
1CanCer InformatICs 2014:13

Open Access: Full open access to 
this and thousands of other papers at 
http://www.la-press.com.

Cancer  
Informatics

Introduction
Classification in high-dimensional spaces is a recurrent 
problem in many fields of science, for instance in cancer 
genomics or in spectrometry. Indeed, the data used in these 
fields are often high-dimensional and this hinders the direct 
use of most classification methods. Classifying cancer sub-
types with high precision and predicting treatment outcomes 
are intensive research topics. Traditional cancer prognosis 
relies on a complex and inexact combination of assessment of 
clinical and histopathological data. These classic approaches, 
however, may fail when dealing with atypical tumours or 
morphologically indistinguishable tumor subtypes.

The use of molecular assays to analyze clinical tissues 
in the diagnosis likely allows for more accurate characteriza-
tion of the aggressiveness of individual tumors and may allow 
for the early diagnosis of recurrence Michiels et al.1 on the 
contrary, showed in seven large cancer prognosis studies that 
signatures derived by high-dimensional molecular data do 
not achieve prediction accuracy better than random. While 
each of these data types provides one view of the molecular 
machinery, it may be fruitful to view them as complementary. 
Lack of data integration may explain why in cancer research 
or chronic disease, mostly only moderate predictive accu-
racy can be achieved with clinical or single biochemical or 
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molecular markers.2 It has been shown in many studies that 
clas-sification using multiple data types is more robust and 
achieves better accuracy than either of the data types alone.3

The R package stepwiseCM (currently version 1.7.1) 
implements the stepwise classification strategy4 to combine 
two heterogeneous data sets in a novel way. The package taken 
here mainly considers the practical utility of each classifier 
and takes a somewhat different stance in reviewing what is the 
optimal combination of two related data types. Unlike exist-
ing packages, it accepts partial measurements for one of the 
data sets, and yet achieves the same classification accuracy as 
existing packages (sometimes even higher). The ideal setting 
for the stepwiseCM package is as follows: two types of data 
can be used for prediction. One is the preferred method of 
choice in a practical setting (because of cost, or because it can 
be collected in a non-invasive way). The other should only be 
used for those patients whose prediction is likely to benefit a 
lot. An additional setting is one with DNA copy number data 
and mRNA expression data. In this set-up the copy number 
data is advised to be used at the first stage, and the expression 
data at the second stage. This is because DNA is a more stable 
molecule than the mRNA, hence easy to store and use in the 
laboratory. Section 5 includes real-life examples for both set-
tings. The large number of samples being saved from measur-
ing their high-dimensional covariates makes this package a 
promising alternative to its competitors.

In the next section, the motivations and the stepwise 
classification are shortly reviewed before delving deep into 
illustration of features and the use of the stepwiseCM pack-
age. Then, we present the technical details of the learning and 
predicting routines in Section 3. The practical use of the pack-
age is illustrated in Section 4. Section 5 represents application 
of the package to multiple real-world data sets that are not 
included in the package. Section 6 concludes with a discus-
sion. It briefly discusses the limitations of the present package 
as well as how these limitations can provide inroads for fur-
ther research. The R scripts for reproducing the illustrations 
throughout and the results reported in Section 5 are provided 
in the Supplementary File. The package is available from Bio-
conductor at http://www.bioconductor.org/packages/2.13/
bioc/html/stepwiseCM.html.

stepwise classification
Biology is rapidly turning into an information science, thanks 
to enormous advances in biotech-nologies leading to the ability 
to generate various types of high-dimensional data on the same 
sample. Consequently, there is an ever-increasing demand for 
integrative analysis of data sets from multi-platform genomic 
experiments or with patients’ clinical outcomes. This integra-
tive analysis enables the understanding of complex biologi-
cal processes that characterize a disease, as well as how these 
processes relate to the development of the disease. Recently a 
body of work emerged on combining different data types for 
the purpose of classification. Most of these are designed to 

combine clinical covariates with high-dimensional molecular 
data. For example, in Boulesteix et al.3 a method that uses 
partial least squares (PLS) dimension reduction on molecular 
data and applies the random forest algorithm (RF) on both 
clinical and reduced molecular data is proposed Lê Cao et al.5 
Proposed a mixture expert model to combine clinical and 
gene expression using different functions to incorporate both 
types of features.

