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Introduction
David N. Reshef and his colleagues recently published a paper 
that introduced a measure of dependence for two-variable 
relationships: the maximal information coefficient (MIC)1. 
MIC can be used as a metric for the exploration of large data-
sets, and the detection of close associations between tens of 
thousands of variable pairs in large datasets. MIC uncovers 
variables that not only have functional associations but are 
also statistically independent. MIC is part of a larger family 
of maximal information-based nonparametric exploration 
(MINE) statistics. In addition to the MIC measure, MINE 
provides three additional measures: maximum asymmetry 
score (MAS), maximum edge value (MEV), and minimum 
cell cumber (MCN). As a measure of dependence, the MIC 
has two heuristic properties: generality and equitability. These 
characteristics make the MIC particularly suitable for appli-
cations in bioinformatics; David N. Reshef and others have 
tested the MIC using many real biology datasets to demon-
strate its characteristics and compared the MIC to a wide 
range of methods, including Pearson/Spearman correlations 
and Mutual Information.

To date, the MIC has been applied successfully in various 
bioinformatics fields. For example, the MIC has been used as a 
measure to convert records of biological annotations into net-
works of the associated annotations.2 Das et  al.3 applied the 
MIC to explore the global expression dynamics of different 
interaction datasets from humans and yeast. Lin et al.4 adopted 
the MIC to define a co-expression network and indicated that 
the MIC has clear theoretical advantages in regard to captur-
ing general dependence patterns. Co-expression methods have 
been widely applied for the analysis of gene expression data. 
Co-expressed genes with correlated pathways may share com-
mon functional tasks and regulatory mechanisms.5 The MIC  
can help detect co-expressed genes or tissues and find 
biologically meaningful relationships among genes. In addition, 
correlation-based methods are the most straightforward way to 
explore a gene co-expression network.5 Therefore, the MIC can 
also help define gene co-expression similarity relationships in a 
co-expression network. The cluster analysis method can employ 
the MIC to measure the pair-wise transcription correlation 
coefficients between genes and to then cluster together genes 
or tissues that manifest similar expression pattern.6
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The authors have a website that provides a compiled Java 
program named MINE.jar, which can be run in a Java runtime 
environment. However, the provided MINE.jar exhibits seve
ral limitations that hinder its availability in real applications. 
First, the time and space complexities of execution are too large 
for the analysis of large-scale datasets. Second, MINE.jar often 
throws a Java runtime exception, such as OutOfMemoryError. 
In addition, it is not an open-source software. In brief, MINE.
jar is not feasible for the analysis of very long biology sequences, 
particularly for the analysis of all pairs of variables against each 
other. To reduce memory requirements and computing time, 
Davide Albanese et  al. provided a C implementation of the 
MIC measure.7 However, the developed program is a serial 
program and does not achieve a distinct improvement. Current 
computer architectures are increasingly relying on hardware 
level parallelism to improve performance: multiple execution 
units, pipelined instructions, and multi-core. With the devel-
opment of next-generation sequencing (NGS) technologies, 
high-dimensional gene datasets have been produced. To exploit 
these large-scale datasets, bioinformatics should make full use 
of modern computational approaches to process the collected 
data. At the same time, the quality and speed of computational 
approaches, such as the construction of large-scale networks of 
gene interactions for protein-protein interactions (PPI), gene 
co-expression, and data and gene coregulation data, must be 
considered carefully. To this end, we propose a rapid maxi-
mal information-based nonparametric exploration tool based 
on parallel computing for the discovery of relationships and 
associations in large-scale datasets.

Methods
From a general point of view, parallel computing is the simul-
taneous use of multiple computer resources to solve a com-
putational problem. In theory, the introduction of additional 
resources to perform a task will shorten the time required to 
complete the task and result in potential cost savings. Com-
pared with serial computing, parallel computing is much 
better suited for modeling, simulating, and understanding 
complex, real-world phenomena. A single computer resource 
can only perform one task at a time. Multiple computing 
resources can perform many tasks simultaneously. In our 
implementation, we employ the standard POSIX thread 
specification, which defines a set of C language programming 
types and procedure calls. Following the rule of “Don’t Rein-
vent the Wheel”,8 we partly reused, optimized, and adapted 
the libmine.7 To design a parallel program, the first step is to 
break the problem into discrete parts that can be distributed 
into multiple tasks to be performed concurrently. In our pro-
gram, we provide four analysis styles, each of which involves 
a different decomposition or partitioning strategy.

