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ABSTR ACT: Studies have indicated that sports anemia is mainly associated with intravascular hemolysis induced by exercise. We hypothesized that such 
exercise-induced hemolysis leads to oxidative damage due to an increase in free iron caused by hematocyte destruction. Thirty-one male ICR mice were ran-
domly divided into 3 groups: a rested control group, an intense-exercise group, and a group rested for 24 hours after intense exercise. The serum haptoglobin 
level of the intense-exercise group decreased compared with that of the rested control group, suggesting hemolysis. Tissue iron and protein carbonyl levels 
in the liver were increased after exercise, and the protein carbonyl level in the spleen on the day after exercise was significantly increased compared with that 
of the resting state. These results suggest that the spleen and liver, where extravascular hemolysis occurs, were subjected to oxidative modification by the free 
iron, which was released from large numbers of hemocytes that were destroyed due to the intense exercise.
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Introduction
Anemia is a state in which the amount of hemoglobin in the 
total blood volume is reduced.1 There are three causes of ane-
mia: impairment of red blood cell production, an increase in 
red blood cell destruction, and bleeding. Anemia causes a lack 
of oxygen in the body, and, accordingly, it not only impairs 
health, but also deceases the ability to exercise or perform 
competitively.2–4 As a major social and health issue, a solu-
tion for anemia is highly desirable. Studies have indicated that 
sports anemia (anemia induced by vigorous physical train-
ing) is mainly associated with intravascular hemolysis, which 
develops due to an increase in red blood cell destruction 
induced by exercise.5–7 Various studies have been performed 
on the factors involved in hemolysis and exceeding the nor-
mal exercise tolerance, and it was reported that intravascu-
lar hemolysis may develop due to physical factors, such as the 
bursting of red blood cells in the circulation due to the impact 
of footfalls,8,9 or an increase in friction between red blood cells 
and vessel walls due to increased blood flow.10,11 Furthermore, 
several studies have indicated that erythrocyte membrane 

compromise due to factors such as lactic acid, lysolecithin, 
or oxidative stress, which increase in blood when the normal 
exercise tolerance is exceeded, could also be involved in hemo-
lysis.12–17 Therefore, the development of exercise-induced 
hemolysis has been attributed to not only physical, but also 
chemical factors.

On the other hand, it is known that in extravascular 
hemolysis, the reticuloendothelial systems of the spleen and 
liver play a role in the destruction of senescent or pathologi-
cal erythrocytes through phagocytosis by macrophages.18,19 
We hypothesized that the hemolysis resulting from exceed-
ing the exercise tolerance may contribute to the impairment of 
organs by oxidative damage due to the rise in free iron caused 
by a rapid increase in hematocyte destruction in the spleen 
and liver. However, the relationship between intense exercise 
and extravascular hemolysis has not been examined to date. 
Therefore, the objective of the present study was to investigate 
whether or not intense exercise is associated with intravascu-
lar and/or extravascular hemolysis resulting in severe muscle 
damage, through the observation of physiological changes 
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Tokyo, Japan) and LDH–L (Serotec, Sapporo, Japan) with an 
automatic biochemical analyzer (CL-8000; Shimadzu, Kyoto, 
Japan). The total iron-binding capacity (TIBC) and serum trans-
ferrin saturation were calculated as follows:

TIBC = serum iron + UIBC

Serum transferrin saturation = serum iron/TIBC × 100

Protein carbonyl assay of tissues. Protein was isolated 
from the homogenized tissue of the right gastrocnemius, 
liver, and spleen using a tissue-dissolving reagent (Cellytic; 
Sigma-Aldrich, MO, USA). The protein carbonyl level in 
the tissue samples was measured using an assay kit (JaICA, 
Shizuoka, Japan).

Iron content of the liver. The samples were perfused 
with saline, and treated employing the wet ash method using 
a microwave extraction system (Ethos; Milestone, Sorisole, 
Italy). The ash was suspended in dilute hydrochloric acid 
solution after evaporation, and then left to dry. Iron concen-
trations were measured using the same method as employed 
for the serum iron, as described above, after appropriate dilu-
tion. The iron concentrations in the samples are expressed on 
a wet-weight basis.

