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Abstract: An organotypic model of endometrial carcinogenesis and chemoprevention was developed in which normal 
endometrial organotypic cultures exposed to the carcinogen, DMBA (7,12-dimethylbenz[a]anthracene), developed a cancerous 
phenotype in the absence, but not presence of subsequent treatment with a fl exible heteroarotinoid (Flex-Het), called SHetA2. 
A discriminant function based on karyometric features of cellular nuclei and an agar clonogenic assay confi rmed these 
histologic changes. Interpretation of microarray data using an internal standard approach identifi ed major pathways associated 
with carcinogenesis and chemoprevention governed by c-myc, p53, TNFα and Jun genes. Cluster analysis of functional 
associations of hypervariable genes demonstrated that carcinogenesis is accompanied by a stimulating association between 
a module of genes that includes tumor necrosis factor α (TNFα), c-myc, and epidermal growth factor-receptor (EGF-R) 
and a module that includes insulin-like growth factor I-receptor (IGF-IR), p53, and Jun genes. Two secreted proteins involved 
in these systems, tenascin C and inhibin A, were validated at the protein level. Tenascin C is an EGF-R ligand, and therefore 
may contribute to the increased EGF-R involvement in carcinogenesis. The known roles of the identifi ed molecular systems 
in DMBA and endometrial carcinogenesis and chemoprevention supports the validity of this model and the potential clinical 
utility of SHetA2 in chemoprevention.

Keywords: carcinogenesis, heteroarotinoid, chemoprevention, endometrial cancer, microarrays, karyometric analysis

Introduction
In comparison to classical approaches evaluating single molecules or pathways, a systems biology 
approach provides a broader perspective with the possibility of uncovering novel results in complex 
tissues, such as cancer of the uterine endometrium. The human endometrium consists of a complex 
mixture of cell types and extracellular matrix that is in a continual state of fl ux after puberty and before 
menopause. Communication between epithelial cells, stromal cells, and extracellular matrix is fundamental 
to endometrial cycling and function (Inaba et al. 1988; Bulletti et al. 1998). Furthermore, the ability of 
the epithelial and stromal cells to communicate through secretion of hormones and growth factors is 
affected by their proximity to each other (Hopfer et al. 1994). This communication is required for their 
coordination and production of extracellular matrix. Therefore, in vitro studies of endometrium should 
not rely solely on uniform cell lines grown in monolayers, but instead, should take into consideration 
the complex interaction of the different cell types within their extracellular matrix. Three-dimensional 
representations of tissue microenvironment can be provided by organotypic cultures consisting of cells 
grown in extracellular matrix materials to mimic tissue (Benbrook, 2006). To develop a model system 
that incorporated the complexity of the endometrial microenvironment, we cultured primary human 
endometrial cells inside and on top of collagen gels in fi lter inserts and demonstrated that hormonal 
treatments of these cultures induced tissue architecture refl ective of different phases of the menstrual 
cycle (Kamelle et al. 2002). Both single stromal cells and epithelial glands developed inside the collagen 
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gels, which is in contrast to a more recently 
developed model that separated the epithelial and 
stromal cells by culturing the epithelial cells as 
organoids inside matrigel-fi lled fi lter inserts and the 
stromal cells as monolayers on the plastic below 
the inserts (Bläuer et al. 2005).

The objective of this study was to further 
develop our organotypic model to study endome-
trial carcinogenesis and chemoprevention from a 
systems biology perspective that captured the 
complexity of tissue communication. Endometrial 
cancer is the most common female pelvic malig-
nancy, but it is relatively understudied in com-
parison to other cancers. Tens of thousands of 
hysterectomies are performed every year for endo-
metrial cancer and its preneoplastic lesions. 
Women with high risk factors for endometrial 
cancer, including patients with hereditary nonpol-
yposis colorectal cancer syndrome (HNPCC) 
(Broaddus et al. 2006), could benefi t from diag-
nostic tests to identify early stage cancers and 
non-toxic chemoprevention agents.

Retinoids represent a promising class of che-
moprevention agents that are modeled after retinoic 
acid, but are limited by their toxicity (Collins et al. 
1999; Benbrook, 2002; Silverman et al. 1987). We 
developed a class of synthetic retinoids, called 
heteroarotinoids (Hets), that exhibit reduced toxic-
ity in comparison to retinoic acid, but only moder-
ate growth inhibition of cancer cell lines (Benbrook 
et al. 1998; Dhar et al. 1999; Zacheis et al. 1999). 
Our second generation Hets, called Flexible Hets 
or Flex-Hets, were modifi ed to have increased 
fl exibility in their chemical structure. These com-
pounds are similar to retinoids in that they induce 
G1 cell cycle arrest and differentiation, but differ 
from conventional retinoids in that they are potent 
inducers of apoptosis and do not activate retinoid 
nuclear receptors (Guruswamy et al. 2001; Liu 
et al. 2004; Benbrook et al. 2005). The induction 
of apoptosis is much greater in cancer cells over 
normal cells and occurs through direct effects on 
mitochondria (Liu et al. 2007a). In our studies and 
those of collaborators, SHetA2 induced the highest 
levels of apoptosis and differentiation of all reti-
noids tested (Guruswamy et al. 2001; Chun et al. 
2003; Liu et al. 2004). This lead compound also 
inhibited growth of OVCAR-3 ovarian and Caki 
renal tumor xenografts without evidence of toxic-
ity (Benbrook et al. 2005). The lack of retinoid 
receptor activation by SHetA2 is supported by 
evidence of its lack of teratogenicity and topical 

irritancy in animal models (Benbrook et al. 
2005; Mic et al. 2003). Because of these encourag-
ing results, SHetA2 was chosen for preclinical 
development as a cancer therapeutic agent in the 
National Cancer Institute’s Rapid Access to Inter-
vention Development (RAID) program (Applica-
tion 196, Compound NSC 726189) and now is 
being developed as a cancer chemopreventive 
agent in the Rapid Access to Preventive Interven-
tion Development (RAPID) program.

The molecular mechanism of SHetA2 induction 
of apoptosis in cancer cells is associated with 
decreases in Bcl-2 and Bcl-xl levels (Liu et al. 
2007a), while G1 cell cycle arrest is associated 
with decrease of Cyclin D1 levels (Masamha, 2007; 
Liu et al. 2007b) and induction of differentiation 
is associated with increase of E-Cadherin expres-
sion (Liu et al. 2007b). The initiating event for 
these effects may be due to glutathione depletion 
caused by covalent binding of SHetA2 to glutathi-
one (Chengedza et al. 2007; Liu et al. 2007c). 
Glutathione levels are important for maintaining 
mitochondrial and cellular redox status. The glu-
tathione depletion by SHetA2 leads to inhibition 
of the activity of a redox-regulated transcription 
factor that regulates the aforementioned genes, 
nuclear factor—κB (NF-κB) (Chengedza et al. 
2007; Liu et al. 2007c).

