
11Evolutionary Bioinformatics 2014:10

Open Access: Full open access to
this and thousands of other papers at
http://www.la-press.com.

Evolutionary
Bioinformatics

Introduction
David N. Reshef and his colleagues recently published a paper
that introduced a measure of dependence for two-variable
relationships: the maximal information coefficient (MIC)1.
MIC can be used as a metric for the exploration of large data-
sets, and the detection of close associations between tens of
thousands of variable pairs in large datasets. MIC uncovers
variables that not only have functional associations but are
also statistically independent. MIC is part of a larger family
of maximal information-based nonparametric exploration
(MINE) statistics. In addition to the MIC measure, MINE
provides three additional measures: maximum asymmetry
score (MAS), maximum edge value (MEV), and minimum
cell cumber (MCN). As a measure of dependence, the MIC
has two heuristic properties: generality and equitability. These
characteristics make the MIC particularly suitable for appli-
cations in bioinformatics; David N. Reshef and others have
tested the MIC using many real biology datasets to demon-
strate its characteristics and compared the MIC to a wide
range of methods, including Pearson/Spearman correlations
and Mutual Information.

To date, the MIC has been applied successfully in various
bioinformatics fields. For example, the MIC has been used as a
measure to convert records of biological annotations into net-
works of the associated annotations.2 Das et al.3 applied the
MIC to explore the global expression dynamics of different
interaction datasets from humans and yeast. Lin et al.4 adopted
the MIC to define a co-expression network and indicated that
the MIC has clear theoretical advantages in regard to captur-
ing general dependence patterns. Co-expression methods have
been widely applied for the analysis of gene expression data.
Co-expressed genes with correlated pathways may share com-
mon functional tasks and regulatory mechanisms.5 The MIC
can help detect co-expressed genes or tissues and find
biologically meaningful relationships among genes. In addition,
correlation-based methods are the most straightforward way to
explore a gene co-expression network.5 Therefore, the MIC can
also help define gene co-expression similarity relationships in a
co-expression network. The cluster analysis method can employ
the MIC to measure the pair-wise transcription correlation
coefficients between genes and to then cluster together genes
or tissues that manifest similar expression pattern.6

RapidMic: Rapid Computation of the Maximal Information Coefficient

Dongming Tang1, Mingwen Wang2, Weifan Zheng1 and Hongjun Wang3

1Institute of Information Research, Southwest Jiaotong University, Chengdu, China. 2School of Mathematics, Southwest Jiaotong University,
Chengdu, China. 3School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China.

Abstract: To discover relationships and associations rapidly in large-scale datasets, we propose a cross-platform tool for the rapid computation of the
maximal information coefficient based on parallel computing methods. Through parallel processing, the provided tool can effectively analyze large-scale
biological datasets with a markedly reduced computing time. The experimental results show that the proposed tool is notably fast, and is able to perform
an all-pairs analysis of a large biological dataset using a normal computer. The source code and guidelines can be downloaded from https://github.com/
HelloWorldCN/RapidMic.

Keywords: algorithms, gene expression, software, computational biology, statistical analysis

Citation: Tang et al. RapidMic: Rapid Computation of the Maximal Information Coefficient. Evolutionary Bioinformatics 2014:10 11–16 doi: 10.4137/EBO.S13121.

Received: September 3, 2013. ReSubmitted: November 14, 2013. Accepted for publication: November 17, 2013.

Academic editor: Jike Cui, Associate Editor

TYPE: Short Report

Funding: Supported by the National Natural Science Foundation of China under Grant No. 61100118, 61373009 and 61003142. Supported by the Fundamental Research
Funds for the Central Universities under Grant No. SWJTU11BR093 and Science and Technology Support Project of Sichuan province under Grant No. 2013GZX0166.

Competing Interests: Author(s) disclose no potential conflicts of interest.

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-
BY-NC 3.0 License.