Statistical analysis. Before assessing the different 
variables, we carried out the Kolmogorov-Smirnov test to 
verify the normal distribution of the variables. Data fitting 
the normal distribution were compared by one-way analy-
sis of variance. Levene’s test for homogeneity was used to 
test for equal variance between samples. When equal vari-
ance could be assumed, the Bonferroni post-hoc test was 
used to identify significant differences between multiple 
test groups. Data are presented as the mean  ±  standard 
error (SEM). The level of significance was set at P  0.05. 
Analyses were performed using PASW statistics 18.0 
(IBM, IL, USA).

Results
The effects of the single session of intense exercise on the blood 
parameters and liver iron content are shown in Table 1. The 
blood lactic acid and serum lactate dehydrogenase levels of the 
E group (5.7 ± 0.8 mmol/L and 933 ± 84 U/L, respectively) 
showed a significant increase after the intense exercise com-
pared with the R group (2.7 ± 0.1 mmol/L and 566 ± 49 U/L, 
respectively), and the levels in the ER group (3.2 ± 0.4 mmol/L 
and 624 ± 70 U/L, respectively) showed a significant decrease 
compared with the E  group. No significant differences  in 
serum creatine kinase were observed among the three 
groups; however, the levels in the ER group (470 ± 97 U/L) 
were higher than those in the R and E groups (226 ± 30 and 
256 ± 42 U/L, respectively). The blood pO2 of the E and ER 
groups (15.5 ± 2.5 and 13.8 ± 3.4 mmHg, respectively) was 
higher than that of the R group (11.6 ± 2.5 mmHg), but no 
significant difference was observed among the three groups. 

and oxidative damage of organs after intense exercise and at 
24 hours after exercise.

Materials and Methods
Animals and experimental protocol. This experimental 

study was performed following the Guidelines for Animal 
Experimentation of Kyoto Prefectural University (No. 2306), 
compiled from the Guidelines for Animal Experimentation 
published by the Japanese Association for Laboratory Ani-
mal Science. Thirty-one male ICR mice aged 7 weeks (body 
weight: 32–34  g) were employed in the study (Japan SLC, 
Hamamatsu, Japan). The mice were housed in plastic cages 
at a controlled temperature of 22–24°C, a relative humid-
ity of 40–60%, and a light cycle of 12 hours with free access 
to food (MF; Oriental Yeast, Tokyo, Japan) and distilled 
water. The mice were randomly divided into three groups: a 
rested control group (R, n  =  10), an intense exercise group 
(E, n = 11), and a group rested for 24 hours after intense exer-
cise (ER, n = 10). The exercise training and tolerance proto-
cols employed were prepared as previously described.20,21 All 
of the mice were acclimated to running on a motor-driven 
treadmill for 3 weeks: 15–18 m/min for 4 min for 3 days in 
the first week, followed by 15–25 m/min for 4 min for 5 days 
in the second and third weeks. After being acclimated to run-
ning at 25  m/min, the E and ER  groups underwent single 
acute treadmill-running sessions for 30 min at 30–32 m/min. 
It has been shown that this speed promotes slightly less than 
80% of the maximal oxygen consumption (VO2 max).22,23 The 
mice in the E group were euthanized under ether anesthesia 
immediately after the exercise, and the mice in the ER group 
were euthanized 24 hours after the exercise. The R group was 
euthanized without any exercise. Blood samples were drawn 
from the tails and hearts of the mice in all three groups and 
placed in tubes with heparin. Samples of the right gastrocne-
mius muscle, liver, and spleen were also collected.

Blood analysis. The hemoglobin concentration, hemato-
crit level, red blood cell count, mean cell volume, mean corpus-
cular hemoglobin, and mean cell hemoglobin concentration in 
blood samples drawn from the heart were measured using an 
automatic hematology analyzer (KX-21NV; Sysmex, Kobe, 
Japan). The partial pressures of oxygen (pO2) and carbon diox-
ide (pCO2) were measured using an analyzer (i-STAT; Abbott 
Point of Care, IL, USA). Lactic acid in the blood samples 
drawn from the tail was measured using a simplified analyzer 
(Lactate Pro; Arkray, Kyoto, Japan).

