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Introduction
Estimation of divergence time is an integral part of population 
genetics and evolutionary biology. It is a common practice1,2,3 
to estimate a range or a confidence interval of divergence time 
rather than a point-estimation (ie, a single value).

Despite being a common practice, maximum likelihood 
estimation of the time-range poses a challenge for coalescent-
based models. This is partly due to the complicated expres-
sion of likelihoods of the coalescent-based models, and partly 
due to the fact that a likelihood-based formula for confidence 
interval requires the computation of estimated Fisher’s infor-
mation matrix, which has an even more complicated expres-
sion than the likelihood.

In this article, we present a divergence time range or a 
confidence interval based on the maximum likelihood estima-
tion (MLE) of the divergence time from a coalescent-based 
model. We focus on the coalescent model of population evo-
lution by Nielsen et al,4 where the likelihood is computed by 

summing up over all possible coalescent trees between the 
present day and most recent common ancestor (MRCA). This 
one-step procedure takes into account the uncertainties of 
estimating the coalescent trees, as well as the effect of incom-
plete lineage sorting.

The coalescent framework is consistent with several 
models of population evolution, including a diffusion model, 
a Wright-Fisher model, a continuous-time, or a discrete-time 
Moran model (see5,6). Specifically, the coalescent framework 
in4 requires a model with finite population size mating ran-
domly within each population. The framework works with 
both monoecious and dioecious organisms and for both 
haploids and diploids. A complete separation between the 
populations is assumed at the point of divergence, and conse-
quently, between-population mating are not allowed after the 
divergence. This also means that the coalescent events cannot 
take place between two individuals of different populations 
(between the present and the point of divergence).
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It is further assumed that each locus has two alleles, 
and the allele-frequency spectrum for these biallelic loci is 
modeled with a symmetric Beta distribution as in.5–9 This 
assumption of a symmetric Beta distribution results in a sym-
metric Beta-Binomial distribution for the allele-count. (Note 
that, the assumption of Beta distribution comes from a diffu-
sion approximation; see, for example).10

The model is valuable for estimating the divergence time 
from related populations, as it produces the likelihood directly 
from the data, bypassing the gene trees. This is achieved by 
computing the exact probability of each coalescent tree as well 
as probabilities of allele frequencies given these trees and then 
summing over them with a closed-form mathematical formula. 
Thus, potential misestimation due to gene tree incongruence 
(eg, incomplete lineage sorting, see for example),11 is avoided.

While computing the probabilities of the allele counts, 
it is assumed in this model that the effect of new mutations 
in allele frequencies between the MRCA and the present are 
negligible. This is an appropriate assumption for divergence 
estimation from related populations. This is because the diver-
gence times in such populations are typically short, making 
the number of mutations very small. The variation in allele 
type is assumed to come from the mutations at or before the 
MRCA. A detailed mathematical description of the model 
probabilities is provided below.

There have been significant developments made in this 
model since its inception by4 and a number of methods of 
inference have been proposed. Later12 introduced a Markov 
Chain Monte Carlo-based on this model. More recently,6 
introduced a pruning algorithm to systematically compute the 
likelihood under this model for inference on a population tree. 
This approach builds on the approach of4 and makes it pos-
sible to compute the likelihood of a large tree under this model. 
An innovative two-stage pruning algorithm is introduced for 
simultaneously keeping track of probability of the number of 
lineages, and allele counts among them. Later7 introduced a 
composite likelihood method based on this model that can be 
used to analyze dependent data. This method treats the depen-
dent allele counts from nearby loci as independently by multi-
plying the marginal likelihoods obtained from each locus. As a 
result, a composite likelihood is computed, which is then max-
imized to obtain a maximum composite likelihood estimator. 
This method makes it possible to use the information in physi-
cally close loci, whereas previous approaches could only use a 
set of independent loci to compute the likelihood.13 Introduced 
a variation of the model that takes into account the effect ascer-
tainment correction in the likelihood and MLE. This method 
is useful for data from loci that were selected because of their 
observed allele-frequencies (ie, ascertained). This method 
modifies the pruning algorithm of6 so that the likelihood is 
corrected for ascertainment bias. In the same year13 introduced 
a computational method for incorporating the effect of muta-
tion at each branch in the pruning algorithm of.6 This method 

makes it possible to apply the pruning algorithm to data from 
different species. This is because although the effect of new 
mutations can be ignored in closely related populations, their 
effect s are large when comparing different species. Finally,9 
has shown this model to be identifiable. The identifiability is an 
important desirable property of a statistical model; unidentifi-
able model parameters are ill-defined and therefore inference 
on such models could produce erroneous, confusing, and self-
contradictory results.