These approaches are, however, not immune to problems. 
They share the following limitations: 1) Requirement of high-
dimensional data on all patients, which may be costly, invasive 
or inefficient. Possibly, not all patients benefit from measuring 
their high-dimensional covariates. 2) Two heterogeneous data 
types are combined in the same model (some apply complex 
dimension reduction techniques to high-dimensional data 
prior to modeling) using sophisticated algorithms. However, 
there is not an unequivocal strategy for optimal combination 
of these two data types yet.6 If the two data types have differ-
ent classification powers (in terms of accuracy), unique contri-
butions of the data type with weak prediction power may be 
overshadowed by the other. 3) Lack of flexibility in algorithm 
design. Existing packages do not allow users to insert their 
own classification algorithms. For example, the MAclinical 
package only works with the RF. 4) Application to integrate 
two high-dimensional data types is not straightforward.

The motivations for writing the stepwiseCM package are 
connected to the desire to develop improvements that address 
these limitations. This package has two aims:

•	 To alleviate the restrictions on input data and algorithms 
types. Such exibility increases the package utility for 
diverse applications.

•	 To be cost-efficient. All existing packages aim at high 
classification accuracy. Although high-level accuracy is 
interesting and important, the focal point of this package 
is to be more economically affordable while preserving 
reasonable accuracy.

The basic logic behind the stepwise classification is 
that two available data sets (say A and B) may each contain 
unique information not included in the other. For example, 
there is a cluster of samples for which A has enough signal to 
classify them correctly. On the contrary, for another cluster 
of samples, class predictions from A are mostly not better 
than random guessing (eg, when located close to the deci-
sion border). Those samples may benefit from reclassifica-
tion by use of B. When a new sample comes in, we assume 
only measurements from A are available. stepwiseCM uti-
lizes its neighborhood information in the two data spaces 
to predict how much gain is expected when measuring 
this sample’s covariates in B and re-classifying this sample 
using those measurements. The complete work flow of step-
wiseCM is depicted in Figure 1. The stepwiseCM package 
is particularly suitable for applications where the goal is not 
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only to achieve high classification accuracy but also to be 
economically affordable.

To better understand the underlying principle of the 
classification strategy implemented in this package, we use 
the following three scenarios to illustrate how our algorithm 
predicts whether reclassification is beneficial for a new sample. 
Data sets used at the first and second stage will be termed 

A and B, respectively. In all scenarios, the process begins with 
the following preparation: for a new sample, with measurements 
in A but not in B, the closest correctly classified and incor-
rectly classified samples are identified in the data space of A. 
Below, we illustrate this principle using one neighbor only. 
Then, each of these two samples are projected onto the data 
space of B one by one to identify their own closest correctly 
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figure 1. Schemata of the stepwise classification strategy.
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classified and incorrectly classified samples. We define a bad 
neighborhood (rectangle; see Figure 2) in the data space as a 
region where incorrectly classified samples are concentrated 
and define a good neighborhood (ellipsis) analogously.

•	 In the scenario where a new sample (red filled triangle) 
is located in a good neighborhood in the data space of A, 
and its approximated location (triangle with dashed line) 
in the data space of B is in a bad neighborhood (Fig. 2a), 
the new sample will be assigned a small reclassification 
score (RS) and will not be re-classified.

•	 Where a new sample is located in a bad neighborhood in 
the data space of A, and its approximated location (tri-
angle with dashed line) in the data space of B is in a good 
neighborhood (Fig. 2b), the new sample will be assigned 
a large RS and will be re-classified after measuring the 
sample’s covariates in B.

•	 Where a new sample falls in a bad (or good) neighbor-
hood in both data spaces (Fig. 2c-2d), the new sample 
will be assigned a moderate RS. Thus, reclassification 
with A or B is expected to be equally accurate. For the 
sake of cost, reclassification is usually not advised here.

Besides enjoying advantages existing approaches do not 
have, the classification method implemented in stepwiseCM 
is robust against variations produced by the different classifi-
cation algorithms.4 Such robustness is important, because the 
user may not know, most of the time, which algorithm is best 
beforehand.