First, we introduce our notational conventions and defi-
nitions. Let D={(xi, yi), i=1...n} represent a set of ordered pairs 
(x, y), and G represent an x-by-y grid of D, where the x-values 
of D are divided into x bins and the y-values are divided  

into y bins. The D|G can be the distribution of pairs (x, y) on 
the x-by-y grid. Obviously, different grids G lead to differ-
ent distributions D|G for a fixed D. First, we introduce the 
definition of MIC as the following formula: (1) I*(D, x, y) = 
max I (D|G), where I*(D, x, y) denotes the maximum mutual 
information of D|G with the x-by-y grid. As a result, we 
can define a characteristic matrix M(D) of set D in terms 
of I*. The entry M(D)x,y of matrix M(D) can be defined as 
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# O(n1–ε) and 0 , ε , 1. The function B(n) limits the sizes of 
the grids when searching over feasible partitions. If the value 
of B(n) is too high, the random dataset will obtain a nonzero 
MIC score. If the value of B(n) is too low, the search space is 
clearly limited. To approximate the choice of B(n), the original 
authors suggest a default B(n) = n0.6. In practice, we can set the 
value of α for function B(n) = na based on an empirical test, 
the size of the data set, or a balance of the time available and 
size of the data.

Next, we briefly describe the serial implementation of 
MIC using pseudocode as follows:

Algorithm 1. Compute the maximal information coefficient.

Require: D={(xi, yi), i=1...n} is a set of ordered (x, y) pairs

Require: α is the exponent in B(n) = na and must be in (0,1]

Require: c determines the maximal number gx*c of clumps when 
attempting to draw x-axis gridlines with gx, c must be . 0.

compute_mic(D, α, c)

{

	 B = MAX(na, 4);

	 bin_max = MAX((int)floor(B/2.0), 2);

	 characterMatrix[][];

	 /* x vs. y */

	 for (i = 2 to bin_max)

	     characterMatrix[i][] = FixOnePartition(x,y,i);

	 /* y vs. x */

	 for (i = 2 to bin_max)

	  �   characterMatrix[][i] = MAX( FixOnePartition(y, x, i), charac-
terMatrix[][i] );

	 return getResult();

}

FixOnePartition(x, y, nbins)

{

	 gx = (int) floor(B / nbins);

	 K = MAX( (c * gx), 1);

	 EquipartitionYAxis(y, nbins);

	 nK = GetSuperclumpsPartition(x, K);

	 return ApproxOptimizeXAxis(x, y, nK);

}
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From the outline of MIC algorithm, we can observe that 
the core of the MIC is to generate the characteristic matrix. If 
D is distributed into an m-by-k grid, the data associated with 
the x-axis will be divided into m bins, and the data associ-
ated with the y-axis will be partitioned into k bins. To obtain 
the highest mutual information of the m-by-k grid, we should 
try every possible y-axis partition of size k and every possible 
x-axis partition of size m. Obviously, it is infeasible to check 
all of the possible partitions. Therefore, the MIC algorithm 
adopts a natural heuristic approach to solve this problem. The 
main idea of the heuristic approach is to try only those grids 
in which at least one axis is equipartitioned. As a consequence, 
the FixOnePartition function will find and return the highest 
mutual information array for different x partitions with a fixed 
partition of size nbins on y. The variable characterMatrix[i][ j] 
denotes the entry M(D)i, j of the character matrix M(D). In 
FixOnePartition, EquipartitionYAxis first equipartitions y 
into fixed nbins bins, and ApproxOptimizeXAxis then finds 
different partitions for x that will achieve the maximal mutual 
information using dynamic programming. For (x, y) pairs of 
D, there exists a partition on x that relies on the partition 
Q of y of the corresponding pairs (x, y). The ApproxOpti-
mizeXAxis function restricts itself to drawing x-axis parti-
tion lines only between runs of consecutive points that fall in 
the same row of the y-axis partition Q (called clumps); thus, 
the GetSuperclumpsPartition function limits the number of 
clumps for the x-axis created by a given y-axis partition Q of 
size y imposed on D.

