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ABSTR ACT: Asthma is characterized by the accumulation of eosinophils in the airways in most phenotypes. Eosinophils are inflammatory cells that 
require an external survival-prolonging stimulus such as granulocyte macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-5, or IL-3 for 
survival. In their absence, eosinophils are programmed to die by spontaneous apoptosis in a few days. Eosinophil apoptosis can be accelerated by Fas ligation 
or by pharmacological agents such as glucocorticoids. Evidence exists for the relevance of these survival-prolonging and pro-apoptotic agents in the regula-
tion of eosinophilic inflammation in inflamed airways. Much less is known about the physiological significance and mechanisms of spontaneous eosinophil 
apoptosis even though it forms the basis of regulation of eosinophil longevity by pathophysiological factors and pharmacological agents. This review con-
centrates on discussing the mechanisms of spontaneous eosinophil apoptosis compared to those of glucocorticoid- and Fas-induced apoptosis. We aim to 
answer the question whether the external apoptotic stimuli only augment the ongoing pathway of spontaneous apoptosis or truly activate a specific pathway.
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Introduction
Eosinophilic granulocytes account only for approximately 3% of 
blood leukocytes in healthy individuals. Similar to neutrophilic 
granulocytes, they are cells specialized to kill pathogens by the 
secretion of toxic mediators but also able to regulate function 
of other immune cells. Although evolutionary, the function 
of eosinophils is thought to be the innate immune response 
against parasitic helminthes;1 they are also critically involved 
in the pathogenesis of allergic, gastrointestinal, and hypereo-
sinophilic disorders and in tumor immunity.2–5 Allergic asthma 
is characterized by the accumulation of eosinophils in the air-
ways. The current evidence suggests that eosinophils are critical 
mediators of asthma exacerbations and airway remodelling.6–9

The biology of eosinophils differs from many other 
immune cells or malignant cell lines in their requirement for an 
external stimulus for continuation of survival. In the absence 

of any such stimulant (eg granulocyte macrophage-colony 
stimulating factor (GM-CSF), interleukin (IL)-5 or IL-3), 
they die by spontaneous (also termed as “passive”) apoptosis 
in a few days.10 Apoptosis is characterized by cell shrinkage, 
nuclear coalescence, chromatin condensation, and DNA frag-
mentation leading to the formation of apoptotic bodies and in 
vivo, to their ingestion by macrophages or other phagocytes. 
Generally, apoptosis can be induced via two   different path-
ways, extrinsic (receptor mediated) or intrinsic (mitochondrial 
centered) (Fig. 1).11

A majority of the studies on the regulation of eosino-
phil apoptosis have used allergic asthma as a starting point, 
ie they have focused on the significance and mechanisms of 
survival-prolonging cytokines.10,12,13 Given the importance of 
 eosinophils in certain phenotypes of asthma,14,15 this approach 
is very sensible. However, eosinophils, albeit in low numbers, 
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Eosinophil apoptosis can be induced by several agents 
facilitating clearance of eosinophilic inflammation. Eosino-
phil apoptosis can be induced eg by ligation of Fas or by 
ligation of tumor necrosis factor receptor (TNFR) family 
member CD30 and by many pharmacological agents, such as 
glucocorticoids, theophylline, and leukotriene modifiers.21–27 
Plenty of evidence exists supporting the occurrence of steroid-
induced eosinophil apoptosis in the airways of  steroid-treated 
 asthmatics.28–31 Many cell types of the airways, such as bron-
chial epithelial cells, bronchial smooth muscle cells, fibro-
blasts, T cells, and eosinophils express Fas ligand (FasL),29,32–34 
and in T cells, the expression is reduced by Th2  cytokines 
GM-CSF, IL-5, and IL-4.35 Neutralization of FasL enhanced 
airway eosinophilia in a mouse model of allergic asthma pro-
viding evidence that FasL is a relevant pro-apoptotic agent 
for eosinophils in vivo.36 Treatment with anti-Fas mAb was 
shown to enhance apoptosis of airway tissue eosinophils in 
mice. However, this treatment resulted in aggravated airway 
inflammation due to cytolysis and progression of apoptosis 
into secondary necrosis.37 This emphasizes the importance of 
efficient phagocytic clearance of apoptotic cells.