While the stepwiseCM package introduced herein does 
not have constraint on the (inputs the data types requested to 
be used at the first and second stages) our illustrations, focus 
on the cases where the two data types are commonly avail-
able clinical data and high-dimensional molecular data. We 
use clinical data at the first stage and molecular data at the 
second stage, because clinical covariates are usually more easy 
to collect and relatively cheap compared to the latter. We are 
aware that in some cases this might not be true. The exible 
implementation of stepwiseCM allows a user to reverse the 
roles of the two data types or to supply two types of data with 
similar dimensions. To well integrate with the Bioconductor 
structure and make the package more accessible, the pack-
age is designed to accept an ExpressionSet type class (Biobase 
package), which is one of the commonly used Bioconductor 
classes.

Learning and predicting routines
In this section we give details about the inputs and outputs of 
the functions implemented in the stepwiseCM package.

Learning with selected classification algorithms. The 
first step of the stepwise classification is to obtain the predic-
tion labels of the training set using two given data types sepa-
rately. The goal of this step is to assess the classification power 
of the two data sets. Currently, only binary classification is 
allowed. The prediction is performed by calling the function 
Classifier. Users may choose the type of classification algo-
rithms via the argument type. Currently, nine well-known 
algorithms are available. They are:
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figure 2. Illustration of the scenario where (a) a is preferred over b, (b) b is preferred over a, (C) both a and b are expected to contribute for prediction, 
(D) both a and b are not expected to contribute for prediction. In each panel, an ellipsis represents the good neighborhood, and a rectangle represents the 
bad neighborhood.
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•	 TSP: Top scoring pair7 (only for high-dimensional data).
•	 PAM: Prediction analysis for microarrays8

•	 GLM: Logistic regression9

•	 GLM_L1: Logistic regression with L1 penalty10

•	 GLM_L2: Logistic regression with L2 penalty10

•	 SVM: Support vector machine11

•	 plsrf_x: PLS dimension reduction plus Random Forest12 
(only for high-dimensional data)

•	 plsrf_x_pv: Pre-validated PLS dimension reduction plus 
Random Forest12 (only for high-dimensional data)

•	 RF: Random Forest13

Prediction labels of the given set can be obtained either 
with the Leave-One-Out-Cross-Validation (loocv) or the 
K-fold (k-fold) cross-validation (CV) via the argument 
CVtype. If CVtype is set to “k-fold”, the given set will be split 
into k folds and sample labels in each fold are predicted with 
the trained model, which on its own will be obtained by using 
the k-1 folds prior to the prediction. Default is 5. The number 
of desired folds is controlled via the argument outerkfold. If 
set to “loocv”, each sample is treated as one fold and outerkfold 
will be ignored. The argument innerkfold defines the number 
of cross-validations used to estimate the model parameter eg, 
λ in GLM_L1 and GLM_L2. If the test set is supplied (via 
the argument test), labels of the test set are predicted using the 
trained model from the training set.

If parallel computation is desired, the function Classi-
fier.par can be called instead. The user can take advantage of 
its powerful parallel computation capability by specifying the 
number of CPUs allowed in computation via the argument 
ncpus. When called, prediction on k folds, which otherwise 
will be performed sequentially, will be executed parallel on k 
CPUs (assuming that the user’s computer has $ k idle CPUs). 
Note there is a limit on CPUs used in one program. The cur-
rent limit is 32 CPUs. A call to the Classifier (or Classifier.par) 
function should at least contain the argument CVtype.

Note that the output of this function will be used at a later 
stage to calculate the reclas-sification score (RS). RS does not 
depend on the classification algorithm used here. Thus, the types 
of classification algorithms that can be used are not constrained 
to the ones included in this package. The user can choose differ-
ent algorithms among those already available, or use their own 
pre-made predicted labels. If so, this step can be skipped.

The function Classifier (or Classifier.par) returns an 
object of list class. It contains slots that include the predicted 
labels of the training set and the test set (if test was given).