Correspondence: tdm_2010@swjtu.edu.cn

http://www.la-press.com
http://www.la-press.com
https://github.com/HelloWorldCN/RapidMic
https://github.com/HelloWorldCN/RapidMic
http://dx.doi.org/10.4137/EBO.S13121
mailto:tdm_2010@swjtu.edu.cn

Tang et al

12 Evolutionary Bioinformatics 2014:10

The authors have a website that provides a compiled Java
program named MINE.jar, which can be run in a Java runtime
environment. However, the provided MINE.jar exhibits seve
ral limitations that hinder its availability in real applications.
First, the time and space complexities of execution are too large
for the analysis of large-scale datasets. Second, MINE.jar often
throws a Java runtime exception, such as OutOfMemoryError.
In addition, it is not an open-source software. In brief, MINE.
jar is not feasible for the analysis of very long biology sequences,
particularly for the analysis of all pairs of variables against each
other. To reduce memory requirements and computing time,
Davide Albanese et al. provided a C implementation of the
MIC measure.7 However, the developed program is a serial
program and does not achieve a distinct improvement. Current
computer architectures are increasingly relying on hardware
level parallelism to improve performance: multiple execution
units, pipelined instructions, and multi-core. With the devel-
opment of next-generation sequencing (NGS) technologies,
high-dimensional gene datasets have been produced. To exploit
these large-scale datasets, bioinformatics should make full use
of modern computational approaches to process the collected
data. At the same time, the quality and speed of computational
approaches, such as the construction of large-scale networks of
gene interactions for protein-protein interactions (PPI), gene
co-expression, and data and gene coregulation data, must be
considered carefully. To this end, we propose a rapid maxi-
mal information-based nonparametric exploration tool based
on parallel computing for the discovery of relationships and
associations in large-scale datasets.

Methods
From a general point of view, parallel computing is the simul-
taneous use of multiple computer resources to solve a com-
putational problem. In theory, the introduction of additional
resources to perform a task will shorten the time required to
complete the task and result in potential cost savings. Com-
pared with serial computing, parallel computing is much
better suited for modeling, simulating, and understanding
complex, real-world phenomena. A single computer resource
can only perform one task at a time. Multiple computing
resources can perform many tasks simultaneously. In our
implementation, we employ the standard POSIX thread
specification, which defines a set of C language programming
types and procedure calls. Following the rule of “Don’t Rein-
vent the Wheel”,8 we partly reused, optimized, and adapted
the libmine.7 To design a parallel program, the first step is to
break the problem into discrete parts that can be distributed
into multiple tasks to be performed concurrently. In our pro-
gram, we provide four analysis styles, each of which involves
a different decomposition or partitioning strategy.

First, we introduce our notational conventions and defi-
nitions. Let D={(xi, yi), i=1...n} represent a set of ordered pairs
(x, y), and G represent an x-by-y grid of D, where the x-values
of D are divided into x bins and the y-values are divided

into y bins. The D|G can be the distribution of pairs (x, y) on
the x-by-y grid. Obviously, different grids G lead to differ-
ent distributions D|G for a fixed D. First, we introduce the
definition of MIC as the following formula: (1) I*(D, x, y) =
max I (D|G), where I*(D, x, y) denotes the maximum mutual
information of D|G with the x-by-y grid. As a result, we
can define a characteristic matrix M(D) of set D in terms
of I*. The entry M(D)x,y of matrix M(D) can be defined as

M D
I D x y

x yx y()
(, ,)

log min{ , },

*
= . The MIC value of a given set D

of two-variable data of size n and a grid size less than B(n) is
defined as MIC D M D

xy B n x y() max { () }
() ,=

<
, where ω(1) , B(n)

O(n1–ε) and 0 , ε , 1. The function B(n) limits the sizes of
the grids when searching over feasible partitions. If the value
of B(n) is too high, the random dataset will obtain a nonzero
MIC score. If the value of B(n) is too low, the search space is
clearly limited. To approximate the choice of B(n), the original
authors suggest a default B(n) = n0.6. In practice, we can set the
value of α for function B(n) = na based on an empirical test,
the size of the data set, or a balance of the time available and
size of the data.

Next, we briefly describe the serial implementation of
MIC using pseudocode as follows:

Algorithm 1. Compute the maximal information coefficient.

Require: D={(xi, yi), i=1...n} is a set of ordered (x, y) pairs

Require: α is the exponent in B(n) = na and must be in (0,1]

Require: c determines the maximal number gx*c of clumps when
attempting to draw x-axis gridlines with gx, c must be . 0.

compute_mic(D, α, c)

{

	 B = MAX(na, 4);

	 bin_max = MAX((int)floor(B/2.0), 2);

	 characterMatrix[][];

	 /* x vs. y */

	 for (i = 2 to bin_max)

	   characterMatrix[i][] = FixOnePartition(x,y,i);

	 /* y vs. x */

	 for (i = 2 to bin_max)

	  � characterMatrix[][i] = MAX(FixOnePartition(y, x, i), charac-
terMatrix[][i]);

	 return getResult();

}

FixOnePartition(x, y, nbins)

{

	 gx = (int) floor(B / nbins);