To combat the eosinophilia associated with several dis-
ease conditions, understanding the signaling patterns related 
to eosinophil survival and apoptosis is extremely important. 
Ideally, a novel pharmacological agent aimed specifically to 
deplete eosinophils by inducing eosinophil apoptosis could 
be targeted to cover all the following options: (1) inhibit the 
action or signaling of survival-prolonging factors, (2) mimic 
the action and/or signaling of known external inducers of 

are also present in the blood and tissues in healthy individuals. 
It has been estimated that the mean turnover of eosinophils 
is approximately 2.2 × 108 cells/kg/day. Once in the circula-
tion, eosinophils have a half-life of approximately 8–18 h and 
a mean blood transit time of approximately 25–26 h.10,16,17 In 
two recent studies, migration of radiolabeled eosinophils was 
followed in healthy individuals in real time. Eosinophils, after 
leaving the blood circulation, transited through the lungs and 
accumulated in the liver and spleen.16,18 Evidence was also 
attained regarding the re-entrance of eosinophils from the 
liver to the circulation.16 However, 48 h after injection of the 
radiolabeled eosinophils, approximately 50% of them resided 
in the liver, 30% in the spleen, and the rest in other organs. 
It is reasonable to hypothesize that the liver may be the pri-
mary site of eosinophil clearance through apoptosis, possibly 
spontaneous apoptosis. No direct evidence, however, exists 
about the occurrence of spontaneous (or passive) apoptosis in 
vivo. As studying the mechanisms of eosinophil survival and 
apoptosis in tissue samples is largely impossible, a vast majority 
of eosinophil studies have used eosinophils isolated from the 
peripheral blood by the CD16-negative selection. Indirect evi-
dence of the appearance of spontaneous eosinophil apoptosis 
in blood was obtained recently in a study evaluating the aging 
of cells in blood samples, where eosinophils showed a decrease 
in forward side scatter (FSC) values  indicative of smaller 
cell size typical to apoptosis.19 Furthermore, the occurrence 
of blood eosinophil apoptosis, even though not spontaneous, 
was demonstrated in mice in vivo after the administration of 
Siglec-F antibody.20
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Figure 1. The main features of extrinsic and intrinsic apoptosis pathways. Fas receptor-mediated pathway is shown as an example of extrinsic apoptotic 
pathway. Extrinsic apoptosis is initiated by ligation of death receptor Fas leading to the formation of DISC and activation of caspases. Sometimes, BID 
cleavage into truncated BID (tBID) and mitochondrial route is required for caspase activation in extrinsic apoptosis. Intracellular stress conditions initiate 
intrinsic pathway of apoptosis, where Bcl-2 family members and MMP play major roles. MMP can be mediated by pore-forming activity of Bax and/or 
tBID or by mPT. If caspases are inhibited, apoptosis may be executed by apoptosis-inducing factor (AIF) and endonuclease G (ENDOG).
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after 48  h of culture. The mechanism of CD40L-induced 
survival prolongation involved induced expression of cellular 
inhibitor of apoptosis proteins (cIAPs).71 CD40L- deficient 
mice showed decreased eosinophilic lung inflammation 
72 h but not 24 h after allergen challenge72 suggesting that 
CD40–CD40L interaction affects maintenance of eosino-
philic airway inflammation. In the absence of any of these or 
other survival-prolonging factors, eosinophils proceed into 
spontaneous apoptosis.