Although the MLE of the divergence time is computed 
based on4,6 model by the previous authors, a formula for the 
range of divergence time has not been described. The compu-
tation of the MLE requires computation of the likelihood and 
then maximization of the likelihood over a period of param-
eter values. Computation of a range or confidence interval for 
divergence time requires estimation of variance and MLE, 
which is a more complicated procedure.4 computed an esti-
mate for the variance through simulations, which could be 
used to compute a confidence interval. To estimate variance in 
this manner, one needs to first estimate the divergence time; 
then one needs to simulate the whole dataset a large number 
of times (say M = 100 times) using the estimated value of the 
divergence time as the real divergence time. Then, the diver-
gence time is estimated from each of those M = 100 simulated 
datasets. The sample variance among the M estimated diver-
gence time is taken as the estimated variance. However, this 
method takes a long time to compute, as one needs to simulate 
and estimate the divergence time M =  100 times (or a pre-
determined large number of times). A resampling approach 
(eg, bootstrap) would have a similar large time requirement.

Here, we present a formula for computing an asymp-
totic approximation for divergence time range. Our formula 
is based on asymptotic approximation of the variance of the 
MLE. In statistical literature, this approximation is known 
to be a first converging approximation.14 Typically, the num-
ber of independent data-points (independent loci) is very high 
(.10, 000) in genetic data and therefore this will be a close 
approximation. In addition, we also provide a formula for first 
and second order mixed derivatives of the likelihood and log-
likelihood. This formula is useful as it can be used for maxi-
mizing the likelihood with Newton Raphson Method. To 
evaluate the performance of our method, we also estimated the 
coverage probability of the confidence interval through simu-
lations, and established that the approximation is indeed quite 
good, and as accurate as a purely simulation-based approach. 
However, as demonstrated in the article, our method is much 
faster and could be computed in a fraction of time it takes to 
estimate the range using a simulation-based approach.

For demonstration purposes, we have used our method 
for estimating the range of the divergence time between two 
populations in HapMap data.15 Our estimates are found to 
be of the same range as a recently published estimate of the 
divergence time of the same two populations.
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Model and Definitions
In this section, we will briefly describe the model of.4,6 This 
model assumes that the divergence time is sufficiently small 
so that we can ignore the effect of mutation in the site-fre-
quency-spectrum after divergence. Consider populations A 
and B with MRCA O (Fig. 1). Let us assume that each locus 
exhibits two alleles, arbitrarily named ‘0’ and ‘1’, by ‘allele 
count’ we will mean the count of allele ‘1’. The model of4,6 
gives the probability distribution of the allele counts (rA, rB) 
from (haploid) sample of sizes (nA, nB) respectively. (Note that 
by “haploid” we mean a sampling unit. The data can be from 
either haploid or diploid organisms. A haploid sampling unit 
is as a set of chromosomes containing one chromosome of 
each type. Each diploid individual has two sampling units).

The parameters of this model are  τ (.0), the divergence 
time in generations in the unit of effective population size, or 
the population scaled divergence time (τ = 2 Ne t), and θ(.0), 
a mutation parameter or a population scaled mutation rate 
(θ = 4 Ne µ) where t, Ne and µ are, respectively, the number of 
generations since the divergence, the effective population size 
and (raw) mutation rate at the time of divergence. Note that 
we assume a molecular clock; ie, the scaled time between A 
and O is same as the scaled time between B and O. However, 
this assumption is not binding, and we will discuss relaxing 
this assumption later in this article.

Next, we will describe how the probability distribu-
tion of (rA, rB) is computed. First, we follow nA and nB lin-
eages at populations A and B respectively to the MRCA O, 
and compute the probability distribution of the number of 
coalescent events k A and kB, respectively. Let n0A and n0B 
be the number of lineages at O that are ancestral to the 