The complex response of gene expression 
patterns in endometrial organotypic cultures treated 
with carcinogens and potential chemoprevention 
agents, such as SHetA2, can be modeled with 
systems biology. Microarrays represent a powerful 
tool to generate hypothesis about the molecular 
mechanisms driving biological systems. The 
tremendous amount of information that can be 
obtained from microarray studies however, presents 
many challenges for data analysis including high 
levels of inaccuracy caused by the mutually 
exclusive characteristics of sensitivity and 
specificity. While statistical methods based on 
conventional t tests provide the probability (P) that 
a difference in gene expression occurred by chance, 
conventional thresholds for statistical tests of 
biological systems produce thousands of false 
positive selections in microarray experiments 
containing hundreds of thousands measurements. 
The straightforward approach to decrease these 
false positives by using high numbers of replicates 
is very expensive and ineffi cient. Correction of the 
P threshold by dividing the desired signifi cance by 
the total number of statistical tests performed 
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(Bonferroni correction), ensures achievement of a 
desired false-positive rate over the entire set of 
genes, but arguably sets a criterion to be too strict 
for each individual gene. Thus, the problem of 
specificity is solved at the consequence of 
decreasing the sensitivity. The most popular 
attempt to improve the Bonferroni adjustment is 
the False Discovery Rate (FDR) control in multiple 
hypotheses testing (Holm, 1979) introduced into 
microarray analysis by Benjamini and Hochberg 
(Benjamini et al. 1995). Instead of controlling for 
the chances for type I error across the entire set of 
hypotheses considered, FDR estimates and controls 
for the proportion of null hypotheses that are 
rejected. In the FDR method, all genes are ranked 
by their P values and tested against individualized 
thresholds: the smallest observed P value—against 
the strictest threshold, and the remaining P values 
against successively more relaxed thresholds. The 
use of individualized thresholds, as in the popular 
Significance Analysis of Microarrays (SAM) 
method (Tusher et al. 2001), improves the 
conservativeness of the Bonferroni test, although 
the improvement is only partial and often minor. 
This again results in a dependence on unrelated 
measurements, because the threshold adjustment 
for any given gene depends on the arbitrary number 
of genes with lower P values.

Fortunately, the power of statistical tests can be 
increased by taking advantage of the enormous 
quantities of information obtained in each microar-
ray experiments. We developed a statistical 
approach of normalization and analysis procedures 
of microarray data that increases statistical power 
by using internal standards that characterize some 
aspect of system behavior, such as technical vari-
ability (Dozmorov et al. 2003a; Knowlton et al. 
2004). In this internal standard approach, the paired 
comparison of gene expression in two different 
situations is accompanied by the associative 
test—checking the hypothesis that each given gene 
in the experimental group has common features 
and can be associated with an internal standard. 
The internal standard in this context is a large 
family of genes that share some features useful for 
analysis, which in turn have no dependence on the 
particular gene sequence, level of expression, or 
coordinates on the microarray chip used. For 
example, genes expressed below technical sensitiv-
ity comprise a background cohort (Dozmorov et al. 
2004a), while genes exhibiting a similar expression 
pattern across several distinct experimental 

conditions are denoted as an equally expressed 
cohort. These internal standards are used to 
robustly estimate parameters that describe some 
state of the experimental system, such as the iden-
tification of genes expressed distinctly above 
background, differentially expressed genes, and 
genes having similar dynamical behavior. A direct 
comparison with the Bonferroni correction dem-
onstrated advantages of the internal standard 
approach in that it produced selections with 
minimal false positive and false negative con-
taminations and discriminated between genes that 
are differentially expressed from those that are 
expressed only in one state. (Dozmorov et al. 
2003a).

In addition, the internal standard approach 
allows the selection of genes with signifi cantly 
higher variability compared with the majority of 
genes (stabile genes). As demonstrated previously 
(Dozmorov et al. 2004b; Dozmorov et al. 2005), 
the behavior of these hypervariable (HV) genes 
could tease out important clues about naturally 
occurring dynamic prosesses in the organism or 
experimental system under study.

The objective of this study was to develop and 
characterize an organotypic model of endometrial 
carcinogenesis and Flex-Het chemprevention and 
to identify molecules in this model that are regu-
lated in opposite directions during the processes 
of carcinogenesis and chemoprevention. The poly-
cyclic aromatic hydrocarbon and known carcino-
gen, 7,12-dimethylbenzanthracene (DMBA) was 
chosen to induce the cancerous phenotype, because 
it is well-characterized and has been shown to 
increase the incidence endometrial hyperplasia and 
uterine polyps in mice (Geary, 1984; Gray et al. 
1997). Karyometric analysis and the soft-agar 
colony forming assay were used to confi rm the 
development and prevention of the cancerous 
phenotype in the organotypic cultures (Ranger-
Moore et al. 2005). Microarray analysis interpreted 
via the internal standard approach and identifi ca-
tion of HV genes was used to characterize the 
dynamics of the carcinogenesis and chemopreven-
tion mechanisms. In addition, multivariate proce-
dures of correlative clustering and mosaic 
presentation (Dozmorov et al. 2003b) and modifi ed 
discriminant function analysis (Dozmorov et al. 
2005; Jarvis et al. 2004b) were used to identify 
carcinogen initiated changes in the functional 
associations of HV genes. Validation of differential 
expression of secreted proteins, tenascin C and 
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inhibin A, that can contribute to driving the 
biological system modeled by our analysis was 
performed by Western blot and enzyme linked 
immunosorbant assay (ELISA).

Materials and Methods

Organotypic cultures
The cultures will be established, maintained and 
used to prepare organotypic cultures as previously 
described (Kamelle et al. 2002). The cultures used 
for this study were collected from a healthy pre-
menopausal female who did not take hormones, 
dietary supplements or medications. Endometrial 
organotypic cultures were grown for 1 week to 
generate tissue histology prior to a 4 hour exposure 
to 5 µM DMBA to induce DNA damage or solvent 
control. After DMBA exposure, media were replen-
ished, and 1 µM SHetA2 was added to half of the 
DMBA-treated cultures to prevent transformation 
and half of the solvent-treated cultures as a control 
for the effects of the drug alone. Media and SHetA2 
were replenished every Monday, Wednesday and 
Friday for two weeks. One set of cultures from 
each experiment was fi xed in formalin, embedded, 
sectioned (5 microns), deparaffi nized and stained 
with hematoxylin and eosin (H&E). Parallel cul-
tures were treated with collagenase for 15 minutes 
at 37 °C to release the cells, followed by addition 
of Phosphate Buffered Saline (PBS) and centrifu-
gation to pellet the cells for RNA and protein 
isolation.

Tissue preparation and karyometric 
feature extraction
Formalin-fi xed paraffi n-embedded blocks of the 
cultures were sent to an independent laboratory 
at the Arizona Cancer Center where they were 
sectioned, stained with H&E and evaluated 
microscopically for karyometric analysis as pre-
viously described (Ranger-Moore et al. 2005). 
Five micron tissue sections were scanned and the 
nuclei segmented from cellular background using 
custom software. One hundred nuclei were ran-
domly selected from each sample for analysis. 
Ninety-fi ve karyometric features that capture 
chromatin information at varying levels of com-
plexity were measured. Most of these features 
fall into one of three broad categories, each of 
which summarizes information at increasingly 

higher dimensions of order. Zero-order statistics 
produce scalar features based on the values of all 
pixels in the nucleus, such as mean optical den-
sity (OD), OD variance, and nuclear area (total 
number of pixels). First-order statistics consist 
of vectors of features derived directly from pixel 
characteristics, such as the frequency histogram 
of OD values. Second-order statistics consist of 
matrices that generate features containing infor-
mation on relationships between pixels, such as 
the similarity or difference of adjacent pixels on 
OD value, or pixel run lengths occurring at given 
OD levels. The full set of features captures a 
broad range of information that maximizes the 
opportunity to detect nuclear changes of signifi -
cance in deviation from normal or a reference 
standard.