Progression of Spontaneous Apoptosis
When eosinophils isolated from human blood are cultured 
in the absence of any inducers or inhibitors of apoptosis, 
approximately half of them undergo spontaneous apoptosis in 
2 days.64,73 We have applied several methods for the determina-
tion of eosinophil apoptosis providing basic information on the 
progression of apoptosis and the cascade of apoptotic events in 
spontaneously dying eosinophils. According to our combined 
data over time, apoptotic values obtained with Annexin-V/ 
propidium iodide double-staining are continuously higher 
when compared to those obtained with other standard meth-
ods of apoptosis determination (DNA fragmentation assay, 
morphological examination, DYm  dissipation) (Fig. 2, unpub-
lished observation). This suggests that cell surface expression 
of phosphatidylserine (PS) precedes many well-known mani-
festations of apoptosis in eosinophils. Early occurrence of PS 
exposure has been previously demonstrated in eosinophils,74 
and evidence exists also of PS exposure as a caspase-dependent 
event.52,74,75 Mitochondrial events such as cytochrome c release 
and DYm dissipation were shown to occur after PS exposure in 
eosinophils, which was in contrast to lymphocytes.74 It seems 
that the order of events is stimulus dependent as well as cell-
type dependent.74,76,77 To further support early time-course 
of PS exposure, it was shown that PS exposure preceded cell 
shrinkage and DNA fragmentation in a lymphoma cell line by 
using three different stimulants to induce apoptosis.78 During 
the process of apoptosis, early appearance of PS is logical since 
PS functions as a cell surface signal for phagocytes to ingest 
the apoptotic cells and attraction of phagocytes and phagocy-
tosis may be considered as one of the most important events 
for occurrence of apoptosis in a non-inflammatory fashion.37 
Indeed, inhibition of PS exposure during apoptosis led to more 
than 50% reduction in engulfment of apoptotic cells.79 How-
ever, from the methodological point of view, it is recommended 
to measure apoptosis using a combination of different meth-
ods, not solely Annexin-V-assay despite the early appearance of 
PS in apoptotic cells. All methodologies to analyze apoptosis 
have their drawbacks.80,81

Mediators of Spontaneous Eosinophil Apoptosis
Bcl-2 members and mitochondrial events during spon-

taneous eosinophil apoptosis. Members of Bcl-2 family are 
critical in monitoring intracellular damage and important for 
mitochondrial membrane permeabilization (MMP) to occur, 

apoptosis such as FasL or glucocorticoids, and (3) enhance the 
intrinsic pro-apoptotic signaling pathway during spontaneous 
(passive) eosinophil death. This review focuses on the signaling 
of spontaneous eosinophil death, a phenomenon that is largely 
neglected, and compares it with the mechanisms of known 
inducers of eosinophil apoptosis, FasL, and glucocorticoids.

Inhibitory Signals for Spontaneous Apoptosis
Many eosinophil survival-prolonging inflammatory agents,  
such as GM-CSF, IL-5 and IL-3, are present in the lungs 
of asthmatics, and eosinophil apoptosis has been shown 
to be reduced in the airway submucosa of patients with 
steroid-untreated asthma when compared to healthy 
 controls.29,38–40 Eosinophil survival may be prolonged up 
to 1–2 weeks in response to these cytokines, and IL-5 is 
the most potent.41 GM-CSF, however, seems to be the 
main eosinophil survival-prolonging cytokine in asthmatic 
 airways.39,40 Pathways activated by IL-5/GM-CSF include 
Lyn/Syk–Ras–Raf-1–extracellular signal-regulated kinases 
(ERK) 1/2, Jak2-STAT1, and PI3K-Akt in eosinophils.42–49 
Of these, the ERK pathway does not seem to be involved in 
the survival-prolonging action.50,51 In addition, inhibition of 
Bax translocation to mitochondria by IL-5 and GM-CSF has 
been shown in eosinophils.49,52 TGF-b, interestingly, abro-
gated IL-5/GM-CSF-induced eosinophil survival, and this 
mechanism involved inhibition of tyrosine phopshorylation of 
Jak2, Lyn, and ERK 1/2 as well as inhibition of phosphoryla-
tion of STAT1 and Akt.53–55

