, ie, the resubstitution error would 
be smaller than the true error. Reducing this optimistic bias 
by crossvalidation (CV) may be attempted.107,108

Amongst the various CV approaches, the most com-
monly used leave-one-out (LOO) method trains on N–1 
of the N samples, and validates the accuracy of this (N–1) 
sample-based classifier on the left out sample. By leaving out 
each of the N samples in turn (hence producing N slightly 
different classifiers); LOO provides an essentially unbiased 
EE; unfortunately, for small N the variance can be unac-
ceptably large. An additional variant is k-fold CV; there is 
evidence that this improves the EE.108 CV methodology cul-
minates in bootstrapping.104,105,109 A further generalization, 
the weighted crossvalidated bootstrap is discussed in detail in 
Somorjai (2001).101

For a reliable and realistic error estimate, especially for 
small N, it is important to use crossvalidation both at the fea-
ture selection/extraction and classifier development and (even 
aggregation) stages.108,111 This is sometimes referred to as 
external/internal or double CV.

A very important practical consideration is how to acq
uire and represent the data on which decisions (eg, medical 
diagnoses/prognoses) will be based. The goal is to find those 
class representations (types of features) that are optimal for 
the eventual classifier development and application. With 
clinical use in mind, the range of representation possibili-
ties is narrowed by focusing on non-invasive data acquisition 
techniques.

For spectra, the potentially most useful class represen-
tation involves explicitly determined spectral signatures (peaks, 
integrated spectral sub-regions, etc); this is the initial approach 
we advocate.

Bias, due to redundancy, sample size imbalance, etc., can 
be minimized. However, the derived discriminatory spectral 
regions don’t necessarily correspond to known metabolites, ie, 
at this stage of the analysis useful biomarkers may not be dis-
covered or discoverable. Thus, “interpretability” only means 
that the identified discriminatory spectral signature doesn’t 
require additional feature unscrambling, as is needed for the 
PLS-DA-derived secondary features (SIMCA-P’s score and 
weight plots).98

The major shortcoming of using spectral signatures is 
that some of the discriminatory subregions found will not 
have known metabolic identity. Furthermore, the number of 
optimal discriminatory features requested is an input param-
eter; it has to be validated to reduce the induced bias. When 
the sample size is small, additional uncertainties arise because 
of the possibility of non-uniqueness.

In order to develop classifiers that are immediately rel-
evant in the clinic, the above considerations and caveats 
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to form a new classifier.117 It is expected that aggregation 
will produce a combined classifier whose accuracy will be 
higher than that of the best individual classifier. It is gen-
erally assumed that the ensemble of classifiers must be both 
diverse and accurate. Diversity ensures that the individual 
classifiers make independent errors. To see how this can be 
achieved consult Kuncheva (2004) and Zhilkin and Somorjai 
(1996).117,118
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