sampled lineages at A and B, respectively, and let r0A and 
r0B, respectively, be the allele count out of them (Fig. 1). 
Note that n0A = nA − k A and n0B = nB − kB. The distributions 
of n0A and n0B can be computed from the following formula 
(first proposed by).16
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Let n0 be the total number of lineages at O that are 
ancestral to the all lineages sampled at A and B. Using the 
fact n0 = n0A+n0B along with Eq. (1), one can compute the 
probability distribution of n0. Let r0 be (random) allele count 
out of the n0 lineages at the MRCA (Fig. 1). (r0 = r0A+r0B.) 
The probability of r0 given n0 is given by a ‘root distribution’ 
that varies in different versions of the model. We use the 
root distribution used in6 (symmetric beta-binomial)
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where ß(., .) is the beta function; θ is the aforemen-
tioned mutation parameter which is to be estimated as 
well. Note that as mentioned in,6 beta-binomial distribu-
tion model is due to the fact that the alleles at the root are 
binomial draws from the allele frequencies, and the allele 
frequency spectrum is modeled with a beta distribution (see, 
for example).10

Given n0A, n0B, and r0, the distribution of (r0A, r0B) can 
be computed as
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4,6. Then, given n0A, n0B, r0A and r0B the distribution of 
(rA, rB) can be computed as
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Figure 1. Variables associated with our model.
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m = A, B.6
Next we combine the Eqs. (1, 2, 3, 4). With the observed 

allele counts are (rA, rB), the likelihood of (τ, θ) can be 
computed as
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Note that setting τ  =  0 does not maximize the above 
expression, as the coeffcients of the exponential terms could 
be positive or negative.

Thus, we have described the full model. Maximum like-
lihood estimate (MLE) of the divergence time is computed 
by numerically maximizing right side of Eq. (5) above. In the 
next section we will present an estimator of the divergence 
time range, rather than a point-estimator of divergence time.

Methods
Let the MLE of (τ, θ) be ( MLE MLE

ˆˆ ,θτ ). Using the standard 
statistical results,
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where →d denotes convergence in distribution (see, for 
example);7 L is the number of independent data-points (inde-
pendent loci in our case), Normal2 denotes a bivariate normal 
distribution, and Inf denotes Fisher’s Information matrix:

where L(τ, θ) = L(τ, θ; (rA, rB) = ( jA, jB)) is the likelihood. 
Using Eq. (6), one can estimate a (1 −  α) confidence interval 
for τ as
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and a (1 − α) confidence interval for θ as
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where Inf(ij) is the element (i, j) of Inf−1, z1−α/2 is the 
(1−α/2)th quantile of standard normal distribution. Next, we 
obtain a simpler expression for Eqs. (8, 9).

Using Lemma 1 in the Appendix A (Eqs. (13, 14)) and 
Eq. (5) it follows that
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for l, m ∈ {1, 2}. Also, note that
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(l, m) ∈ {(1, 1), (2, 0), (0, 2)} and hence,
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(which is a random draw from the allele-frequency spectrum 
and has a symmetric beta distribution with parameter θ). 
Thus, r0 given n0 has a symmetric beta-binomial distribution 
with parameter θ. Next, we simulate r0A and r0B from n0, r0, 
n0A and n0B using Eq. (3). Then rm is simulated from nm, n0m 
and r0m using Eq. (4) for m = A and B. This process is repeated 
independently (given the parameters) L times to generate the 
allele counts rA and rB for each of the L loci.

For each combination of (n, τ, L), an MLE ( MLE MLE
ˆˆ ,θτ ) 

was computed by maximizing the full likelihood over τ and θ 
for each N = 1, 000 repetitions. Thus, for each combination of 
(n, τ, L), we have N = 1, 000 estimates of ( MLE MLE

ˆˆ ,θτ ). Then, 
applying our methods on these estimates, 95% confidence 
intervals for τ was estimated for each of N = 1, 000 repetitions 
for each combination of (n, τ, L). Then for each combination of 
(n, τ, L), we computed the average of the confidence intervals 
over N = 1, 000 estimated values (reported in Table 1 at the 
CIAsymp columns).

Next, for each combination of (n, τ, L), we have also esti-
mated the probability of the true τ falling into the estimated 
confidence interval (coverage probability) as the total number 
of time the true value was in the estimated interval (among 
N = 1, 000 repetitions) divided by N. The results are in Table 
1 at the CIAsymp columns.