Finally, we introduce four parallel analysis styles in the 
RapidMic tool. The data analyzed by the tool is a comma-separated 
values (CSV) file; we can regard the data as an m × n matrix, in 
which the rows represent the variables and the columns represent 
the feature values of the variables. In the following, we provide a 
detailed description of these four parallel analysis styles.

1.	 OnePairAnalysis will compare one pair variables i and j.  
If the length of the input variable sequence is greater 
than a specific value, the calculation will initiate the pro-
cessing of multiple threads to avoid the time consump-
tion associated with the synchronization between the 
threads from affecting the gains afforded by the parallel 
execution of a short sequence. The method divides the 
for loop subroutine in the abovementioned Algorithm 1 
into multiple work threads and each work thread will 
find the highest mutual information attainable for each 
given grid (x, y). The argument passed to each thread 
has a structure that contains a series of grids (x, y) with 
x columns and y rows on the data D. The advantage of 
using a thread group instead of a normal serial program  
is that several operations may be carried out in parallel; 
thus, events can be handled immediately as they  
arrive. As described in the abovementioned Algorithm 1, 
the compute_mic function will call the FixOnePartition 
function 2*(bin_max-1) times. In addition, the 

FixOnePartition function is a heavy-computing task due 
to the use of dynamic programming. From the outline 
of MIC algorithm, we can conclude that the operations 
EquipartitionYAxis and GetSuperclumpsPartition have 
worst case time O(n). The operation ApproxOptimizeX-
Axis has worst case time O(K2*B)  =  O((B /nbin*c)2*B). 
As a result, the MIC algorithm has worst case time 
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∑ . In real implementation, 

we first design a data structure to encapsulate the 
parameters for the FixOnePartition function, then divide 
2*(bin_max-1) times FixOnePartition calling of two “for 
(i = 2 to bin_max)” loops in the compute_mic function 
into multiple work threads, and immediately start each 
working thread. At this time, the process will wait for a 
condition variable until all work threads are completed.

2.	 AllPairsAnalysis will compare all pairs of variables against 
each other. For an m  ×  n matrix, AllPairsAnalysis will 
compute the MIC value (m*(m-1))/2 times. To speed up 
the calculation, AllPairsAnalysis divides these computing 
tasks into multiple work threads. In algorithm 1, D={(xi, 
yi), i=1...n} is a set of ordered pairs. At the same time, the 
process of computing the MIC requires the performance 
of a sorting operation on x and y sequences several times. 
A partly batch sort algorithm based on pairwise sort scheme 
is employed for the implementation; in this algorithm, the 
several sorts can be performed by a single sorting operation. 
The analysis of the same variable to other variable will be 
divided into one work thread to avoid the frequent opera-
tion of data sorting and copying. In addition, we adopt a 
shared memory model to hold all of the global or common 
data and thus avoid many repeated calculations.

3.	 TwoSetsAnalysis will compare each of the first i variables 
for each of the rest of the variables. For an m × n matrix, 
TwoSetsAnalysis will compute the MIC value i*(m-i) 
times. Here, TwoSetsAnalysis employs a divide-and- 
conquer strategy similar to that of AllPairsAnalysis to 
divide the computational tasks.

4.	 MasterAnalysis, will compare variable i to the rest of 
the variables. For an m × n matrix, MasterAnalysis will 
compute the MIC value (m-1) times. Similarly, these 
computing tasks will be broken into multiple parts.

Table 1. Comparison of the computing time (seconds) for case 1.

n MINE.jar Minerva Minemat Minec++ RapidMic

10000 5.651 43.575 65.452 52.584 1.420

20000 13.689 375.707 376.086 334.551 5.456

50000 81.256 4172.569 4219.81 3616.941 27.05

100000 604.114 26442.04 25847.2 22448.676 101.608

Notes: n, number of values for the variable. The computing time excludes the 
time required to read the data file and write the result file. Minerva enables 
parallelization using a multicore package.
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In general, heavy-computing tasks and huge datasets 
are decomposed in our threaded implementation, and one 
parallel task works on a portion of the data. Moreover, 
the implementation decreases the frequency of data copy-
ing, data moving, memory allocation and destroying, and 
loop and iteration operations. Finally, the main process 
obtains the computational results through a shared mem-
ory and thread signal condition variable synchronization 
mechanism.