Karyometric statistical analysis
The nuclear signature was obtained by fi rst calcu-
lating the mean and standard deviation of karyo-
metric features in normal endometrial cultures. The 
value of each feature in the treated cultures was 
standardized relative to the untreated controls. 
Thus, the standardized measure for each feature in 
each nucleus in the treated cultures indicates how 
many untreated-control standard deviations away 
from the untreated-control it lies. The absolute 
value of the distance is routinely used because the 
magnitude of the deviation is of concern. The 
nuclear signature was graphed as a bar chart of the 
95 karyometric features, with the vertical height 
of each bar depicting the deviation from normal 
averaged across all nuclei. In normal tissue, the 
height of each bar was approximately 0.67, which 
is the typical absolute deviation in a normal distri-
bution. Organotypic cultures treated with DMBA 
typically exhibited marked elevations in numerous 
karyometric features. A discriminant function (DF) 
was developed based on those karyometric features 
best able to distinguish between untreated and 
DMBA-treated cultures. To choose the appropriate 
karyometric features without imposing distribu-
tional assumptions, a non-parametric rank-sum test 
was used with a low signifi cance level of 0.005 in 
light of the multiple comparisons being conducted. 
The 5 karyometric features showing the strongest 
differences between the two tissue types were then 
submitted to a DF analysis and the resulting func-
tion was applied to all samples from the study. 
These 5 features were total optical density, nuclear 
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area, grey level nonuniformity (akin to, but not the 
same as, the standard deviation of optical density), 
run percentage (i.e. the percentage of pixels 
involved in homogeneous run lengths), and the 
total number of ‘grey’ pixels (i.e. pixels falling into 
an intermediate range of O.D.).

RNA isolation and microarray analysis
RNA was isolated from frozen cell pellets using 
the mini RNeasy kit (Qiagen, Valencia CA) in 
combination with the Qiagen shredder. After puri-
fi cation, RNA concentration was determined with 
a Nanodrop scanning spectrophotometer (Nano-
drop Technologies, Wilmington, DE), and then 
qualitatively assessed for degradation using the 
ratio of 28:18s rRNA using a capillary gel electro-
phoresis system (Agilent 2100 Bioanalyzer, Agi-
lent Technologies, Santa Clara, CA). cDNA 
synthesis, hybridization and staining were per-
formed as specifi ed by Affymetrix (Santa Clara, 
CA). Briefl y, 4.8 µg of total RNA was primed with 
T7-oligo-dT and reverse transcribed with Super-
Script II, followed by production of double-
stranded cDNA with E coli DNA polymerase. 
cRNA was transcribed in vitro from the T7 pro-
moter using a biotinylated ribonucleotide analog 
and then fragmented to approximately 100 nt. 
cRNA is hybridized to human Affymetrix U133 
Plus 2.0 GeneChips™ microarrays. These arrays 
contain approximately 47,000 probes for tran-
scripts in the human genome. GeneChips™ were 
washed and stained using an Affymetrix automated 
fl uidics station 450 and scanned with an Affymetrix 
3000 7G scanner.

Statistical analysis of differentially 
expressed genes
Our methods of data normalization and analysis 
are based on the use of internal standards that 
characterize some aspect of system behavior such 
as technical variability are used thus enabling an 
increase in statistical power. In general, an internal 
standard is constructed by identifying a large fam-
ily of similarly behaving genes. For example, genes 
expressed below technical sensitivity comprise a 
background cohort while genes having a similar 
expression pattern across several distinct experi-
mental conditions are denoted as an equally 
expressed cohort. These internal standards are used 
to robustly estimate parameters that describe some 
state of the experimental system such as the 

identifi cation of genes expressed distinctly from 
background, differentially expressed genes, genes 
with differences in the expression variability and 
genes having similar dynamical behavior. The 
advantage of the methods based on the internal 
standard comparisons over traditional paired T test 
and ANOVA analysis is in their capability to 
increase statistical power of analysis (sensitivity) 
without loosing specifi city of statistical criteria. 
This advantage results from the high representativ-
ity of the internal standards consisting normally of 
thousands of members (Dozmorov et al. 2003a; 
Knowlton et al. 2004; Dozmorov et al. 2004a).

Conclusions about differences in gene expres-
sion were based on the use of associative analysis 
described in (Dozmorov, Centola, 2003). Additional 
restrictions were applied to focus attention on the 
especially prominent differences: a minimum aver-
aged expression level at least 10 times above 
background, a minimum 2-fold difference in the 
mean expression values between groups, and a 
minimum of 80% reproducibility using the jack-
knife method—the leave-one out-cross validation—
used to cross-validate results of differential 
analysis.

Identifi caton of hypervariable (HV)-
genes
A ‘reference group’ was defi ned as genes in the 
untreated control cultures that were expressed 
above background with inherently low variability 
as determined by an F-test. Hyper-variable (HV) 
genes were identifi ed as genes with expression 
levels that varied signifi cantly (P � 1/N) in com-
parison to the ‘reference group’ (Dozmorov et al. 
2004b). The threshold of P � 1/N, where N repre-
sents the number of genes expressed above back-
ground, is a slight modifi cation of the Bonferroni 
correction for multiple hypothesis tests. This 
threshold usually identifi es more than half of all 
genes on an array. It is important to note that such 
hyper-variable genes exist even within homoge-
nous groups of samples such as the control group. 
Their variability statistically exceeds the estab-
lished biologically stabile genes (BSG) variability 
and therefore may refl ect some non-synchronized 
gene dynamics. Hyper-variations appearing from 
experimental errors (infl uence of dirty spots etc) 
were fi ltered from this analysis statistically by 
comparing the variability of the residuals in repli-
cated group of samples with the same variability 
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obtained after excluding both the maximum and 
minimum, one at a time. A statistical decrease in 
variability after excluding one replicate provides 
evidence of possible error in that particular repli-
cate. Such genes were excluded from the family 
of HV-genes as being falsely selected. Once 
fi ltered, the expression patterns can be considered 
snapshots of some dynamical biological process 
in which they participate. Correlation of these 
expression patterns may refl ect some functional 
interconnections in the aforementioned dynamical 
processes.

Comparative cluster analysis 
of HV-genes
Genes selected as HV-genes in all three treatment 
groups (DMBA, DMBA+SHetA2, SHetA2) were 
clustered based on correlation of their expression. 
The clustering procedure was based on the Pearson 
correlation described in detail in (Dozmorov et al. 
2003b) and consisted of the following steps: 
1) Connectivity was defi ned for each gene as the 
number of other genes whose expression behavior 
in samples of the group correlated with a given 
gene—the appropriate threshold for the correlation 
coeffi cient used to defi ne connectivity was calcu-
lated using a simulation study; 2) HV-genes were 
sorted by their connectivity and the clustering 
process was started with genes of higher connectiv-
ity to seed clusters. The gene of higher connectiv-
ity and all genes correlated with it comprised 
cluster 1. The next gene of the highest connectiv-
ity not belonging to cluster 1 was used as a seed 
for the cluster 2 and so on. The fi nal result of this 
clustering is presented in the form of correlative 
mosaics in which gene relationships through cor-
relation coeffi cients are expressed in colors.

Promoter analysis
The strategy for analyzing the signifi cance of gene 
selections with reversible dynamics was based on 
the assumption that co-regulated genes are likely 
to share common regulatory motifs (Chiang et al. 
2001). Transcription elements over-represented 
within selected genes were determined with pro-
gram PAINT 3.3 (Vadigepalli et al. 2003) available 
online (PAINT:), to query the transcription factor 
database (TRANSFAC) (BIOBASE:). PAINT 3.3 
was employed to examine 2000 base pairs of 
regulatory regions upstream of the transcriptional 
start site of each differentially expressed gene from 

the microarray expression data. GeneBank 
accession numbers were used as the gene identifi ers 
in PAINT input files. The probability of the 
observed pattern was determined by reference 
against the total genome. Results of this analysis 
are presented in heat map matrix with individual 
elements colored by the signifi cance of the p-val-
ues: over-representation in the matrix is indicated 
in red (indicate p � 0.05).