Next, we compared the performance of our method with 
the method of computing the confidence interval using simu-
lation estimation of variance4 using the same simulated data. 
We have briefly described their method in Section 1. As we 
had done for our method, we estimated confidence interval for 
each of N = 1, 000 repetitions and for each combination of (n, 
τ, L). (Note that, this involved resimulating M = 100 datasets 
for each estimated MLEτ̂  and estimating τ from the resimu-
lated dataset, and thus a total of N × M = 105 simulations and 
estimations.) Then, we have computed the average estimated 
95% confidence interval and coverage probability from N = 1, 
000 simulated datasets for each combination of (n, τ, L). That 
is, after estimating the confidence intervals for each dataset, 
we computed the average of the confidence intervals over 
N = 1, 000 estimated values for each combination of (n, τ, L) 
(reported in Table 1). The coverage probabilities are estimated 
as before as the total number of time the true value was in 
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A

n

j =
∑ ∑

	

(12)

(l, m) ∈ {(1, 1), (2, 0), (0, 2)}.

Estimation. Using Eqs. (5, 7–12), one can numerically 
compute confidence intervals of τ and θ as follows.

First, MLEτ̂  and MLEθ̂  are computed maximizing the 
likelihood given in Eq. (5). The maximization may be done 
over a grid of values of τ and θ; alternatively, the Newton 
Raphson Method may be used; the derivatives of likelihood 
or log-likelihood for use in Newton Raphson Method can be 
obtained by using the expressions of derivatives in the likeli-
hood in Eq. (10) in the expression of Eq. (11).

Once we have MLEτ̂  and E MLEθ̂ , we can com-
pute MLE MLE

ˆˆ ,θτ  using Eqs. (10,12) with (τ, θ) substituted 
by MLE MLE

ˆˆ ,θτ E. Next,is 1
MLE MLE

ˆˆInf ( , )θ −τ numerically 
computed numerically and subsequently the confidence 
intervals of Eqs. (8,9) are computed.

Results: Simulation and Comparison with Direct 
Simulation Method
We have simulated N = 1, 000 datasets for each combination 
of sample sizes n = nA = nB, divergence time τ and number of 
independent loci L; n can take values 4 and 8; τ can take values 
0.01, 0.02, 0.05, 0.075, 0.1, 0.15 and 0.2; L can take values 
10,000 and 100,000. The mutation parameter was kept fixed 
at θ = 4 × 10,000 × (1.1 × 10−8) to reflect a (human) effective 
population size of 10, 000 and a mutation rate of 1.1 × 10−8.

Mechanism of model generation. Following the model 
of4,6 we started with a divergence time τ, mutation parameter 
θ, sample size (identical for the two populations) n = nA = nB, 
and a predetermined number of independent loci L. For each 
locus the process is identical and independent (given the 
parameters). Therefore, we will describe the process for a sin-
gle locus only.

For a given locus, we simulate the model (described in 
Section 2) as follows. First n0A and n0B are simulated from nA 
and nB using Eq. (1). Next, n0 is simulated (or computed) as 
n0 = n0A+n0B. Then, r0 is simulated from n0 and θ from sym-
metric beta-binomial distribution (Eq. (2)) as in.6 Symmet-
ric beta-binomial distribution is used in6 to characterize the 
allele-frequency spectrum. That is, it is assumed in6 that the 
allele-frequency spectrum over the L loci has a symmetric Beta 
distribution, and r0 given n0 is a randomly drawn allele-count 
from a sample of n haploids where the allele frequency is P 
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the estimated interval divided by N. The results are shown in 
Table 1.

For both CIAsymp and simulated CI the estimated ranges 
have small lengths. As expected, the length becomes smaller 
with larger n and larger L. For τ = 0.01 the ranges have radii 
0.0010 (for n = 4, L = 10, 000, CIAsymp) to 0.0001 (for n = 8, 
L = 100, 000, both methods). The length of the radii increases 
with τ. For τ = 0.02 the ranges have radii 0.0015 (for n = 4, 
L = 10, 000, CIAsymp) to 0.0002 (for n = 8, L = 100, 000, both 
methods). For τ = 0.05 the ranges have radii 0.0029 (for n = 4, 
L  =  10, 000, simulated CI) to 0.0004 (for n  =  8, L  =  100, 
000, CIAsymp). The radius increases up with an approximate 
proportionality with the true value of τ. For τ = 0.1 and 0.2 
the ranges have radii 0.0041 and 0.0076, respectively, (for 
n = 4, L = 10, 000 simulated CI) to 0.0007 (for n = 8, L = 100, 
000 both methods) and 0.0016 (for n = 8, L = 100, 000 CIA-
SYMP), respectively.