In addition, other significant survival-prolonging fac-
tors seem to exist because delayed apoptosis of blood and 
nasal polyp tissue eosinophils was only partly prevented by 
anti-GM-CSF, anti-IL-5, and/or anti-IL-3 antibodies.56,57 
Many pathogenic components, cytokines (eg TNF-a, leptin, 
interferons (IFNs)) and allergens also prolong eosinophil 
 survival.10,58–65 Generally, NF-kB may be the most important 
transcription factor mediating eosinophil survival, as its inhi-
bition turns eosinophils into the apoptotic cascade.64,66

TNF-a, which can be produced locally by mast cells, 
was demonstrated to be an anti-apoptotic factor for eosino-
phils if NF-kB was not inhibited. This effect was proposed 
to be mediated via TNF receptors, NF-kB, and induction of 
GM-CSF production.60,67 IFN-g is produced by T helper 1 
cells, and its effects on eosinophils seem to be complex. IFN-g 
inhibited IL-3- or IL-5-induced differentiation of eosinophils 
from cord blood mononuclear cells68 but prolonged eosinophil 
survival in vitro.69 Leptin is a cytokine that is mainly pro-
duced by adipocytes of white adipose tissue with the main 
function related to inhibition of appetite. Leptin has been 
shown to increase eosinophil survival even though it remains 
unclear whether the survival-prolonging concentrations may 
be reached in vivo.70

In addition, CD40–CD40L interaction has been shown 
to prolong eosinophil survival. Freshly isolated blood eosino-
phils did not express CD40, but the expression was strong 
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of Bcl-2 was found in the lung eosinophils of patients with 
asthma and children with severe exacerbations when compared 
to eosinophils of healthy individuals or children with mild-
to-moderate exacerbations, respectively.91–93 Anti-apoptotic 
Mcl-1L is degraded during spontaneous apoptosis and in an 
accelerated manner during glucocorticoid-induced apoptosis.90

In addition to the pore-forming activity of cleaved Bax 
or Bid, MMP can be mediated via mitochondrial permeabil-
ity transition (mPT) pore.11,94 It is a channel formed to the 
merging point of inner and outer mitochondrial membranes 
in response to Ca2+, oxidants, or pro-apoptotic Bcl-2 fam-
ily members leading to free passage of solutes and molecules 
up to 1.5 kDa.94,95 mPT does not seem to be important for 
spontaneous apoptosis or Fas-induced apoptosis but is a criti-
cal mediator of eosinophil apoptosis induced by glucocorti-
coids.73,96,97 As discussed above, pores formed in the outer 
mitochondrial membrane by the cleaved Bax and/or Bid are 
probably responsible for the MMP in the pathways of sponta-
neous and Fas-induced eosinophil apoptosis.84,90

Caspases and calpains. Caspases are cysteine-dependent 
aspartate-specific proteases involved in the execution phase of 
apoptosis and are further divided into initiators (caspases-8, -9, 
and -10) and effectors (caspases-3, -6, and -7). Initiator caspases 
are synthesized as inactive proenzymes and require dimeriza-
tion for activation that is enabled by platforms such as death-
inducing signaling complex (DISC) or apoptosome. Effector 
caspases occur as inactive dimers and require cleavage by ini-
tiator or other effector caspases to become activated. When 
activated, caspases cleave cellular components into tetrapeptide 
sequences optimal enough to fit their catalytic site.98,99

Eosinophils have been shown to express caspases-3, -6, 
-7, -8, and -9.52,75,87 Many apoptotic events during spontane-
ous or induced eosinophil apoptosis are reduced or prevented 
by pan-caspase inhibitors suggesting that eosinophil apoptosis 
is mediated by the activation of the caspase cascade.52,75,96,100 
Caspase-9, accounted as the initiator caspase activated in 
response to mitochondrial apoptotic pathway, has been shown 
to be processed during spontaneous and induced apopto-
sis.52,84,101–103 However, its inhibition by Z-LEHD-FMK did 
not prevent spontaneous apoptosis or FasL-mediated apop-
tosis, suggesting that it may not function as a critical ini-
tiator caspase in these pathways.84,101 However, a possibility 
exists that the inhibitor used was inefficient, because accord-
ing to our data it inhibited only 65% of caspase-9 activity 
in eosinophils. It can be suspected that the residual 35% of 
caspase-9 activity was enough to activate effector caspases.101 
Also caspase-8 activity has been detected in spontaneously 
dying eosinophils in some but not all studies. But similar to 
 caspase-9, its  inhibition did not prevent apoptotic events during 
 spontaneous apoptosis.52,84,101–103 Altogether, the initiator cas-
pase responsible for the proceeding of spontaneous apoptosis 
is not clear. In neutrophils, activation of caspase-8 was shown 
to be dependent on initiator caspase-9104 and may be actually 
activated by effector caspase-3, as previously described.105 In 