Correlation mosaics
Correlations coeffi cients and connectivity param-
eters for gene expression patterns were derived and 
used to generate Correlation Mosaics as previously 
described (Dozmorov et al. 2003c). Briefl y, cor-
relations between the expression patterns of genes 
were determined by first running simulation 
experiments to determine a background threshold 
level that the correlation needed to be above in 
order to be considered signifi cant. Correlation 
coeffi cients were derived in a comprehensive pair-
wise manner. A connectivity parameter for each 
gene was then calculated from the number of other 
genes that exhibit a correlated expression pattern 
and was used to determine clustering of genes into 
a matrix.

Validation of differential protein 
expression with Western blot 
and ELISA
At the end of the treatment period of the endome-
trial organotypic cultures, the media was removed 
and replaced with serum free media. The condi-
tioned media was collected after 6 hours and con-
centrated with an Amicon protein concentrator. For 
tenascin-c analysis, 25 µg of protein concentrated 
media from each of the 4 treatments was loaded 
onto a 10% SDS gel and transferred to a PVDF 
membrane. Membranes were blocked with 5% 
milk and then incubated with an anti-tenascin C 
primary antibody (Abcam). The membranes were 
rinsed with Tris/Tween buffer and incubated with 
horseradish peroxidase (HRP) conjugated second-
ary antibody (Santa Cruz). After further rinsing, 
Luminol reagent (Santa Cruz) was used to detect 
specifi cally bound antibody. The bands were visu-
alized by exposure to X-ray Film. For thymidine 
phosphorylase analysis, a mouse anti-thymidine 
phosphorylase antibody (Santa Cruz) was used to 
immunoprecipitate the protein from 1.5 ml of 
conditioned media before loading the SDS gel and 
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the blot was hybridized with a goat anti-thymidine 
phosphorylase antibody (R&D Systems). For the 
Enzyme Linked Immunosorbant Assay (ELISA), 
25 µl of 50X concentrated media from each treat-
ment group was applied to duplicate wells of 
antibody coated microtiter strips from the inhibin-A 
ELISA kit (Diagnostic Systems Laboratories) and 
the ELISA was performed according to manufac-
turers instructions. This assay captures the dimer 
of inhibinβA/inhibinα called Inhibin A with an 
anti-inhibinβA antibody and recognizes the Inhibin 
A bound with a secondary anti-inhibinα antibody 
conjugated with horse radish peroxidase. Signal 
corresponding to the amount of bound protein was 
generated with a tetramethylbenzidine (TMB) 
substrate that was metabolized by the horse radish 
peroxidase to a color that was read the optical 
density (OD) of 450 nm with correction at 650 nm. 
The concentration of inhibin A in each well was 
determined by comparing the average optical 
density of duplicate wells of conditioned media 
with a standard curve generated from duplicate 
wells concentration standards in each of the two 
experiments.

Discriminant function analysis 
for Microarray data
Discriminant function analysis (DFA) (Statistica, 
StatSoft, Tulsa, OK) was used for selecting a set 
of genes with maximal discriminatory capabilities 
between untreated controls and cultures receiving 
the treatments. A variant of DFA named the “For-
ward Stepwise Analysis” that has been success-
fully applied to clinical classifi cation (Jarvis et al. 
2004b; Jarvis et al. 2004a) and experimental 
microarray data (Dozmorov et al. 2003c) was 
used. In this modifi cation of the DFA, only HV-
genes were used for selection of discriminatory 
parameters, defi ned as roots. DFA based on the 
use of dynamical parameters (DDFA) is a clas-
sifi cation method that uses differences in gene 
functional associations as a discriminatory factors 
(Dozmorov et al. 2005). The analysis was carried 
out using data normalized and adjusted with pro-
cedures described above. HV-genes with highest 
discriminatory capability were used for calcula-
tion of linear combinations (roots). These roots 
demonstrate relative stability for samples within 
groups and at the same time signifi cant difference 
for samples from different groups. The use of 
these roots as coordinated gives visual presentation 

of the discriminatory rules obtained for the 
different treatment groups.

Results

Biological model
Endometrial organotypic cultures were exposed to 
DMBA or solvent control and then cultured in the 
absence or presence of SHetA2 for two weeks prior 
to fi xation and evaluation for histological features. 
In greater than 6 repeats of this treatment schedule, 
consistent histological transformation to the cancer-
ous phenotype in DMBA treated cultures and preven-
tion of the cancerous phenotype in DMBA + SHetA2 
treated cultures was observed (Fig. 1A).

This transformation and chemoprevention was 
validated by karyometric analysis at an indepen-
dent laboratory at the Arizona Cancer Center. The 
value of each feature in the treatment groups was 
standardized relative to the untreated control. 
Three key karyometric features of the nuclei (total 
optical density, standard deviation of optical 
density, and nuclear area) showed dramatic and 
statistically signifi cant increases in the cells in 
DMBA-treated cultures relative to untreated cul-
tures. These three features and others were nearly 
identical in the cultures treated with DMBA + 
SHetA2 and control cultures treated with solvent 
only, consistent with SHetA2 chemoprevention 
activity. Treatment with SHetA2 alone signifi -
cantly increased only one feature in comparison 
to untreated cultures—the standard deviation of 
the optical density. A linear discriminant function 
utilizing 5 texture features was developed to dis-
tinguish between untransformed and DMBA-
transformed nuclei. The resulting vector of feature 
weights was then applied to the karyometric data 
for nuclei from cells treated with both DMBA and 
SHet2A or with SHetA2 only. The results of the 
karyometric analysis demonstrate that DMBA 
increases the numerical value of the discriminant 
function scores causing a shift to the right, and 
that this shift is prevented by SHetA2 (Fig. 1A). 
Treatment with SHetA2 only did not signifi cantly 
affect the profi le.

The ability of cells to form anchorage-
independent colonies in soft agar is often used as 
a measure of transformation. Cells released from 
the organotypic culture at the end of the treatment 
period were plated into soft agar and their ability 
to form anchorage-independent colonies was 
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Figure 1. A) Organotypic Cultures and Karyometric Analysis. The panel on the left depicts photomicrographs of H&E stained sections 
of organotypic cultures that were fi xed after the indicated treatments. The graphs on the right represent the profi le of discriminant function 
scores for each of the treatments. B) Clonogenic soft agar assay. The ECC model was grown and treated as described in Figure 1. At the 
end of the treatment period, the collagen was digested and the cells released were pelleted and counted. Equal numbers of cells from each 
treatment were plated in soft agar in triplicate wells without DMBA or SHetA2. Fresh media without DMBA or SHetA2 was added twice per 
week to keep the cultures hydrated and nourished. After two weeks, cells were stained with crystal violet and photographed.
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monitored over 2 weeks. Consistent with the 
pathology review and karyometric analysis, only 
cultures treated with DMBA and cultured in the 
absence of SHetA2 exhibited the capacity to form 
colonies when plated in soft agar (Fig. 1B).