A comparison of the two methods reveals no significant 
difference in the coverage probabilities of the lengths of the 
intervals. In Wilcoxon signed-rank tests we found no sig-
nificant difference between coverage probabilities of the two 
methods (P . 0.3) as well as between lengths of the intervals 

(P .  0.9). However, computing time was an order of mag-
nitude faster for CIAsymp than for the simulated CI method. 
Once we have MLEτ̂  and MLEθ̂ , it takes less than 30 min-
utes to compute the CI using CIAsymp using a R v3.0.2013-
05-1217 code in a 2.54 GHz Dual Core processor. Using the 
same computer and same version of R, simulated CI (with at 
least M = 100 simulations for estimating the variance) takes 
more than a day to compute. This is because each simulation 
involves simulating L independent loci and maximization of 
the multi-locus likelihood over τ and θ using the allele-counts 
from these loci.

Results: Applications to HapMap Data
For the purpose of demonstrating our method and comparing 
its performance with known results, we applied our method 
to a subset of HapMap data.15 Specifically, we estimated a 
confidence interval for the divergence time between HCB 
(Han Chinese from Be-jing, China) and CEU (United States 
residents of northern and western European ancestry) popu-
lations using 112 independent SNP loci in Chromosome 19. 
To reduce the computational load, we only considered a ran-
dom sub-sample of 8 unrelated haploids from each population. 

Table 1: Simulation: confidence interval for τ and estimated coverage probability P.