especially in the intrinsic pathway of apoptosis. The Bcl-2 family 
consists of a group of anti-apoptotic proteins and two groups of 
pro-apoptotic proteins.82,83 Because eosinophils undergo apop-
tosis quite rapidly, the expression of proteins regulating lon-
gevity is balanced toward pro-apoptotic members. Generally, 
pro-apoptotic Bcl-2 family members Bax and Bid are strongly 
expressed in untreated human eosinophils.49,84,85 Cleavage of 
Bax and Bid into pore-forming fragments enables permeabi-
lization of the outer mitochondrial membrane and release of 
cytochrome c. It was shown that during spontaneous eosino-
phil apoptosis, Bax is clustered and re-localized into mitochon-
dria, independent from caspases, and this leads to the release of 
cytochrome c to the cytosol and activation of caspases.52,86 An 
accelerated Bax translocation is observed in dexamethasone-
treated eosinophils.86 Also Bid is processed during spontaneous 
apoptosis and at a faster rate during Fas- and glucocorticoid-
induced apoptosis.84 Spontaneous, FasL-, and dexamethasone-
mediated eosinophil apoptosis were reduced by 30, 50, and 
25%, respectively, in cultured bronchoalveolar lavage (BAL) 
eosinophils from Bid-deficient mice, suggesting that Bid has a 
lesser role in spontaneous and glucocorticoid-induced apopto-
sis and is a more critical mediator in FasL-induced apoptosis.85 
It seems clear that extrinsic (FasL-induced) apoptosis requires 
an  additional mitochondrial loop in eosinophils.

As expected in cells prone to undergo apoptosis, the 
expression of anti-apoptotic Bcl-2 members Bcl-2, Bcl-xL, 
and Mcl-1L is generally low in eosinophils.87–90 However, the 
level of Bcl-2 expression seems to depend on the status of the 
patient and origin of eosinophils, because higher expression 

Figure 2. Comparison of percentages of spontaneous eosinophil 
apoptosis obtained by different apoptosis determination methods. 
Apoptosis was determined by Annexin-V FITC/propidium iodide 
double-staining (Anx, n = 12), Dna fragmentation assay carried out 
by propidium iodide staining of permeabilized eosinophils (PI, n = 56), 
morphological analysis of May-Grunwald–Giemsa-stained eosinophils 
(Morf, n = 23), or determination of mitochondrial membrane potential by 
JC-1 staining (MMP, n = 5) after 40 h of incubation. Descriptions of the 
methods used can be found at ref. 73. 
Note: ***Indicates P  0.001 as compared to all other columns by using 
anoVa analysis.
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 possible that loss of mitochondrial antioxidant defence at least 
partly explains the increased ROS during spontaneous and 
glucocorticoid-induced eosinophil apoptosis.

Mitogen-activated protein kinases (MAPKs) and 
mammalian sterile 20-like kinase (Mst). MAPKs are 
 serine/threonine kinases mainly activated by proinflammatory 
cytokines, growth factors, and environmental stress. MAPK 
family consists of c-Jun N-terminal kinases (JNK) 1-3, ERK 
1/2, 3, 5 and 7, and p38 family members and a serial of phos-
phorylation cascades leads to activation of MAPK. MAPKs 
phosphorylate transcription factors resulting in transcrip-
tion of genes involved in apoptosis, survival, proliferation, 
and differentiation. Additionally, MAPKs affect function of 
numerous other proteins via phosphorylation.120,121 JNK has 
been previously shown to mediate apoptosis through several 
pathways: AP-1-mediated transcription of FasL and TRAIL-
receptor 1,122,123 phosphorylation of Bcl-2 family protein 
members,120,124,125 mPT  induction,126,127 and phosphorylation 
of histone H2AX required for DNA fragmentation.128