Microarray analysis identifi es genes 
associated with carcinogenesis and 
chemoprevention
RNA isolated from 4 replicate cultures grown in 
parallel with those used for the karyometric validation 
was evaluated with microarray analysis to identify 
candidate genes and pathways involved in the 
carcinogenesis and chemoprevention processes. 
Paired comparisons of each of the treatment groups 
with the untreated control group identifi ed several 
hundred genes that were signifi cantly altered in 
expression by each treatment. The strategy to identify 
a gene subset most likely to be directly involved in 
the carcinogenesis and chemoprevention processes 
was to select genes altered by DMBA, reversed by 
SHetA2 after DMBA treatment, and not affected by 
SHetA2 only treatment. The rationale for this 
strategy is that carcinogenesis false-positives in the 
DMBA-only treated cultures can be reduced by 
selecting only the subset of these genes that were 
counter-regulated by SHetA2 chemoprevention in 
the cultures treated with DMBA followed by 
SHetA2. Also, chemoprevention false positives in 
the SHetA2-only treated cultures were reduced by 
eliminating those genes that were not signifi cantly 
altered in the SHetA2-only versus DMBA followed 
by SHetA2 treated cultures. A refi ned list of 89 genes 
that were counter-regulated by DMBA and SHetA2 
were identifi ed. The two patterns of expression 
demonstrating the reversible dynamics of these 
genes are depicted in Fig. 2. Hierarchical clustering 
of these genes is shown in Figure 3. Analysis of the 
89 gene promoters (Fig. 4) identifi ed leading roles 
of several transcription  factors in the observed 
changes of gene expression. Evaluation of the 
signaling pathways directly infl uenced by these 89 
prioritized genes was performed using Ingenuity 
software (Fig. 5). Several oncogenic networks were 
found to be directly regulated at multiple points, the 
most prominent of which were c-Myc, p53, and 
tumor necrosis factor-α (TNFα) and genes of 
Activator Protein-1 (AP-1) family (JUN, JUNB, 
C-JUN). Three of the transcription factors (SRE-
BF1, MYC (c-Myc), and E2-F1) in the promoter 
analysis were also identifi ed by Ingenuity Pathway 

software as being incorporated into the network of 
selected genes (Fig. 5). 

Hypervariable gene analysis to identify 
differences in functional associations
A systems biology approach was use to identify 
networks of genes that responded to DMBA and 
SHetA2 in association with each other suggesting 
functional interaction. The fi rst step in this approach 
was to identify hypervariable (HV) genes. HV genes 
are defi ned as genes that demonstrate excessive 
variation that can not be explained just as normal 

Figure 2. Reversible Dynamics. After the hypervariable genes in each 
treatment group were identifi ed, genes were prioritized for further 
study if they exhibited all of the following: Signifi cantly altered by 
DMBA (D) in comparison to the untreated control (N), Alteration 
observed in DMBA treated cultures was not observed in cultures 
treated with SHetA2 + DMBA (DS) or SHetA2 (S) alone. The rationale 
for this prioritization is that it will identify genes directly involved in the 
transformation process and not altered by other effects of DMBA or 
SHetA2. Eightynine genes were identifi ed to fi t these prioritization 
criteria. Normalized expression (y’) was derived from the following 
formula: y’ = (y-A)/SD, where y = the individual gene expression level, 
A = the gene expression averaged over all samples, and SD = standard 
deviation.
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fl uctuations of expression. We hypothesized that this 
variability is a refl ection of dynamic processes that 
the HV-gene encoded proteins are involved in. These 
processes are not synchronized in the samples, even 
in a very homogenous group. This means that the 
processes are in different phases of the same process 
in different samples. Additional evidence for this 
integrative dynamical process is provided by the fact 
that many of HV-genes are changing together, i.e. 
they have highly correlated expression profiles 
within groups and sometimes also between groups 
(Dozmorov et al. 2005; Dozmorov et al. 2004b). 
HV-genes were selected in all 4 groups of samples 
as having variability signifi cantly exceeding exper-
imental noise variability and that appeared hypervari-
able in at least 3 treatment groups were selected for 
further study. After exclusion of all duplicates and 
functionally non-characterized genes, there were 61 
genes remaining that matched these criteria. Several 
genes that have previously described associations 
with carcinogenesis are presented in Table 1.

Functional associations between 
the 61 HV-genes
Correlation mosaics were generated to visualize 
how the expression of HV genes are related to 
each other and to compare how these relationships 
are altered by the different treatments. Correlation 
coefficients for the expression patterns of 
genes were derived in a pairwise fashion and 
used to determine the number of other genes 
that significantly correlated with each gene 
(connectivity index). The connectivity index for 
each gene was used to determine the order it was 
represented along an axis of a matrix. The fi rst 
cluster of genes was seeded with the gene that 
had the highest connectivity index. All of the 
genes that had signifi cant correlation coeffi cients 
were represented alongside. The second cluster 
was seeded with the gene that was not included 
in cluster 1 and had the highest connectivity 
index. Additional clusters were generated until 
all of the genes were used up. The visual 

Figure 3. Hierarchical clustering of genes with “forward-back” dynam-
ics. The right side colored bar presents two different clusters joined 
genes increased (red bar) or decreased (green bar) their expression 
after D action. Samples grouping is indicated in the bottom of the 
graph.

Figure 4. Promoter analysis of genes with “forward-back” dynamics. 
Promoters are shown along abscissa (on the top) and genes along 
ordinate. Red spots indicated genes with over represented promot-
ers relatively total genome (statistical threshold is p = 0.05).
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presentation of this clustering of genes into a 
matrix is a correlation mosaic (Fig. 6) where 
coordinates represent the numbers of a given gene 
in the list (as shown in Fig. 6) and the color of a 
given spot indicates the type of correlation 
between the genes represented by its coordinates. 
Red color is used for positive correlation and blue 
for negatives correlation.

Genes used in this clustering procedure also 
are shown in their functional associations in 
Figure 7A (no treatment) and Fig. 7B (DMBA 
t r e a t m e n t ) .  T h i s  m o s a i c  p r e s e n t a t i o n 
demonstrates the presence of three large clusters 
linked with tense correlative associations: 
cluster A—genes 1–29, cluster B—genes 30–44, 
and cluster C—genes 45–61. These clusters are 
also presented as t ightly interconnected 
associations in Figure 7 A and B. The main 
changes  in  mosaics  created for  DMBA 

carcinogenesis are in the associations between 
these clusters. In the normal control group, 
cluster B merges with cluster C in one big 
cluster that is in antagonistic association with 
cluster A. In the DMBA treated group, cluster 
B merges with cluster A and this new big cluster 
is mainly in negative association with cluster 
C, except for a small fraction of the cluster A 
(first five genes), that change their preference 
from A to C. In the DMBA+SHetA2- treated 
g roup  these  assoc ia t ions  a re  pa r t i a l ly 
reconstituted to their normal control state.

Validation of microarray and HV Gene 
functional interaction results
As a step toward validation of this model, two 
genes, tenascin c (TN-C) and inhibinβA (INHBA), 
demonstrating reversible expression from Figure 2 

Figure 5. Ingenuity pathway analysis of gene demonstrating “reversible” dynamics. Red symbols—genes with signifi cant increase of expres-
sion after D action, green symbols—genes decreasing expression after D action. The genes validated as shown in Figure 8 to be differentially 
expressed at the protein level, tenascin-C (TNC) and inhibin A (INHBA), are represented as larger symbols for ease of recognition. Blue 
symbols—the main transcription factors involved in regulation of the differentially expressed genes (by results of promoter analysis—see 
Fig. 4. Solid lines—direct interactions, dashed—indirect. Node symbols: squares—cytokines, rombs—enzymes, cyrcles—all others. Not 
colored symbols indicate genes added by the program for completeness of connectivities.
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that were subsequently identified as playing 
functional roles in the ECC model by Ingenuity 
Analysis (Fig. 5) and by cluster analysis (Fig. 7) 
were evaluated in the organotypic model. 
Western blot analysis of conditioned media from 
organotypic cultures confirmed that TN-C 
secretion followed the pattern of being induced 
by DMBA transformation, repressed by SHetA2 
chemoprevention and unaffected by SHetA2 
treatment alone (Fig. 8A). Since there are no 
standard secreted proteins that can be used as a 
control for protein loading in conditioned media, 
we chose to use another secreted glycoprotein, 
thymidine phosphorylase (TP also called 
platelet derived endothelial cell growth factor or 
PD-ECGF), which provides a demonstration of a 
protein that does not exhibit altered levels in 

this model. Interestingly, TN-C was fragmented 
in serum-free media but remained intact in 
the presence of serum as observed by others 
(Wallner et al. 2004; Jones et al. 2002). The 65kD 
fragment also was observed in human carotid 
endarterectomy specimens and found to retain the 
EGF-like domain and induced apoptosis, while 
intact TN-C did not induce apoptosis (Wallner 
et al. 2004; Jones et al. 2002).