Results
To evaluate the performance of the proposed implementation, 
we analyzed four typical cases using simulated and real-life 
datasets and compared the results with the implementation 
proposed by Davide Albanese et al.7 (including the R wrap-
per Minerva, matlab wrapper Minemat, and C++ wrapper 
Minec++) and MINE.jar. In addition, we verified the reliabil-
ity and consistency of the results between our parallel method 
and the serial method MINE.jar. All of the experiments were 
conducted on a Macbook Pro computer with Mac OS Lion 
10.7, I5 CPU, and 6 GB of RAM. To be fair, we obtained the 
average result of five repeated executions, and employed the 
same parameters (α = 0.67 and c = 15) as in the paper.7 The 
experimental datasets can be downloaded from https://github.
com/HelloWorldCN/RapidMic.

Case 1: Compare two long variables. In this case, the 
analysis is conducted on two long variables, which have a 
functional relationship: y  = x2+x+1. We generated four data 
series of 10,000, 20,000, 50,000, and 100,000 points; the 
value of x ranged from 1 to the number of points in steps of 1. 
Here, we selected the values of x and y as two input variables to 
perform the analysis of one pair of variables with parameters 
α = 0.67 and c = 15. All of the results are shown in Table 1. 
The first column indicates the number of values for the vari-
able; the rest of the columns contain the computing time for 
MINE.jar, Minerva, Minemat, Minec++, and RapidMic,. As  
observed in Table 1, RapidMic performs better than the others. 
In particular, RapidMic performs nearly four times faster  

than MINE.jar and 40 times faster than Minerva. MINE.
jar also exhibits a good performance in this case and is sig-
nificantly better than Minerva, Minemat, and Minec++. 
A  general trend that can be observed is that the comput-
ing time tends to increase rapidly as the number of points is 
increased. However, even if the number of points is increased 
to 100,000, RapidMic still rapidly obtains the result, in 
101.608  seconds. In contrast, Minec++ requires more than 
six hours to obtain a result for 100,000 points, which is not a 
reasonable and acceptable time. Obviously, excessive amounts 
of serial “for loop and while loop” iterations would reduce the 
performance of the application.

Case 2: Compare all pairs. In this case, we use the above-
mentioned methods successively to analyze all of the variables 
with each other on Spellman and MLB2008. The Spellman 
dataset is a cdc15 expression dataset,9 with 4381 time series. 
The MLB2008 dataset is the salaries of the Major League 
Baseball players for the 2008 season.1 Here, we compare the 
time series against each other with parameters α = 0.67 and 
c = 15. The various implementations discussed are compared 
based on their time performance; the experimental results are 
shown in Table 2. As observed in Table 2, the computing time 
of the methods is clearly proportional to the number of vari-
ables used in the analysis of all pairs. RapidMic significantly 
outperforms all of the other methods. Specifically, RapidMic 
performs two times faster than Minec++ on Spellman, and 
three times faster than Minec++ on MLB2008. The previ-
ous case has experimentally shown that MINE.jar is accept-
able for the analysis of two long variables, but the previously 
observed advantage disappears when many variables are taken 
into account. In fact, MINE.jar performs significantly worse 
than the others in this case. More specifically, because of the 
large number of pairs in this case, MINE.jar fails to obtain 
a result for Spellman in our experimental computer. Finally, 
MINE.jar throws a Java exception (OutOfMemory) after a 
long time even if the Java Virtual Machine Runtime memory 
is increased to 5 GB. The data shown in Table 2 reveal several 
phenomena: first, Minerva performs better than Minemat and 

Table 3. Comparison of the computing time (seconds) for case 3.

data n M MINE.jar Minerva Minemat Minec++ RapidMic

RNA 20422 16 2.440 2.905 1.275 0.831 0.378

Spellman 4381 23 0.41 1.954 1.283 1.108 0.219

Notes: n, number of variables. m, number of features. The computing time excludes the time required to read the data file and write the result file. Minerva enables 
parallelization using a multicore package.