	 K = MAX((c * gx), 1);

	 EquipartitionYAxis(y, nbins);

	 nK = GetSuperclumpsPartition(x, K);

	 return ApproxOptimizeXAxis(x, y, nK);

}

http://www.la-press.com

Rapid computation of the maximal information coefficient

13Evolutionary Bioinformatics 2014:10

From the outline of MIC algorithm, we can observe that
the core of the MIC is to generate the characteristic matrix. If
D is distributed into an m-by-k grid, the data associated with
the x-axis will be divided into m bins, and the data associ-
ated with the y-axis will be partitioned into k bins. To obtain
the highest mutual information of the m-by-k grid, we should
try every possible y-axis partition of size k and every possible
x-axis partition of size m. Obviously, it is infeasible to check
all of the possible partitions. Therefore, the MIC algorithm
adopts a natural heuristic approach to solve this problem. The
main idea of the heuristic approach is to try only those grids
in which at least one axis is equipartitioned. As a consequence,
the FixOnePartition function will find and return the highest
mutual information array for different x partitions with a fixed
partition of size nbins on y. The variable characterMatrix[i][j]
denotes the entry M(D)i, j of the character matrix M(D). In
FixOnePartition, EquipartitionYAxis first equipartitions y
into fixed nbins bins, and ApproxOptimizeXAxis then finds
different partitions for x that will achieve the maximal mutual
information using dynamic programming. For (x, y) pairs of
D, there exists a partition on x that relies on the partition
Q of y of the corresponding pairs (x, y). The ApproxOpti-
mizeXAxis function restricts itself to drawing x-axis parti-
tion lines only between runs of consecutive points that fall in
the same row of the y-axis partition Q (called clumps); thus,
the GetSuperclumpsPartition function limits the number of
clumps for the x-axis created by a given y-axis partition Q of
size y imposed on D.

Finally, we introduce four parallel analysis styles in the
RapidMic tool. The data analyzed by the tool is a comma-separated
values (CSV) file; we can regard the data as an m × n matrix, in
which the rows represent the variables and the columns represent
the feature values of the variables. In the following, we provide a
detailed description of these four parallel analysis styles.

1.	 OnePairAnalysis will compare one pair variables i and j.
If the length of the input variable sequence is greater
than a specific value, the calculation will initiate the pro-
cessing of multiple threads to avoid the time consump-
tion associated with the synchronization between the
threads from affecting the gains afforded by the parallel
execution of a short sequence. The method divides the
for loop subroutine in the abovementioned Algorithm 1
into multiple work threads and each work thread will
find the highest mutual information attainable for each
given grid (x, y). The argument passed to each thread
has a structure that contains a series of grids (x, y) with
x columns and y rows on the data D. The advantage of
using a thread group instead of a normal serial program
is that several operations may be carried out in parallel;
thus, events can be handled immediately as they
arrive. As described in the abovementioned Algorithm 1,
the compute_mic function will call the FixOnePartition
function 2*(bin_max-1) times. In addition, the

FixOnePartition function is a heavy-computing task due
to the use of dynamic programming. From the outline
of MIC algorithm, we can conclude that the operations
EquipartitionYAxis and GetSuperclumpsPartition have
worst case time O(n). The operation ApproxOptimizeX-
Axis has worst case time O(K2*B) = O((B /nbin*c)2*B).
As a result, the MIC algorithm has worst case time

O B nbins c B
nBins

bin
(*)/ * *

_ max
2 2

2
 ()

=
∑ . In real implementation,

we first design a data structure to encapsulate the
parameters for the FixOnePartition function, then divide
2*(bin_max-1) times FixOnePartition calling of two “for
(i = 2 to bin_max)” loops in the compute_mic function
into multiple work threads, and immediately start each
working thread. At this time, the process will wait for a
condition variable until all work threads are completed.

2.	 AllPairsAnalysis will compare all pairs of variables against
each other. For an m × n matrix, AllPairsAnalysis will
compute the MIC value (m*(m-1))/2 times. To speed up
the calculation, AllPairsAnalysis divides these computing
tasks into multiple work threads. In algorithm 1, D={(xi,
yi), i=1...n} is a set of ordered pairs. At the same time, the
process of computing the MIC requires the performance
of a sorting operation on x and y sequences several times.
A partly batch sort algorithm based on pairwise sort scheme
is employed for the implementation; in this algorithm, the
several sorts can be performed by a single sorting operation.
The analysis of the same variable to other variable will be
divided into one work thread to avoid the frequent opera-
tion of data sorting and copying. In addition, we adopt a
shared memory model to hold all of the global or common
data and thus avoid many repeated calculations.