Proximity calculation. One of the critical steps in the 
stepwise classification is to accurately assess the neighborhood 
information in the two data spaces. This package tries to find 
regions in each data space where misclassified samples are clus-
tered. Thus, the degree of proximity between each pair of samples 
using the two heterogeneous data types needs to be calculated. 
It is possible that the two data sets are measured in different 
scales. For example, A may contain clinical covariates, which 

are often have mixed features (binary, nominal etc.). B may 
contain ratio scaled microarray data. The method selected to 
calculate the proximity may be suitable for the former, but not 
for the latter. Inspired by the work of Qi et al.14 stepwiseCM 
calculates the proximity matrix using the Random Forest (RF) 
algorithm.13 For a given forest α, RF computes proximity 
between the two observations (s1 and s2) by propagating their 
values down all the trees within α. Then, the terminal node 
position for each observation in each tree is recorded. Say T1i be 
the terminal node position of the first sample in the i th tree, and 
define T2i analogously. The final proximity of s1 and s2 is
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where n is the number of trees in α, I is the identity func-
tion. The intuition is that similar observations should be in the 
same terminal nodes more often than dissimilar ones. Prox-
imity value ranges from 0 to 1, 1 being the perfect match.

Function to calculate the proximity matrix is Proximity, 
which has the following arguments:

•	 train: An object of ExpressionSet class or data frame or 
matrix contains predictors for the training set, where col-
umns are presumed to represent samples and rows repre-
sent features.

•	 train.label: A binary vector of length equal to the number 
of columns in train contains the actual class label of the 
training set. Should be numeric not factor.

•	 test: An object of ExpressionSet class or data frame or 
matrix contains predictors for the test set, where columns 
are presumed to represent samples and rows represent 
features. Test set is only required for A.

•	 N: The number of forests to construct. Since the RF 
constructs each tree by randomly sub-sampling from 
the original feature set, proximity between two observa-
tions differs slightly between runs. To attain a reliable 
estimate, this function repeats the whole process N times 
and returns their average. We recommend giving a large 
number to this parameter. Default is 50.

•	 Parallel: A logical argument determines parallel or 
sequential execution to be conducted. If set to \TRUE" 
the parallel computation will be executed. Default is 
FALSE. We recommend using this option when N is 
large and it is feasible to run the computation on a com-
puter with multi-cores.

•	 ncpus: The number of CPUs requested for the parallel 
computation. Note there is a limit on CPUs used in one 
program. The current limit is 32 CPUs. Default is 2. If 
N , ncpus, computation will be executed on N CPUs.

This function returns an object of list class that includes 
a square symmetric matrix (prox:train) corresponding to the 
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training set. If a test set is given, a rectangular matrix (prox:test) 
containing proximities between the test set and the training 
sets also will be returned. A number in i th row and j th column 
of the prox:test denotes the proximity between i th test sample 
and j th training sample.

By extensive experiments with real data sets, we observed 
that the range of proximities obtained from clinical cova-
riates differs from high-dimensional molecular data (see 
Figure 5). Unlike clinical data, the proximities from molecu-
lar data hardly level off. We suspect that this is due to the 
large number of features the latter contains. One of the pos-
sible remedies employed in this package is to utilize the rank 
of proximity instead of proximity itself. Our intuition is that 
although the numerical values are incomparable, they should 
appear in roughly the same rank order. We observed that the 
rank-based approach is usually superior.

reclassification score calculation. This is the pivotal 
part of the stepwiseCM package, which encompasses many 
new features. The predicted labels and the proximity matri-
ces will be used in this step to calculate the reclas-sification 
score (RS). Function RS.generator aims to determine a group 
of samples that potentially benefit by measuring their covari-
ates in B. An RS expresses our belief on how likely it is that a 
prediction from B would improve upon a prediction from A. 
For a new sample for which only the measurements in A are 
given, we can directly evaluate the goodness of its surround-
ings in the data space of A but not in B. To tackle this problem 
we proposed the indirect mapping scheme4 which locates the 
test sample’s approximate location in the data space of B using 
A (see Figure 2).

When a new sample comes in, RS.generator projects it 
onto the data space of A to find its k nearest neighbours among 
the training set, then projects these k neighbours onto the data 
space of B one by one to determine their own k nearest neigh-
bours. The logic is that when two samples have similar char-
acteristics in A, they may also share the same characteristics in 
B because of the potential association between the two types 
of features. The indirect mapping strategy implemented in this 
package tries to take advantage of this correlation and creates 
a bridge between the two data spaces. When the correlation 
is weak, the indirect mapping is equivalent to the blind map-
ping. However, use of a large neighborhood in the data space 
of B implies that the contribution of the random prediction 
from B to the RS is small. A large RS indicates the sample is 
likely to be benefit by classifying with B and vice versa.