Blood samples were centrifuged at 1,500 g for 10 min at 4°C 
to obtain serum samples. Serum haptoglobin was measured using 
an ELISA Kit (Life Diagnostics, PA, USA). The serum hemo-
globin level was measured using an assay kit (Hemoglobin Colo-
rimetric Assay Kit; Cayman Chemical, MI, USA). The serum 
level of creatine kinase was quantified using a kit (Max  Dis-
covery; Bioo Scientific, USA). Serum iron, the unsaturated 
iron-binding capacity (UIBC), and lactate dehydrogenase were 
measured using Detaminer Fe and UIBC (Kyowa Medix, 
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and the ER group (29.7 ± 0.2 g/dL) showed favorable recovery 
of the levels compared with the E group.

No significant differences were observed in the TIBC or 
serum iron level between the three groups, but the TIBC of 
the E and ER groups was higher than that of the R group, 
while the serum iron level of the E group was higher and that 
of the ER group was lower than in the R group. The serum 
transferrin saturation level of the ER group (63.9  ±  2.1%) 
decreased markedly compared with the R and E groups 
(81.4 ± 3.4 and 79.3 ± 2.4%, respectively). The liver iron con-
tent of the E group (91.0 ± 8.9 μg/g liver) showed an increase 
compared with the R group (81.5 ± 7.3 μg/g liver), and the 
level in the ER group (75.6 ± 5.5 μg/g liver) was lower than 
that in the E  group, but no significant differences were 
observed between the three groups.

Figure 1 shows the changes in the tissue protein carbonyl 
levels. The protein carbonyl level in the right gastrocnemius 
muscle samples of the E group increased compared with the 
R group, and that of the ER group increased compared with 
the E and R groups. In the liver, the protein carbonyl level 
of the E group increased significantly compared with the 
R group, and the level in the ER group showed a significant 
decrease compared with the E group. In the spleen, the pro-
tein carbonyl level of the ER group showed a marked increase 
compared with the levels in the R and E groups, but no sig-
nificant difference was noted between the R and E groups.

The blood pCO2 of the E group (85.2  ±  6.3  mmHg) 
significantly decreased after the intense exercise compared 
with that of the R group (114.2 ± 4.1 mmHg), and the ER 
group (117.6  ±  7.3  mmHg) showed a highly significant 
increase compared with the E group.

The serum haptoglobin level of the E group (0.8  ±  
0.2  μg/mL) decreased compared with the R  group (9.0  ±   
4.7 μg/mL), and the level in the ER group (4.0 ± 1.5 μg/mL) 
increased significantly compared with the E group. The serum 
hemoglobin concentration of the E group (14.5 ± 1.7 mg/dL) 
decreased compared with the R group (17.4  ±  1.8  mg/dL), 
and that of the ER group (22.4  ±  3.8  mg/dL) increased 
compared with the E  group, but no significant differences 
were shown among the three groups. No significant dif-
ferences were noted in the red blood cell count, hematocrit 
level, blood hemoglobin concentration, or mean cell volume 
between the three groups. However, the red blood cell count 
of the E group (802  ±  28  ×  104/μL) decreased compared 
with the R group (995  ±  15  ×  104/μL), and the ER group 
(929 ± 26 × 104/μL) showed recovery of the levels, compared 
with the E group. The mean corpuscular hemoglobin of the 
E group (16.8 ± 0.2 pg) increased significantly, compared with 
the R group (16.3 ± 0.1 pg), but no significant difference was 
noted between the E and ER groups. The mean cell hemoglo-
bin concentration of the E group (30.3 ± 0.2 g/dL) increased 
significantly, compared with the R group (29.7 ± 0.1 g/dL), 

Table 1. Effects of single-time intense exercise tolerance on blood parameters and liver iron content in mice.