3.	 TwoSetsAnalysis will compare each of the first i variables
for each of the rest of the variables. For an m × n matrix,
TwoSetsAnalysis will compute the MIC value i*(m-i)
times. Here, TwoSetsAnalysis employs a divide-and-
conquer strategy similar to that of AllPairsAnalysis to
divide the computational tasks.

4.	 MasterAnalysis, will compare variable i to the rest of
the variables. For an m × n matrix, MasterAnalysis will
compute the MIC value (m-1) times. Similarly, these
computing tasks will be broken into multiple parts.

Table 1. Comparison of the computing time (seconds) for case 1.

n MINE.jar Minerva Minemat Minec++ RapidMic

10000 5.651 43.575 65.452 52.584 1.420

20000 13.689 375.707 376.086 334.551 5.456

50000 81.256 4172.569 4219.81 3616.941 27.05

100000 604.114 26442.04 25847.2 22448.676 101.608

Notes: n, number of values for the variable. The computing time excludes the
time required to read the data file and write the result file. Minerva enables
parallelization using a multicore package.

http://www.la-press.com

Tang et al

14 Evolutionary Bioinformatics 2014:10

In general, heavy-computing tasks and huge datasets
are decomposed in our threaded implementation, and one
parallel task works on a portion of the data. Moreover,
the implementation decreases the frequency of data copy-
ing, data moving, memory allocation and destroying, and
loop and iteration operations. Finally, the main process
obtains the computational results through a shared mem-
ory and thread signal condition variable synchronization
mechanism.

Results
To evaluate the performance of the proposed implementation,
we analyzed four typical cases using simulated and real-life
datasets and compared the results with the implementation
proposed by Davide Albanese et al.7 (including the R wrap-
per Minerva, matlab wrapper Minemat, and C++ wrapper
Minec++) and MINE.jar. In addition, we verified the reliabil-
ity and consistency of the results between our parallel method
and the serial method MINE.jar. All of the experiments were
conducted on a Macbook Pro computer with Mac OS Lion
10.7, I5 CPU, and 6 GB of RAM. To be fair, we obtained the
average result of five repeated executions, and employed the
same parameters (α = 0.67 and c = 15) as in the paper.7 The
experimental datasets can be downloaded from https://github.
com/HelloWorldCN/RapidMic.

Case 1: Compare two long variables. In this case, the
analysis is conducted on two long variables, which have a
functional relationship: y = x2+x+1. We generated four data
series of 10,000, 20,000, 50,000, and 100,000 points; the
value of x ranged from 1 to the number of points in steps of 1.
Here, we selected the values of x and y as two input variables to
perform the analysis of one pair of variables with parameters
α = 0.67 and c = 15. All of the results are shown in Table 1.
The first column indicates the number of values for the vari-
able; the rest of the columns contain the computing time for
MINE.jar, Minerva, Minemat, Minec++, and RapidMic,. As
observed in Table 1, RapidMic performs better than the others.
In particular, RapidMic performs nearly four times faster

than MINE.jar and 40 times faster than Minerva. MINE.
jar also exhibits a good performance in this case and is sig-
nificantly better than Minerva, Minemat, and Minec++.
A general trend that can be observed is that the comput-
ing time tends to increase rapidly as the number of points is
increased. However, even if the number of points is increased
to 100,000, RapidMic still rapidly obtains the result, in
101.608 seconds. In contrast, Minec++ requires more than
six hours to obtain a result for 100,000 points, which is not a
reasonable and acceptable time. Obviously, excessive amounts
of serial “for loop and while loop” iterations would reduce the
performance of the application.

Case 2: Compare all pairs. In this case, we use the above-
mentioned methods successively to analyze all of the variables
with each other on Spellman and MLB2008. The Spellman
dataset is a cdc15 expression dataset,9 with 4381 time series.
The MLB2008 dataset is the salaries of the Major League
Baseball players for the 2008 season.1 Here, we compare the
time series against each other with parameters α = 0.67 and
c = 15. The various implementations discussed are compared
based on their time performance; the experimental results are
shown in Table 2. As observed in Table 2, the computing time
of the methods is clearly proportional to the number of vari-
ables used in the analysis of all pairs. RapidMic significantly
outperforms all of the other methods. Specifically, RapidMic
performs two times faster than Minec++ on Spellman, and
three times faster than Minec++ on MLB2008. The previ-
ous case has experimentally shown that MINE.jar is accept-
able for the analysis of two long variables, but the previously
observed advantage disappears when many variables are taken
into account. In fact, MINE.jar performs significantly worse
than the others in this case. More specifically, because of the
large number of pairs in this case, MINE.jar fails to obtain
a result for Spellman in our experimental computer. Finally,
MINE.jar throws a Java exception (OutOfMemory) after a
long time even if the Java Virtual Machine Runtime memory
is increased to 5 GB. The data shown in Table 2 reveal several
phenomena: first, Minerva performs better than Minemat and