Table 2. Comparison of the computing time (seconds) for case 2.

data n m MINE.jar Minerva Minemat Minec++ RapidMic

Spellman 4381 23 – 4304.86 2933.59 2267.198 1060.649

MLB2008 132 337 1476.938 430.489 1170.25 1195.025 350.142

Notes: n, number of variables. m, number of features. The computing time excludes the time required to read the data file and write the result file. Minerva enables 
parallelization using a multicore package.
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Minec++ when the number of analysis pairs is low; second, 
Minemat and Minec++ have an advantage over Minerva for 
datasets with many variables, because the C/C++ core has 
superior capability for the rapid manipulation of data.

Case 3: Compare one to others. In this case, we run 
all of the tools comparing one variable to the others on two 
datasets: an RNA-sequencing dataset and the Spellman 
dataset.7,9,10 The RNA sequencing dataset originated from 
the RNA sequencing of 15 lung adenocarcinomas, including 
eight with the KRAS mutation and seven without mutation.10 
Briefly, the dataset has 20,422  genes, and 16 features after 
preprocessing. Here, we compare the first gene against the 
others with parameters α = 0.67 and c = 15. The experimental 
results are shown in Table 3. The results show that RapidMic 
substantially outperforms the others in the analysis of both 
the RNA sequencing data and the Spellman dataset. In par-
ticular, RapidMic delivers the best execution time, performing 
seven times and five times faster than Minerva on the RNA 
sequencing dataset and the Spellman dataset, respectively.

Case 4: Compare two sets. In this case, we compare each 
of the first i variables to each of the rest of the variables on the 
RNA sequencing and Spellman datasets.7,9,10 We compare the 
first 2190 and 3000 genes on the RNA sequencing dataset and 
Spellman dataset, respectively, against the others using the 
parameters α = 0.67 and c = 15. The experimental results are 
shown in Table 4. In this case, RapidMic also exhibits the best 
execution time for the analysis of the two datasets. MINE.jar 
fails to obtain a result in our experimental computer.

In these cases, RapidMic can obtain results faster than 
the others. Because Minerva, Minemat, and Minec++ have 
the same core C implementation, we hypothesize that Min-
erva is acceptable for the analysis of moderate-scale variable 
pairs. Minemat and Minec++ exhibit similar performance. 
The results also show that RapidMic based on parallelization 
technology always produces a better performance than the 
serial program.

Consistency analysis. To verify the reliability and 
consistency of the results between our parallel method and the 
serial method MINE.jar, we compare their MIC values. Here, 

we conduct “one vs. others” experiments on the Spellman 
dataset with α = 0.67 and c = 15 and select the first variable 
"Time" as the master variable. All of the numerical values are 
rounded to five-digit precision. Table 5 shows the distribution 
range of the absolute difference between RapidMic and the 
serial method MINE.jar. The first row of Table 5 indicates the 
range of the absolute difference, and the second row represents 
the number of absolute differences in the corresponding range.  
As shown in Table 5, 2193 of the total 4381 MIC values are 
identical. The summary statistics for the values of these differ-
ences can then be concluded: Min is 0, 1st Quartile is 0, Median 
is 0, Mean is 0.000004995, 3rd Quartile is 0.00001001, and 
Max is 0.00001001. These subtle differences are partly caused 
by the use of different floating-point numbers in the comput-
ing process: RapidMic (double) and MINE.jar (float). In addi-
tion, some real implementation may cause subtle numerical 
differences.

Conclusions
We present a new rapid maximal information-based nonpara-
metric exploration tool for the statistical analysis of large-scale 
datasets. Through the parallel processing of the MIC algo-
rithm, the provided tool can effectively analyze large-scale 
datasets and greatly reduce computing time. The experimental 
results show that the proposed tool is very rapid and is able to 
perform the analysis of all pairs on a large biological dataset 
using a normal computer. Overall, we find that our imple-
mentation yields competitive performance. In addition, the 
presented tool is relatively simple and easy to use. We also 
provide a matlab interface and wrapper. Our implementation 
is an open-source and cross-platform project that can help 
the design of software for the analysis of biological data that 
reuses and integrates the MIC algorithm, and enhances paral-
lelizability and extensibility. This result becomes particularly 
interesting in the emerging field of bioinformatics, which is 
coping with the enormous quantities of biological data being 
generated by recently developed technological approaches.
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