R
(n = 10)

E
(n = 11)

ER
(n = 10)

Lactic acid (mmol/L) 2.7 ± 0.1a 5.7 ± 0.8b 3.2 ± 0.4a

Lactate dehydrogenase (U/L) 566 ± 49a 933 ± 84b 624 ± 70a

Creatine kinase (U/L) 226 ± 30 256 ± 42 470 ± 97

pO2 (mmHg) 11.6 ± 2.5 15.5 ± 2.5 13.8 ± 3.4

pCO2 (mmHg) 114.2 ± 4.1a 85.2 ± 6.3b 117.6 ± 7.3a

Serum haptoglobin (μg/mL) 9.0 ± 4.7a,b 0.8 ± 0.2a 4.0 ± 1.5b

Serum hemoglobin concentration (mg/dL) 17.4 ± 1.8 14.5 ± 1.7 22.4 ± 3.8

Red blood cell count (×104/μL) 995 ± 15 802 ± 28 929 ± 26

Hematocrit level (%) 49.0 ± 1.7 50.1 ± 1.5 48.6 ± 2.6

Blood hemoglobin concentration (g/dL) 16.7 ± 0.6 17.0 ± 0.5 16.5 ± 0.9

Mean cell volume (fL) 54.8 ± 0.3 55.4 ± 0.5 56.0 ± 0.5

Mean corpuscular hemoglobin (pg) 16.3 ± 0.1a 16.8 ± 0.2b 16.6 ± 0.2a,b

Mean cell hemoglobin concentration (g/dL) 29.7 ± 0.1a 30.3 ± 0.2b 29.7 ± 0.2a

Total iron-binding capacity (μg/dL) 353 ± 33 392 ± 16 394 ± 15

Serum iron (μg/dL) 287 ± 31 311 ± 14 251 ± 15

Serum transferrin saturation (%) 81.4 ± 4.3a 79.3 ± 2.4a 63.9 ± 2.1b

Liver iron content (μg/g liver, wet weight) 81.5 ± 7.3 91.0 ± 8.9 75.6 ± 5.5

Rested control group; R, intense exercise group; E or 24-hour rested after intense exercise group; ER. Data that fit the normal distribution were compared by 1-way 
analysis of variance. Levene’s test for homogeneity was used to test for equal variance between samples. When equal variance could be assumed, the Bonferroni 
post-hoc test was used to identify significant differences between multiple test groups. Data are presented as the mean ± standard error (SEM). Values with a 
different letter were significant: P  0.05.
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by the decrease in haptoglobin and plasma hemoglobin in the 
E and ER groups, compared with the resting state R group. 
Some recovery of these levels was evident in the ER group. 
On the other hand, anemia decreases the red blood cell count, 
hematocrit level, and hemoglobin concentration. In the pres-
ent study, while these levels were lower immediately after the 
intense exercise than they were in the resting state, no sig-
nificant differences were shown in these results among the 
three  groups, suggesting that hemolysis developed without 
anemia due to the intense exercise, which induced an exercise 
tolerance state in the mice.

On the other hand, the serum iron level after exercise 
was less than that of the resting state, and the same result 
was also shown in the amount of liver iron, which reflects the 
storage iron content in the body. The serum transferrin satu-
ration after exercise was higher than that in the resting state, 
suggesting mobilization of the serum or storage iron in order 
to maintain the red blood cell characteristics. Additionally, 
the TIBC of the exercise tolerance groups increased, com-
pared with the resting state, suggesting the increased genera-
tion of transferrin carrying iron throughout the body. It has 
been reported that multiple exercise tolerance states can alter 
expression of the iron metabolism gene.30 Therefore, even a 
single-session, intense running exercise-induced exercise tol-
erance state is likely to influence iron metabolism.