Table 3. Comparison of the computing time (seconds) for case 3.

data n M MINE.jar Minerva Minemat Minec++ RapidMic

RNA 20422 16 2.440 2.905 1.275 0.831 0.378

Spellman 4381 23 0.41 1.954 1.283 1.108 0.219

Notes: n, number of variables. m, number of features. The computing time excludes the time required to read the data file and write the result file. Minerva enables
parallelization using a multicore package.

Table 2. Comparison of the computing time (seconds) for case 2.

data n m MINE.jar Minerva Minemat Minec++ RapidMic

Spellman 4381 23 – 4304.86 2933.59 2267.198 1060.649

MLB2008 132 337 1476.938 430.489 1170.25 1195.025 350.142

Notes: n, number of variables. m, number of features. The computing time excludes the time required to read the data file and write the result file. Minerva enables
parallelization using a multicore package.

http://www.la-press.com
https://github.com/HelloWorldCN/RapidMic
https://github.com/HelloWorldCN/RapidMic

Rapid computation of the maximal information coefficient

15Evolutionary Bioinformatics 2014:10

Minec++ when the number of analysis pairs is low; second,
Minemat and Minec++ have an advantage over Minerva for
datasets with many variables, because the C/C++ core has
superior capability for the rapid manipulation of data.

Case 3: Compare one to others. In this case, we run
all of the tools comparing one variable to the others on two
datasets: an RNA-sequencing dataset and the Spellman
dataset.7,9,10 The RNA sequencing dataset originated from
the RNA sequencing of 15 lung adenocarcinomas, including
eight with the KRAS mutation and seven without mutation.10
Briefly, the dataset has 20,422 genes, and 16 features after
preprocessing. Here, we compare the first gene against the
others with parameters α = 0.67 and c = 15. The experimental
results are shown in Table 3. The results show that RapidMic
substantially outperforms the others in the analysis of both
the RNA sequencing data and the Spellman dataset. In par-
ticular, RapidMic delivers the best execution time, performing
seven times and five times faster than Minerva on the RNA
sequencing dataset and the Spellman dataset, respectively.

Case 4: Compare two sets. In this case, we compare each
of the first i variables to each of the rest of the variables on the
RNA sequencing and Spellman datasets.7,9,10 We compare the
first 2190 and 3000 genes on the RNA sequencing dataset and
Spellman dataset, respectively, against the others using the
parameters α = 0.67 and c = 15. The experimental results are
shown in Table 4. In this case, RapidMic also exhibits the best
execution time for the analysis of the two datasets. MINE.jar
fails to obtain a result in our experimental computer.

In these cases, RapidMic can obtain results faster than
the others. Because Minerva, Minemat, and Minec++ have
the same core C implementation, we hypothesize that Min-
erva is acceptable for the analysis of moderate-scale variable
pairs. Minemat and Minec++ exhibit similar performance.
The results also show that RapidMic based on parallelization
technology always produces a better performance than the
serial program.

Consistency analysis. To verify the reliability and
consistency of the results between our parallel method and the
serial method MINE.jar, we compare their MIC values. Here,

we conduct “one vs. others” experiments on the Spellman
dataset with α = 0.67 and c = 15 and select the first variable
"Time" as the master variable. All of the numerical values are
rounded to five-digit precision. Table 5 shows the distribution
range of the absolute difference between RapidMic and the
serial method MINE.jar. The first row of Table 5 indicates the
range of the absolute difference, and the second row represents
the number of absolute differences in the corresponding range.
As shown in Table 5, 2193 of the total 4381 MIC values are
identical. The summary statistics for the values of these differ-
ences can then be concluded: Min is 0, 1st Quartile is 0, Median
is 0, Mean is 0.000004995, 3rd Quartile is 0.00001001, and
Max is 0.00001001. These subtle differences are partly caused
by the use of different floating-point numbers in the comput-
ing process: RapidMic (double) and MINE.jar (float). In addi-
tion, some real implementation may cause subtle numerical
differences.