Some evidence has been gathered regarding the role of 
JNK as a mediator of spontaneous eosinophil apoptosis, even 
though results are contradictory. Spontaneous eosinophil 
apoptosis was decreased by a peptide inhibitor of JNK but 
not by the other JNK inhibitors tested. Furthermore, mod-
est or no activation of JNK and lack of activation of c-Jun has 
been demonstrated in spontaneously dying eosinophils.73,129 
Instead, JNK was involved in glucocorticoid-induced eosino-
phil apoptosis and its activation was dependent on oxidants.86 
Indeed, increased level of ROS is one possible general acti-
vation mechanism for JNK in eosinophils proceeding toward 
apoptosis. Additionally, activation of JNK pathway has been 
previously demonstrated to occur in response to FasL in lym-
phocytes,130,131 and some evidence points to the role of JNK 
in FasL-induced eosinophil apoptosis.132 The other MAP 
kinases ERK 1/2 and p38 seem to mediate eosinophil sur-
vival, not apoptosis.49,50 Interestingly, p38 MAP kinase seems 
to be active in isolated eosinophils, and its inhibition by a 
pharmacological inhibitor induces apoptosis.50

Mst1 belongs to a group of germinal center kinases (GSKs) 
that is involved in many functions of immune cells such as traf-
ficking, proliferation, and apoptosis.133 Mst1 has been shown to 
be involved in the activation of MAPKs such as JNK.134 Cas-
pase-mediated cleavage and release of 36 kDa fragment of Mst1 
was demonstrated to correlate with eosinophil apoptosis but not 
with neutrophil apoptosis. Cleavage of Mst1 was increased by 
FasL and decreased by IL-5, suggesting an important role of 
this kinase in mediating eosinophil apoptosis.135

Summary and Conclusions
Eosinophil apoptosis induced by FasL or glucocorticoids is 
a physiologically or clinically relevant mechanism of eosino-
phil clearance. Plenty of evidence exist about the clinical rel-
evance of steroid-induced eosinophil apoptosis in the airways 
of  steroid-treated asthmatics.28–31 Most likely,  spontaneous 

eosinophils, activation of both initiator  caspases (8 and 9) has 
been detected during Fas- and glucocorticoid-induced apop-
tosis.84,106,107 The evidence indicates that caspase-8 functions 
as the critical initiator caspase in FasL-mediated eosinophil 
apoptosis as its inhibition was reported to prevent Bid-cleav-
age and reduce apoptosis.84

Activation of effector caspases-3 and -6 seems to be a gen-
eral feature of eosinophil apoptosis. Involvement of these cas-
pases has been found in spontaneous eosinophil apoptosis and 
apoptosis induced by various stimuli.52,75,87,96,103 Lamin deg-
radation and DNA fragmentation are caspase-6- dependent 
events in eosinophils, and inhibition of caspase-6 delayed or 
halted apoptosis at the level of chromatin condensation but 
did not prevent apoptosis.75 This is consistent with the results 
in other cell types.108–111 Also PS externalization was shown 
to be partly dependent on caspase-6.75 Inhibition of caspase-3 
partially prevented DNA fragmentation in eosinophils.75,96

Calpains are calcium-activated (papain-like) neutral pro-
teases that are involved in the execution of both apoptosis and 
necrosis. At least 14 isoforms of calpains exist. Similar to cas-
pases, calpains are cysteine proteases; but in contrast to cas-
pases, they require no particular amino acid in the  substrate 
peptide sequence. Calpains are activated by increased intra-
cellular calcium and their substrates include X-linked IAP 
(XIAP), Bcl-xL, Bid, and pro-caspases-3, -7, -8, and -9.112,113 
DNA fragmentation during spontaneous apoptosis was 
prevented by inhibition of calpains 1 and 2. Unfortunately, 
no information exists on the role of calpains in FasL- or 
 glucocorticoid-induced eosinophil apoptosis. However, lack of 
role of calpains in nitric oxide-induced apoptosis suggests that 
calpains are not activated in analogous situations to caspases. 
Calpains have been shown to be involved in the cleavage of 
Bax in spontaneous eosinophil apoptosis. Bax cleavage is a 
pro-apoptotic event leading to its mitochondrial targeting.49