•	 pred1.train: A numeric vector contains the predicted class 
labels of the training set from A.

•	 pred2.train: A numeric vector contains the predicted 
class labels of the training set from B.

•	 train.label: A numeric vector contains the actual class 
labels of the training set.

•	 prox1: A rectangular matrix contains the proximities 
between the test set and the training set calculated from A.

•	 prox2: A symmetric square matrix contains the proximities 
of the training set obtained from B.

•	 type: The type of proximity requested to calculate the 
RS. If set to \proximity", RS will be calculated directly 
from the proximity. If set to \rank", the rank of proximity 
will be used instead (more robust). \both" returns both.

If “proximity” or “rank” is selected, function returns a 
numeric vector of length m. If not, a data frame of size m × 2 is 
returned. m is the number of samples in the test set.

reclassification reference curve generation. The RS 
generated in the previous step is in a continuous scale that 
does not show which sample is recommended for classifying 
with which data set. The user needs to decide an RS threshold, 
which affects the final classification accuracy as well as the 
number of samples for which measurements in B are required. 
The proportion of samples that needs to be classified using 
B depends on how much one expects the predictive accuracy 
to increase when reclassifying those samples. To assist in 
choosing an RS threshold for incoming new samples, Curve.
generator function can be called to generate a reference curve 
that shows the change in accuracy when different percentages 
of samples are classified with B.

Curve.generator has the following arguments:

•	 RS: RS of the test set.
•	 pred1. test The predicted class labels of the test set 

obtained from A.
•	 pred2. test The predicted class labels of the test set 

obtained from B.
•	 test. label The actual labels of the test set.
•	 plot. it If set to “TRUE", function generates a plot in 

which the Y-axis denotes accuracy and the X-axis denotes 
the percentage of samples that are classified with B.

Practical examples in r
This section aims to illustrate the use of functions in the step-
wiseCM package. The central nervous system (CNS) tumor 
data from Pomeroy et al.15 that is included in the package 
will be used for the illustration. This data set has been used 
in predicting the response of childhood malignant embryonal 
tumours of CNS to the therapy. The data set is composed of 60 
patients, of whom 21 patients died and the rest survived at least 
24 months. Each sample has measurement on 7128 genes and 
5 clinical covariates that are Chang stage (nominal), gender 
(binary), age (nominal), chemo Cx (Cytoxan, binary), chemo 
VP (Vincristine and Cisplatin, binary).

classifier and classifier.par. We use the first 40 samples 
as the training set and the rest as the test set. We perform pre-
diction on the training set via 5-fold CV using the Random 
Forest algorithm in both data settings. To visualize the 
concordance and discordance in prediction between clinical 
covariates and gene expression data, we project the training 
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set onto the space defined by the first two components, 
which are derived through applying multidimensional scaling 
(MDS) to the proximity matrix for each data set separately 
(see Figure 3–4).

From two figures we observe that there are 7 samples 
for which only the clinical data made correct predictions. For 
6 samples, classifier made correct predictions when using the 
expression data. For rest of the samples, predictions from both 
data sets were correct or wrong at the same time. Thus, clinical 
data is the practical choice for them.

Proximity. Proximities between these 40 samples in the 
training set are calculated and visualized in Figure 5. Observe 
from Figure 5 it is clear that there are relatively large range 
differences in proximities from the two data types.

rs.generator. To show that RS is informative in decid-
ing the optimal data type for prediction, we generate RS for 
all samples and compare with their predicted labels from clin-
ical and gene expression data, separately. Figure 6 shows the 
results that we expected. Most of the samples with high RS 
were misclassified by the clinical data, and correctly classi-
fied by the expression data. Thus, for those samples prediction 
with the expression data seems to be beneficial.

curve.generator. Now, we visualize the accuracy curve 
behavior when different numbers of samples are classified with 
gene expression data (Fig. 7). Observe that the expression data 
has higher classifi-cation performance (74%) than the clini-
cal data (68%). Stepwise approach obtains the same accuracy 
as expression data by only utilizing the expression profiles of 
30% of the samples. Accuracy begins to increase and reaches 
its maximum (76%) when 60% of samples are classified with 

the expression data. Passing further samples to expression 
data shows no improvement. Instead, after some point accu-
racy begins to decrease.