ELISA analysis of inhibin A, which consists of 
an inhibinβA/inhibinα demonstrated a consistent 
pattern of expression with that observed in the 
microarray analysis with increased levels in the 
DMBA transformed cultures, decreased levels in 
the SHetA2 chemoprevented cultures, and insig-
nifi cant alterations in the cultures treated with 
SHetA2 only (Fig. 8B).

Figure 6. Correlative mosaics of HV-genes in normal control group, after DMBA treatment, and after combined DMBA and SHetA2 treatment. 
The orders along the axes were chosen to group genes belonging to the biggest clusters in the normal control. The same order is kept in 
all other mosaics. The colors of spots in the mosaic characterize correlation between genes used as coordinates for given spot: red—positive 
correlation, blue—negative. The lists of HV-genes are presented in blocks consistant with their cluster allocations. Changes in cluster 
associations in course of carcinogenesis are presented here with arrow connections. The genes used for the DFA-analysis in Figure 8 are 
marked here with stars.
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Figure 7. Ingenuity pathway analysis for group of HV-genes demonstrating reversible changes in cluster associations as it is shown in 
Figure 6. The red arrows indicate tight associations and the blue arrows indicate strong negative associations or repression. Panel A rep-
resents associations for the normal control group, and Panel B—for DMBA treated group.

A

B
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Discriminant function analysis 
of microarray data
Discriminant Function Analysis (DFA) is a statis-
tical method to identify parameters that can distin-
quish between groups. It also can be used to 
identify which group an individual sample belongs 
to and ultimately could be used as diagnostic and 
prognostic assays for cancer. Discrimination of 
groups of samples is usually based on sets of dif-
ferentially expressed genes that provide the best 
discrimination between groups. We developed an 
original modification of this method named 
Dynamical DFA that is based on the use of HV 
genes for discrimination. (see details in (Dozmorov 
et al. 2005)). All these genes are not differentially 
expressed between groups, and when considered 
separately from others, are not discriminatory, but 
their linear combinations created with statistical 
algorithms could be very discriminative and used 
for classifi cation. All of the HV-genes presented 
in Figure 6 were used in Dynamical DFA analysis. 
The program selected 7 HV-genes (marked with 
stars in Fig. 6) for creation of discriminatory 
parameters called ROOTS, which are linear com-
binations of these 7 genes with appropriate constant 
coeffi cients. The results of Dynamical DFA are 

presented in Figure 9. In fact, satisfactory group 
separation (only slightly overlapping) can be 
achieved with use of even smaller numbers of 
genes—only the fi rst three in the list (Table 2).

Discussion
In this study, karyometric analysis validated the 
consistent development and prevention of a 
transformed phenotype in endometrial organotypic 
cultures exposed to DMBA followed by treatment 
with solvent only or SHetA2, respectively. Micro-
array analysis identifi ed genes that were differen-
tially regulated during the processes of 
carcinogenesis and chemoprevention. Evaluation 
of the functional interactions of these differentially 
regulated molecules identifi ed the involvement of 
several interacting signaling pathways regulated 
by TNFα, c-Myc, p53, and multiple Jun genes. 
Multiple members of these signaling pathways 
were directly altered, while these key regulators 
themselves were not (Fig. 5), suggesting that the 
functions of the protein products, not their mRNA 
expression levels, are involved in the mechanisms 
driving carcinogenesis and chemoprevention in 
this model. Each of these proteins function to 
directly or indirectly regulate gene expression, 

Figure 8. Tenascin C and Inhibin A secretion in ECC model. Endometrial organotypic cultures were exposed to 5 µM DMBA for 4 hours 
followed by two weeks of growth −/+ 1 µM SHetA2. At the end of the experiment, cultures were switched to serum free media, the conditioned 
media collected after 6 hours. A) Western blots of conditioned media. The top blot was hybridized with anti-tenascin C and the bottom with 
anti-thymidine phosphorylase as a control for a secreted protein that is not signifi cantly regulated in the ECC model. B) ELISA of Inhibin A 
levels in the conditioned media. Error bars represent standard error. The two p values represented are from two tailed paired t-tests. There 
were no signifi cant differences between other pairwise comparisons. Data shown for each protein are from the same experiment, and are 
representative of two independent experiments performed in quadruplicate.
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which could account for their functional involvment 
in the differentially regulated gene expression pat-
terns observed. The activator protein-1 (AP-1) 
transcription factors (Jun and Fos families of pro-
teins), TNFα, c-Myc and p53 are well-recognized 
for playing key roles in carcinogenesis and 
chemoprevention. Their specifi c association with 
DMBA-induced carcinogenesis and chemopreven-
tion supports the validity of this model.

Evidence for direct involvement of TNFα in 
DMBA carcinogenesis is provided by the observa-
tions that TNFα defi cient mice are resistant to 
DMBA induced carcinogenesis (Suganuma et al. 
1999; Moore et al. 1999) and that neutralization of 
TNFα with a specifi c anti-TNFα antibody decreased 
tumor formation (Scott et al. 2003). Down-regula-
tion of TNFα is involved in the mechanism by 
which several natural and synthetic compounds 
prevent DMBA carcinogenesis of the endometrium 
(Onogi et al. 2006; Tagami et al. 2004; Lian et al. 
2002) and skin (Komori et al. 1993; Haranaka et al. 
1988; Zhaorigetu et al. 2003).

The AP-1 signal transduction pathway is 
strongly implicated as a down-stream mediator of 
TNFα-driven carcinogenesis. AP-1 responsive 
genes are differentially regulated in TNFα-wild 
type (DMBA-sensitive) mice in comparison to 
TNFα-knockout (DMBA resistant) mice (Arnott 
et al. 2002; Brenner et al. 1989; Hartl et al. 2006; 
Chen et al. 2004). The AP-1 DNA binding site is 
requried for TNFα-induction of a molecule 
strongly implicated in carcinogenesis, intercellular 
adhesion molecule-1 (ICAM-1) (Chen et al. 2004). 
Increased expression of c-Jun and other members 
of the AP-1 transcription factor family is also 
associated with prevention of DMBA-driven endo-
metrial carcinogenesis (Onogi et al. 2006; Tagami 
et al. 2004; Lian et al. 2002).

AP-1 activation could lead to the induction of 
c-Myc in DMBA carcinogenesis through a specifi c 
AP-1 DNA binding site in the c-Myc promoter 
known to be activated by AP-1 (Iavarone et al. 
2003). Both AP-1 and c-Myc could then lead to 
induction of p53 through specifi c DNA binding 

Figure 9. Discriminant Function Analysis of all group of samples. All HV-genes presented in mosaics Fig. 6 were used for this analysis. As 
a result of analysis there were selected 7 of them (Table 2) with higher discriminatory capability for calculation of linear combinations – ROOTS 
used as coordinates: for presentation of the results of discrimination. Open circles present samples before stimulation and fi lled circles – after 
treatment.
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sites in the p53 promoter that are known to drive 
synergistic increase in p53 when bound by AP-1 
and c-Myc transcription factors (Kirch et al. 1999). 
Upregulation of the p53 tumor suppressor and 
down regulation of c-Myc protein function is asso-
ciated with prevention of DMBA-carcinogenesis 
in several animal models (Todorova et al. 2006; 
Arora et al. 2004). The complex role of c-Myc in 
promoting growth and inducing apoptosis could 
explain why down- or up-regulation of c-Myc 
contributes to carcinogenesis depending on the 
cellular context (Vita et al. 2006).