Hemolysis, which develops in vivo, has been divided 
into intra- and extravascular hemolysis. As one factor of 
intravascular hemolysis, it has been reported that the level 
of serum lactic acid is increased by exercise, the blood is 
acidified, and the erythrocyte membrane resistance is con-
sequently decreased.12 One of the causes of hemolysis shown 
in this study may be that the level of blood lactic acid after 
the intense exercise was increased. However, no decrease was 
shown in the hydrogen ion exponent, perhaps because the 
blood lactic acid and hydrogen ion exponent were measured 
using blood samples obtained at different points in the study. 
Next, the level of lysolecithin and oxidative stress disorders 

Discussion
In the present study, we examined the relationship between 
intense exercise and extravascular and/or intravascular hemo-
lysis by observing physiological changes. Immediately after 
intense exercise, blood lactic acid increased significantly com-
pared with the resting state, confirming exercise tolerance had 
been exceeded. The serum lactate dehydrogenase immediately 
after intense exercise increased remarkably compared with the 
resting state, and the serum creatine kinase value at 24 hours 
after exercise was higher than that of the resting state. These 
results suggest that muscle damage was induced by the exer-
cise. Additionally, the protein carbonyl level in the gastroc-
nemius muscle after exercise showed an increase compared 
with the level in the resting state. Therefore, muscle protein 
oxidation may have been induced by the exercise. Our data 
demonstrated that pO2 in the blood samples increased after 
the  exercise and pCO2 decreased significantly, compared 
with the resting state. Moreover, pO2 and pCO2 recovered 
to almost the same levels shown in the rested control group 
at 24  hours after the exercise. During exercise, the energy 
demand increases rapidly, and blood flow to the skeletal mus-
cle is increased by response adjustments in the circulation.24,25 
Thus, it appears that the mice exceeding the exercise tolerance 
in this experiment were in a state of oxygen debt, which sup-
plied a large volume of oxygen to the body. These results dem-
onstrated that the mice in this study underwent physiological 
changes promoted by the intense exercise.

Haptoglobin is an abundant hemoglobin-binding protein 
present in the plasma. The function of haptoglobin is primar-
ily to determine the fate of hemoglobin released from the red 
blood cells after either intra- or extravascular hemolysis.26 
Serum haptoglobin is markedly decreased by exercise-induced 
hemolysis. It appears that this phenomenon functions to 
prevent leakage of the hemoglobin out of the blood vessels, 
because haptoglobin binds with free plasma hemoglobin.27–29 
The findings shown in the present study suggest that hemoly-
sis developed immediately after the intense exercise, as shown 
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Figure 1. Effects of single-time intense exercise tolerance on the protein carbonyl level of the liver (A), spleen (B), and right gastrocnemius muscle (C) in 
mice. Rested control group (R: n = 10), intense exercise group (E: n = 11), or 24-hour rested after intense exercise group (ER: n = 10). Data that fit the 
normal distribution were compared by 1-way analysis of variance. Levene’s test for homogeneity was used to test for equal variance between samples. 
When equal variance could be assumed, the Bonferroni post hoc test was used to identify significant differences between multiple test groups. Data are 
presented as the mean ± standard error (SEM). Values with a different letter were significant: P  0.05.
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assess oxidative stress and/or oxidative damage response to 
exercise in the liver and spleen in order to add other specific 
markers for oxidative stress (Malondialdehyde, GSH/GSSG 
ratio, Isoprostanes, and others). Next, despite the preparation 
of the intense exercise tolerance state according to previously 
published reports, the blood lactic acid level immediately after 
the intense exercise was approximately twice that of the level 
of the resting state. The VO2 max of mice was not measured 
in the present study, and the exercise intensity may have been 
somewhat lower than our assumption.

Conclusions
We examined the relationship between intense exercise and 
extra- and/or intravascular hemolysis by observing the physi-
ological changes after intense exercise. The results demon-
strated that protein oxidation in the liver and spleen, where 
extravascular hemolysis occurs, were increased by the intense 
exercise. Moreover, the results suggest that intense exercise 
causes hemolysis, the organs and/or red blood cells are sub-
jected to oxidative stress, and iron metabolism regulated to 
maintain the shapes of red blood cells, even following a single 
session of intense exercise. Therefore, repeated intense exer-
cise is likely to exacerbate hemolysis and iron metabolism, and 
lead to the development of sports anemia. We should examine 
the changes in iron metabolism and oxidative stress caused by 
chronic intense exercise tolerance in future studies.
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