Since there is a randomness inside the tree construction 
step in the RF algorithm, it may render a differing proximity 
matrix in each run. Consequently, this may lead to slightly 
different RS curves in each run. But, the difference will not 
be too big, and can be stabilized by setting the argument N to 
a large number.

Application
stepwiseCM is now applied to multiple real-world data sets 
that are not included in the package. The results reported 
herein are deemed to offer, to some extent, unique insights 
into the novel aspects of the adaptive stepwise classification 
central to stepwiseCM. To show general applicability of the 
package, the following two scenarios are considered:

•	 A is low-dimensional clinical covariates, and B is high-
dimensional gene expression data.

•	 A is high-dimensional DNA copy number data, and B is 
high-dimensional gene expression data.

A: clinical; B: gene expression. For this application we 
used a breast cancer data set.16 Details of the data set are pro-
vided in Appendix A. We retrieved the expression profiles of 
249 patients with primary breast carcinomas. Among them, 
89 experienced recurrence or death from breast cancer and 160 
were in remission. Clinical covariates included tumor grade, 
age, tumor size. To achieve more stable results, prediction accu-

figure 3. Visualization of the classification performance from the clinical 
data. Numbers denote the indices of samples in the training set.
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racy is estimated using 10 times (N = 10) 3-fold CV evaluation. 
As a benchmark, we first calculate the classification accuracy 
of each data type separately. To make a fair comparison with 
the fully integrative classifiers Plsrf-xz and Plsrf-xz-pv,12 we 
applied the RF algorithm to both clinical and expression data.

Observe from Figure 8 that the stepwise approach 
achieves higher accuracy than all four alternatives: clini-
cal 59%, expression 63%, Plsrf-xz 59% and Plsrf-xz-pv 61% 
respectively. To achieve the same accuracy as the Plsrf-xz-pv, 
stepwiseCM requires the expression profiles of only ∼ 30% of 
the samples.

A: dNA copy number; B: gene expression. The latest ver-
sion of glioblastoma multiform (GBM)17 gene expression and 
DNA copy number data of 160 patients with partial clinical 

information are used for this illustration. Details of array 
platforms, preprocessing, etc. are provided in Appendix A. 
The data set is comprised of four subtypes: Proneural (50), 
Classical (35), Mesenchymal (52) and Neural (23). Classifier is 
trained to discriminate the Proneural group from the rest. We 
used DNA copy number data at the first stage and the expres-
sion data at the second stage, because DNA is a more stable 
molecule than the mRNA, and hence easier to store and use in 
the laboratory. Similarly, the prediction accuracy is estimated 
using 10 times (N = 10) 3-fold CV evaluation. We applied the 
Plsrf-xz algorithm to both data sets.

Figure 9 shows that the expression data has higher pre-
diction power (96%) than the DNA copy number data (85%). 
Following the increase in the proportion of samples passed 
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to the expression data, the accuracy from stepwiseCM also 
increases. The steepest increase is obtained when the pro-
portion is 30%. The accuracy begins to level off after 50% of 
samples are passed to the second stage. Depending on the 
desired balance between accuracy and efficiency, a proportion 
somewhere between 30% and 60% of samples should be passed 
to the second stage.

conclusion
This paper presents the R/Bioconductor package stepwiseCM 
to classify cancer samples using multiple heterogeneous data 
sets. The package provides a novel way of classification in 

which two types of data are used independently, so that dis-
tinct classification power of one will not be overshadowed by 
the other. After having presented the philosophy behind the 
method, we illustrated stepwiseCM to show the practical use 
of the method. In addition, we demonstrated the efficiency of 
stepwiseCM by comparison with reference methods on mul-
tiple real-world data sets.

According to the `no-free-lunch theorem’ by18 no pre-
diction algorithm is uniformly more efficient than the oth-
ers. Hence, we do not claim that the stepwiseCM package 
is the panacea for all types of classification problems that use 
high-dimensional data. This package is not designed to com-
pete with existing approaches in terms of prediction accuracy, 
although most of the times our algorithm produces the same 
accuracy as existing packages (and some times even higher). 
The focal point is the practical utility of the classifier. In gen-
eral, relatively longer computing time is required for stepwise 
classification. For example, estimation of the RS for all sam-
ples in the CNS data set via 5-fold CV with parameters shown 
in section 4.3 took about seven minutes in a normal dual core 
CPU 3.16GHz, 4GB of RAM desktop computer. This num-
ber should be multiplied by the number of repeats (N) of the 
CV, for which we recommend N = 10. However, we believe 
that the large portion of samples being saved from measur-
ing their comparatively expensive molecular profiles definitely 
outweighs (or justifies) the computational cost.