TNFα, c-Myc, p53 and the AP-1 transcription 
factors are also known to be altered in human 
endometrial cancer specimens. High levels of 
TNFα were observed in serum (Diab et al. 2006a) 
and genotypic changes in the TNFα gene promoter 
were observed in tumor samples (Sasaki et al. 
2000) from endometrial cancer patients. The c-myc 
gene is frequently amplifi ed in endometrial cancer 
specimens (O'Toole et al. 2006) with increased 

frequency in advanced, as compared to early endo-
metrical cancers (Konopka et al. 2004). Increased 
c-Myc expression is associated with progression 
from the pre-cancerous endometrial atypical 
hyperplasia to invasive cancer (Dong et al. 2004b) 
and with development of lymph node metastases 
(Dong et al. 2004a). Mutation and altered expression 
of p53 occurs frequently in human endometrial 
cancer (Jeon et al. 2004) and is associated with 
high serum levels of TNFα (Diab et al. 2006b). 
Increased levels of AP-1 transcription factors have 
been observed in endometrial cancers in association 
with regulators of cell cycle progression (Bam-
berger et al. 2001).

c-Myc was also implicated in the carcinogenesis 
and chemoprevention model through promoter 
analysis, which demonstrated that the majority of 
differerentially expressed genes are under positive 
control of c-Myc along with along with E2-F1 and 
SRE-BP1 (Figs. 5 and 6). These transcription 
factors could participate in carcinogenesis 

Table 1. HV-Genes from Figure 6 known to be associated with cancer.

# In Figure 6 Name Description Association with cancer
10 ADAM15 ADAM metallopeptidase 

domain 15 (metargidin) 
Is signifi cantly increased in multiple types of 

adenocarcinoma (Kuefer et al. 2006)
9 ETS1 v-ets erythroblastosis virus E26 

oncogene homolog 1 (avian) 
An oncogene that plays important roles in 

cell proliferation, differentiation, lymphoid cell 
development, transformation, angiogenesis 

and apoptosis (Pei et al. 2005)
12 ARF6 ADP-ribosylation factor 6 Plays a critical role in ERK activation and 

tumor cell invasion (Hoover et al. 2005)
37 PKN2 Protein kinase N2 Plays an essential role in oncogenic cell 

transformation (Zeng et al. 2003a)
40 STK4 Serine/threonine kinase 4 Is involved in a tumor suppressor pathway 

(O’Neill et al. 2005)
44 NRIP1 Nuclear receptor interacting 

protein 1 
Directly targeted by estrogen receptor in 

breast tumor cells (Lin et al. 2004a)
45 WNK1 WNK lysine defi cient protein 

kinase 1 
Ser/Thr Kinase induced by osmostic stress in 

cancer cell lines (Lenertz et al. 2005)
47 IQGAP1 IQ motif containing GTPase 

activating protein 1 
Its expression pattern changes in the course 

of cancer progression (Cai et al. 2005)
48 WASL Wiskott-Aldrich syndrome-like Key regulator of dynamic changes in the 

actin cytoskeleton and cell migration in 
cancer cells (Sturge et al. 2002)

49 PNN Pinin, desmosome associated 
protein 

Participates in carcinogenic cell 
transformation (Shi et al. 2000)

54 APLP2 Amyloid beta (A4) precursor-
like protein 2 

A novel cancer marker (Mauri et al. 2005)



37

Endometrial carcinogenesis and chemoprevention

Gene Regulation and Systems Biology 2008:2 

synergistically, because c-Myc increases induction 
of E2-F1 in mouse tumor cells (Liao et al. 
2000; Benaud et al. 2001), and E2-F1 increases 
expression of c-Myc mouse liver carcinoma 
(Conner et al. 2000). SRE-BP1 appears to drive 
alterated expression of lipid metabolizing enzymes 
in a liver carcinogenesis model driven by c-Myc 
and E2-F1 (Coulouarn et al. 2006). Acting together 
and synergistically, these transcription factors 
could be responsible for most of the changes in 
gene expression patterns associated with DMBA 
initiated carcinogenesis.

Additional validation of this model is provided 
by the identification of Nuclear Factor-κB and 
Cyclin D1 (NF-κB and CCND1 in Fig. 5) as playing 
functional roles in the ECC model. In Figure 5, 
NF-κB is colored white, indicating that NF-κB is 
not directly regulated in expression but instead plays 
a functional role in the model, which is consistent 
with the observed SHetA2 inhibition of NF-κB 
activity, but not expression, in multiple cancer cell 
lines (Chengedza et al. 2007). CCND1 is red in 
Fig. 5, indicating that it is increased in DMBA-
transformed cultures and decreased by SHetA2. This 

is consistent with the known increase of CCND1 in 
many cancers and the observed decrease of CCND1 
in multiple cancer cell lines (Tashiro et al. 
2007; Masamha, 2007). While these genes may not 
be directly targeted by DMBA, they appear to be 
involved in the down-stream events that occur 
during the two weeks of culturing subsequent to the 
DMBA exposure and appear to be involved in the 
SHetA2 chemoprevention mechanism.

HV-gene analysis identifi ed a major switch 
associated with DMBA carcinogenesis that gath-
ered together the TNFα pathway, major compo-
nents of the AP-1 transcription factors and the 
c-Myc oncogene into a tightly associated team that 
appears to synergetically initiate endometrial car-
cinogenesis. These factors have a negative asso-
ciation in untransformed tissue and the SHetA2 
treatment reconstituted the negative associations 
between these components, thus acting as a cancer 
preventing agent.

Cluster analysis of the HV-gene functional 
associations demonstrated that carcinogenesis in 
this model is accompanied by the appearance of 
the very positive (stimulating) association between 

Table 2. Discriminant functional analysis summary.

# In 
Figure 6 

Name Description Wilk’s 
Lambda 

p-level Associations with cancer

45 NDRG1 N-myc downstream 
regulated 

0.0093 0.021 Signifi cant correlation between 
NDRG1 expression and the histologic 
grade of tumors (Fotovati et al. 2006)

30 NRIP1 Nuclear receptor 
interacting protein 1 

0.0019 0.219 Response element in breast tumor 
cells (Lin et al. 2004b)

28 PCBP2 Poly(rC)-binding 
protein 2 

0.0194 0.007 Stimulate the activity of the proto-
oncogene c-myc (Evans et al. 2003)

25 CTK4 Serine/threonine 
kinase 4 

0.0145 0.011 Involved in tumor suppressor pathway 
(O’Neill et al. 2005)

21 PKN2 Protein kinase 
C-like 2 

0.0058 0.041 Essential role in oncogenic cell 
transformation (Zeng et al. 2003b)

37 FOXC1 Forkhead box C1 0.0106 0.017 Upregulated in synovial sarcomas 
(Lappohn et al. 1989)

22 NFAT5 Nuclear factor of 
activated T-cells 5, 
tonicity-resonsive 

0.0049 0.054 Involved in promoting carcinoma 
invasion (Jauliac et al. 2002)