Reactive oxygen species (ROS). ROS induce apoptosis 
of human eosinophils and are often involved in the mitochon-
drial pathway of apoptosis.114,115 Thiol-antioxidant glutathi-
one is considered to form the most important antioxidant 
defence in mitochondria.116 Spontaneous eosinophil apoptosis 
was reduced by antioxidants that elevate intracellular levels 
of glutathione and by hypoxia86,115,117,118 suggesting a role of 
ROS in mediating spontaneous apoptosis and importance of 
glutathione in the regulation of intracellular oxidant levels in 
eosinophils. In a similar manner, the antioxidants increas-
ing glutathione reduced Fas-induced apoptosis.115 Also, 
glucocorticoid-induced apoptosis was prevented by mimetic 
of superoxide dismutase (SOD) and hypoxia, indicating the 
involvement of ROS.86 ROS seem to mediate also eosinophil 
apoptosis induced by many other stimulants.73,115,119  However, 
the exact mechanism of increased oxidant levels remains 
unclear. Decrease in the levels of an important mitochondrial 
antioxidant MnSOD was demonstrated during spontaneous 
apoptosis as well as in glucocorticoid-treated cells.86 Levels 
of a cytosolic antioxidant were not similarly decreased. It is 
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eosinophil apoptosis occurs in a physiological situation, even 
though direct evidence is difficult to obtain. The signaling 
pathway of spontaneous apoptosis seems to overlap with the 
pathways of  FasL or glucocorticoid-stimulated apoptosis. 
A summary of different pathways is shown in Table 1. Pre-
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domain (FADD) phosphorylation and activation of initiator 
caspase-8. However, mitochondrion has an important role in 
all of these pathways of apoptosis as suggested by common 
dependence on mitochondrial ROS and processing of pro-
apoptotic Bcl-2 family members. The mechanism of MMP 
may differ between these pathways of apoptosis. Bax and 
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undergoing spontaneous apoptosis, while FasL-stimulated 
apoptosis was dependent on Bid. mPT is emphasized during 
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Table 1. A summary of the mechanisms involved in the regulation of spontaneous eosinophil apoptosis when compared to extrinsic apoptosis 
induced by fas or intrinsic apoptosis induced by glucocorticoids.

FAS-MEDIATED  
APOPTOSIS

SPONTANEOUS  
 APOPTOSIS

APOPTOSIS INDUCED  
BY GLUCOCORTICOIDS

REF.

Caspase-3 ++ ++ ++ 52, 75, 87, 96, 101–103

Caspase-6 nD ++ nD 75

Caspase-8 +++ + + 52, 84, 87, 96, 101–103, 
106

Caspase-9 + + + 52, 84, 101, 102, 106, 107

Calpains nD ++ nD 49, 75

mPt – + +++ 73, 96, 97

Bid +++ ++ ++ 84, 106, 85

Bax nD ++ ++ 49, 52, 86, 90

JnK ++ (id) ++? ++ 73, 86, 129, 132

roS ++ ++ ++ 73, 86, 115, 117, 135

Mst 1/2 ++ ++ nD 135

Abbreviations: +++, apoptosis is completely dependent; ++, apoptosis is partially (approximately 50%) dependent or clearly involved in apoptosis; +, minor role in 
apoptosis; −, no role in apoptosis; ND, not determined, id, indirect evidence; Bax, Bcl-2-associated X protein; Bid, BH3-interacting domain death agonist; JNK, c-Jun 
N-terminal kinase; Mst, mammalian sterile 20-like kinase, mPT, mitochondrial permeability transition; ROS, reactive oxygen species.
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