StepwiseCM may be of use in many practical settings. 
Standard diagnostic tests like the FIT test for colorectal can-
cer or the PSA-test for prostate cancer often rely on a cut-
off value. In particular, for samples with values close to the 
cut-off, reclassification by a molecular profile may improve 
the accuracy of the prediction, whereas this is less likely to 
occur for values far from the cut-off. StepwiseCM would 
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automatically detect this, and allows for inclusion of other 
predictive covariates like age in the first stage. Then, accuracy 
plots like Figure 8 allow the researcher to make an informed 
decision about which samples require additional molecu-
lar data. In addition, StepwiseCM is flexible. If in the near 
future molecular tests would become cheaper or when they 
are less invasive than their non-molecular counterparts, the 
role of the two types of markers may be reversed. The latter 
may, for example, apply to a blood-derived molecular profile, 
which would be used as a classifier to decide whether surgery 
is needed to obtain tumor tissue, in order to improve the clas-
sifier based on histological and pathological variables.

Among the possible extensions of this work, is the design 
of a multi-step approach. After observing the new sample’s 
neighborhood information in the data space of A, one is 
allowed to choose the most optimal data types for reclassi-
fication from available multiple high-dimensional data sets. 
This extension is planned for the next release of the package. 
Another interesting extension that deserves further consider-
ation is to apply the stepwise strategy to patient survival time 
prediction. When the response is continuous-scaled patient 
survival time, Brier Score19 may be used to measure the rel-
evance of a data set in prediction.
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supplementary data
supplementary file 1. This file contains the R scripts for 

reproducing the illustrations throughout.
supplementary file 2. This file contains the results from 

the breast cancer data set.
supplementary file 3. This file contains the results from 

the TCGA Glioblastoma multiform data set.

Appendix A: data sets
breast cancer data set

•	 Sample type: Breast cancer.
•	 Molecular levels: gene expression.
•	 Reference: (Ivshina et al. 2006)
•	 Gene expression platform: Affymetrix 133 A.
•	 Number of samples: 289.
•	 Availability: The Cancer Genome Atlas (TCGA) http://

compbio.dfci.harvard.edu/tgi/cgi-bin/tucan/tucan.pl/
•	 preprocessing: An R data object that includes expression 

profiles of 289 samples with partial clinical information 
was downloaded. The original expression data includes 
22283 genes. The number of genes was reduced to 8871 
by using the filtering approach described in Yu et al.20 
Pre-filtering is mainly for computational purposes. 
Quantitatively, use of full data set does not lead to con-
siderable differences (results not shown). Due to missing 

values in clinical data, 40 samples were deleted from the 
analysis.

tcGA Glioblastoma multiform data set

•	 Sample type: Glioblastome multiform (GBM).
•	 Molecular levels: DNA copy number and gene expression.
•	 Reference: Verhaak et al. (2010)
•	 DNA copy number platform: 244 K Agilent MSKCC.
•	 Gene expression platform: Affymetrix 133 A.
•	 Number of samples: 160.
•	 Availability: The Cancer Genome Atlas (TCGA) http://

cancergenome.nih.gov/
•	 preprocessing: Level 1 DNA copy number data with 

160 samples with partial clinical information were down-
loaded. The Agilent copy number platform consisted of 
235834 probes. 223554 were available after preprocess-
ing by using the package CGHcall.21 The preprocessed 
data matrix was segmented using the same package. The 
segmented data matrix, with 25394 probes after delet-
ing the duplicated ones, was used for the classification. 
The Affymetrix gene expression array contains 62980 
probes. We followed the filtering approach described in 
Yu et al.20 to reduce the probe set to 15748.

http://www.la-press.com
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tucan/tucan.pl/
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tucan/tucan.pl/
http://cancergenome.nih.gov
http://cancergenome.nih.gov