NDRG1—the most changed from norm in D group (Fig. 1, E)
NRIP1—highest reconstitution factor (Fig. 2)
PCBP2—highest changes from norm in D group (Fig. 1, E)
STK4—high reconstitution factor (Fig. 2)
PKN2—high reconstitution factor (Fig. 2)
FOXC1—deviation form nor characteristic for S (Fig.1, F,G)
NFAT5—high reconstitution factor (Fig. 2)
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a module of genes that includes TNFα, c-Myc and 
Epidermal Growth Factor Receptor (EGF-R) genes 
from one side and a module that includes p-53, 
Insulin-Like Growth Factor I Receptor (IGF-1R) 
and multiple Jun genes from another (Fig. 7B). In 
the normal state, and with the additional cancer 
preventing action of SHetA2, there is a strong 
negative association between these modules 
(Fig. 7A). EGF and IGF are potent survival factors, 
and their receptors are often constitutively acti-
vated in cancer cells leading to increased prolif-
eration and resistance to apoptosis (Jones et al. 
2005; Sekharam et al. 2003). The functions of their 
membrane receptors, EGF-R and IGF-1R, are 
integrated through a physical complex where these 
two receptors activate each other (Ahmad et al. 
2004; Burgaud et al. 1996; Huether et al. 2006) 
Thus, the increased association of the interaction 
of these receptors in DMBA-treated cultures is 
likely to further enhance their induction of 
proliferation and resistance to apoptosis. In support 
of this, combined inhibition of EGF-R and IGF-1R 
by Gefi tinib (Iressa) and AG1024, respectively, 
resulted in additive to synergistic inhibition of 
growth and induction of apoptosis in breast cancer 
cell lines (Camirand et al. 2005). The functional 
interaction of these proteins in cancer is further 
demonstrated by the known role that IGF-1R plays 
in development of resistance to EGF-R inhibitors 
(Jones et al. 2005; Steinbach et al. 2004; Chakravarti 
et al. 2002).

Increased interaction of IGF-1R with c-Myc and 
TNFα in the transformed cells can also drive 
carcinogenesis. The tumor cell microenvironment 
appears to govern the ability of IGF-1R to enhance 
or inhibit the pro-apoptotic activity of TNFα, 
(Remacle-Bonnet et al. 2005). Induction of c-Myc 
expression by IGF-1R activity can increase 
resistance to apoptosis in cancer cells (Sumantran 
et al. 1993; Grandori et al. 2000; Ceballos 
et al. 2000).

In an effort to provide evidence for the biological 
validity of the molecular mechanisms characterized 
by the bioinformatics approach, the expression of 
proteins encoded by genes that exhibited “reversible” 
expression and functional involvement in the 
modeled systems driving carcinogenesis and 
chemoprevention were evaluated. Secreted proteins 
were chosen for evaluation because they are most 
likely to be detected in blood and are therefore 
amenable to development of clinically applicable 
biomarker assays. The confi rmation of the reversible 

expression (upregulated by DMBA transformation, 
reversed back to untreated levels by SHetA2 and 
unaffected by SHetA2-only treatment) of the 
secreted proteins, TN-C and INHBA, which were 
identifi ed in the modeling, but not TP, which did 
not appear in the modeling, adds validity to the 
microarray analysis and provides additional insight 
into the biological system driving our model.

TN-C can activate EGF-R (Swindle et al. 2001) 
and therefore may be involved in the altered 
relationship-between EGF-R and IGF1R that 
occurs during carcinogenesis in our model (Fig. 7). 
The TN-C growth-promoting protein has EGF-like 
repeats that induce autophosphorylation of EGF-R 
leading to activation of the receptor and increased 
cell proliferation and adhesion (Swindle et al. 
2001). The ability of IGF-1 to increase TN-C 
protein deposition (Kenney et al. 2003) and of 
TNFα to alter TN-C mRNA splicing (Latijnhouw-
ers et al. 2000) adds further synergy and validity 
to this model. In clinical studies, TN-C expression 
is increased in preneoplastic lesions of the endo-
metrium (Sedele et al. 2002) and in the serum of 
cancer patients (Sato et al. 2006). Serum levels of 
TN-C appear to be associated with tumor progres-
sion in pancreatic carcinogenesis (Esposito et al. 
2006) and melanoma (Burchardt et al. 2003) and 
with angiogenesis and prognosis in non-small cell 
lung cancer (Ishiwata et al. 2005). Tissue levels of 
TN-C are particularly high at invasive borders of 
cancer and appear to be indicative of poor progno-
sis in multiple tumor types including glioma, 
breast, cervix and ovary (Chiquet-Ehrismann et al. 
2003; Buyukbayram et al. 2002; Wilson et al. 1996; 
Ioachim et al. 2002; Jahkola et al. 1998; Ishihara 
et al. 1995). Some studies suggest that different 
splicing variants of TN-C may have distinct roles 
in tumor physiology, diagnosis and prognosis in 
multiple cancers including endometrial adenocar-
cinoma (Chiquet-Ehrismann et al. 2003; Vollmer 
et al. 1997). As a single biomarker, TN-C is likely 
to have poor specifi city for endometrial cancer, 
because it is also increased in many additional 
diseases associated with tissue damage (Sato et al. 
2006). It’s role in EGF and IGF-1 signaling and 
increased secretion in cancer however, indicate that 
it plays a signifi cant role in endometrial carcino-
genesis and therefore is a rationale target for 
development of drugs and biomarker panels.

The other secreted glycoprotein InhibinβA 
(INHBA) chosen for validation analysis is a member 
of the inhibin/activin branch of the Transforming 
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Growth Factor β (TGFβ) family of extracellular 
signaling molecules. There is a single inhibin α 
protein and 5 inhibin β proteins (inhibin βA, B, C, 
D and E). The inhibin β proteins function as 
homodimers to form activin A (βA/βA), activin B 
(βB/βB) and activing AB (βA/βB) or as heterodimers 
with inhibin α to form inhibin A (α/βA) and inhibin 
B (α/βB). The activins activate and the inhibins 
inhibit the Smad signaling pathway through 
uncharacterized Type II and Type I receptors 
(Robertson et al. 2004). We chose to evaluate inhibin 
A expression because a strong co-localisation of 
inhibin α and inhibin βA was observed in malignant 
endometrial tissue, which suggests that these tumors 
might be producing Inhibin A (Mylonas et al. 2006). 
Similar to TN-C, inhibin A, is not likely to be 
suffi ciently specifi c for endometrial cancer to be 
used as a single biomarker because it’s expression 
levels are altered by ovarian function (Welt, 2002), 
but it may be usefull as a component of a biomarker 
panel that takes into consideration it’s relationships 
with other biomarkers. In our modeling of HV gene 
functional interactions (Fig. 7), the INHBA 
component of inhibin A exhibited a reversible 
relationship with IGF-1R. The prominent roles of 
both IGF-1 and inhibin A in ovarian function (Welt, 
2002) suggests that there may be an interaction 
between these two proteins that affects development 
of endometrial cancer. Further studies are planned 
to evaluate the roles and interactions of individual 
inhibin proteins in endometrial carcinogenesis and 
chemoprevention.

In conclusion, karyometric analysis supports the 
validity of an organotypic model of endometrial 
carcinogenesis and chemoprevention by confi rming 
the development and prevention of the cancerous 
phenotype. A systems biology approach implicated 
the involvement of several key molecules and onco-
genic pathways in the processes of carcinogenesis 
and chemoprevention in this model. Our challenges 
in targeting these molecules for drug development 
will be to understand their mechanistic roles in 
carcinogenesis and chemoprevention, while our 
challenge in targeting them for biomarker develop-
ment will be to determine if they are expressed at 
detectably and signifi cantly higher levels in serum 
of women with endometrial cancer in comparison 
to health controls and patients with other diseases.
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