Conclusions
We present a new rapid maximal information-based nonpara-
metric exploration tool for the statistical analysis of large-scale
datasets. Through the parallel processing of the MIC algo-
rithm, the provided tool can effectively analyze large-scale
datasets and greatly reduce computing time. The experimental
results show that the proposed tool is very rapid and is able to
perform the analysis of all pairs on a large biological dataset
using a normal computer. Overall, we find that our imple-
mentation yields competitive performance. In addition, the
presented tool is relatively simple and easy to use. We also
provide a matlab interface and wrapper. Our implementation
is an open-source and cross-platform project that can help
the design of software for the analysis of biological data that
reuses and integrates the MIC algorithm, and enhances paral-
lelizability and extensibility. This result becomes particularly
interesting in the emerging field of bioinformatics, which is
coping with the enormous quantities of biological data being
generated by recently developed technological approaches.

Author Contributions
Conceived and designed the experiments: DT, MW, WZ,
HW. Analyzed the data: DT, MW. Wrote the first draft of
the manuscript: DT. Contributed to the writing of the manu-
script: DT, MW, WZ, HW. Agree with manuscript results
and conclusions: DT, MW, WZ, HW. Jointly developed
the structure and arguments for the paper: DT, MW, WZ.
Made critical revisions and approved final version: DT, MW,

Table 4. Comparison of the computing time (seconds) for case 4.

data n m i MINE.jar Minerva Minemat Minec++ RapidMic

RNA 20422 16 3000 - 3164.7 3580.5 3060.2 1285.3

Spellman 4381 23 2190 - 3280.6 1297.8 1118.6 443.3

Notes: n, number of variables. m, number of features. i, the first i variables compared with each of the remaining variables. The computing time excludes the time
required to read the data file and write the result file. Minerva enables parallelization using a multicore package.

Table 5. Analysis of the consistency between our parallel method
RapidMic and the serial method MINE.jar.

Range Identical (0, 0.00001] (0.00001, 0.00002]

Number 2193 644 1544

http://www.la-press.com

Tang et al

16 Evolutionary Bioinformatics 2014:10

WZ, HW. All authors reviewed and approved of the final
manuscript.

Disclosures and Ethics
As a requirement of publication the authors have provided signed confirmation of their
compliance with ethical and legal obligations including but not limited to compliance
with ICMJE authorship and competing interests guidelines, that the article is neither
under consideration for publication nor published elsewhere, of their compliance with
legal and ethical guidelines concerning human and animal research participants (if
applicable), and that permission has been obtained for reproduction of any copy-
righted material. This article was subject to blind, independent, expert peer review.
The reviewers reported no competing interests.

References
	 1.	 Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in

large data sets. Science. December 16, 2011;334(6062):1518–24.
	 2.	 Karpinets TV, Park BH, Uberbacher EC. Analyzing large biological datasets

with association networks. Nucleic Acids Res. September 1, 2012;40(17):e131.

	 3.	 Das J, Mohammed J, Yu H. Genome-scale analysis of interaction dynamics reveals
organization of biological networks. Bioinformatics. July 15, 2012;28(14):1873–8.

	 4.	 Song L, Langfelder P, Horvath S. Comparison of co-expression measures:
mutual information, correlation, and model based indices. BMC Bioinformatics.
December 9, 2012;13(1):328.

	 5.	 Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for
constructing large scale gene networks. PLoS One 2012;7(1):e29348.

	 6.	 Priness I, Maimon O, Ben-Gal I. Evaluation of gene-expression clustering via
mutual information distance measure. BMC Bioinformatics. 2007;8:111.

	 7.	 Albanese D, Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C.
Minerva and minepy: a C engine for the MINE suite and its R, Python and
MATLAB wrappers. Bioinformatics. Epub December 14, 2012.

	 8.	 Prlic A, Procter JB. Ten simple rules for the open development of scientific soft-
ware. PLoS Comput Biol. Dec 2012;8(12):e1002802.

	 9.	 Spellman PT, Sherlock G, Zhang MQ , et al. Comprehensive identification of
cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization. Mol Biol Cell. Dec 1998;9(12):3273–97.

	 10.	 Kalari KR, Rossell D, Necela BM, et al. Deep Sequence Analysis of Non-Small
Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splic-
ing, and Single Nucleotide Variations in Lung Adenocarcinomas with and with-
out Oncogenic KRAS Mutations. Frontiers in Oncology. 2012;2:12.

http://www.la-press.com