L = 10,000
CIAsymp

 
Sim. Var. CI

L = 100,000
CIAsymp

 
Sim. Var. CI

τ = 0.01
n = 4

CI: {0.01 ± 0.0010} P = 0.951 {0.01 ± 0.0009} P = 0.955 CI: {0.01 ± 0.0003}  
P = 0.949

{0.01 ± 0.0003}  
P = 0.955

τ = 0.01
n = 8

CI: {0.01 ± 0.0004} P = 0.947 {0.01 ± 0.0005} P = 0.954 CI: {0.01 ± 0.0001}  
P = 0.954

{0.01 ± 0.0001}  
P = 0.945

τ = 0.02
n = 4

CI: {0.02 ± 0.0015} P = 0.945 {0.02 ± 0.0014} P = 0.960 CI: {0.02 ± 0.0005}  
P = 0.950

{0.02 ± 0.0003}  
P = 0.953

τ = 0.02
n = 8

CI: {0.02 ± 0.0006} P = 0.948 {0.02 ± 0.0005} P = 0.948 CI: {0.02 ± 0.0002}  
P = 0.942

{0.02 ± 0.0002}  
P = 0.944

τ = 0.05
n = 4

CI: {0.05 ± 0.0025} P = 0.954 {0.05 ± 0.0029} P = 0.959 CI: {0.05 ± 0.0008}  
P = 0.955

{0.05 ± 0.0010}  
P = 0.953

τ = 0.05
n = 8

CI: {0.05 ± 0.0012} P = 0.951 {0.05 ± 0.0010} P = 0.944 CI: {0.05 ± 0.0004} 
P = 0.951

{0.05 ± 0.0005}  
P = 0.945

τ = 0.075
n = 4

CI: {0.075 ± 0.0032} P = 0.954 {0.075 ± 0.0036} P = 0.949 CI: {0.075 ± 0.0010}  
P = 0.942

{0.075 ± 0.0011}  
P = 0.950

τ = 0.075
n = 8

CI: {0.075 ± 0.0016} P = 0.944 {0.075 ± 0.0015} P = 0.943 CI: {0.075 ± 0.0005}  
P = 0.952

{0.075 ± 0.0005}  
P = 0.961

τ = 0.1
n = 4

CI: {0.10 ± 0.0040} P = 0.964 {0.10 ± 0.0041} P = 0.945 CI: {0.10 ± 0.0013}  
P = 0.956

{0.10 ± 0.0011}  
P = 0.961

τ = 0.1
n = 8

CI: {0.10 ± 0.0022} P = 0.949 {0.10 ± 0.0018} P = 0.950 CI: {0.10 ± 0.0007}  
P = 0.949

{0.10 ± 0.0007}  
P = 0.948

τ = 0.15  
n = 4

CI: {0.15 ± 0.0055} P = 0.957 {0.15 ± 0.0049} P = 0.954 CI: {0.15 ± 0.0017}  
P = 0.948

{0.15 ± 0.0016}  
P = 0.955

τ = 0.15  
n = 8

CI: {0.15 ± 0.0034} P = 0.951 {0.15 ± 0.0038} P = 0.949 CI: {0.15 ± 0.0011}  
P = 0.957

{0.15 ± 0.0011}  
P = 0.956

τ = 0.2
n = 4

CI: {0.2 ± 0.0071} P = 0.940 {0.2 ± 0.0076} P = 0.949 CI: {0.2 ± 0.0022}  
P = 0.954

{0.2 ± 0.0024}  
P = 0.957

τ = 0.2
n = 8

CI: {0.2 ± 0.0050} P = 0.944 {0.2 ± 0.0054} P = 0.951 CI: {0.2 ± 0.0016}  
P = 0.957

{0.2 ± 0.0019}  
P = 0.948
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Our data consist of the allele-count in 8 individuals in each 
population for 112 SNP loci. The 112 SNPs were selected at 
least 0.5 MB apart from each other to ensure the indepen-
dence of the coalescent trees in the lineages of 8 haploids.

The estimated scaled divergence time was ˆ 0.16=τ , and 
the estimated 95% confidence intervals was. [0.125, 0.195]. 
These numbers, when transformed in years using an overall 
effective population size of 3,100 (see, for example)18 for HCB 
and CEU populations and generation time of 25 years, produce 
an estimated range of between 19,375–30,225 years ago. If an 
overall effective population size of 4,000 is assumed, then this 
produces as estimated range of between 25,000–39,000 years 
ago. Note that these ranges roughly match with other recent 
estimates of divergence time between HCB and CEU (see, for 
example).19

Discussion
We have presented a formula for computing divergence time 
range using the MLE on a coalescent model. As MLE is 
asymptotically effcient, our estimated confidence interval has 
a high degree of accuracy. We have also presented formulae for 
first and second order mixed derivatives of likelihood and log-
likelihood, which is useful for computation of the MLE.

Our simulation study shows that our method produces 
small confidence intervals with appropriate coverage of 95%. 
Thus, it reduces the amount of uncertainty regarding the 
actual divergence time. Although MLE of divergence time 
has been computed before using our model, an expression for 
the range of divergence time has never been derived because of 
the complexity of the expression. By deriving this expression 
we made it possible for the range of the divergence time to be 
estimated, and by evaluating its performance we established 
its usefulness.

The radii of the confidence intervals and the coverage 
probabilities produced by our methods have been shown to 
be statistically equivalent to that of the simulation-based 
estimator. However, we found that our method is an order 
of magnitude faster. This is expected because in a simulation 
or resampling-based method the data needs to be simulated a 
large number of times, and then confidence intervals needs to 
be reestimated for each resimulation or resample.

Certain assumptions are made about the underlying 
model. The accuracy of the esti-mated variance and range may 
be affected if the data do not fit the underlying model. For 
example, a molecular clock is assumed. That is, the scaled time 
t between A and O is assumed to be same as that between B 
and O. However, if the effective population sizes in popula-
tions a and b are very different then this will induce a bias in 
the estimated variance, as well as the estimated range. How-
ever, it is straightforward to extend our method for models 
without molecular clock. If a molecular clock is not assumed 
then one needs to separately estimate scaled divergence times 
τA and τB for Populations a and b. It is straightforward, albeit 
tedious, to modify Eqs. (6–16) for parameters (τA, τB, θ), rather 

than (τ,θ). Thus, analogous expressions for the variance and 
the range of (τA, τB, θ) can be computed if a molecular clock 
is not assumed.

Another departure from our model would be from the 
assumption of biallelic loci. Following the same principle of 
tracking coalescing lineages back to the MRCA, and then fol-
lowing the allele-types to the present time, one can modify 
Eqs. 1–5 for more than two alleles. However, for more than 
two alleles, one needs to replace the symmetric beta-binomial 
distribution at the MRCA (which arises from assuming a 
symmetric beta distribution for biallelic allele-frequency spec-
trum) with its “multiple-count” version: a symmetric Dirich-
let-Multinomial distribution (which arises from assuming a 
symmetric Dirichlet distribution for multiallelic allele-fre-
quency spectrum). Once the likelihood is computed using 
modified version of Eqs. 1–5, then Eqs. 6–16 can be modified 
for estimating the variance and the range from the multiallelic 
likelihood.

We assumed that the effect of mutation between the point 
of divergence and the present is negligible. This is an appropri-
ate assumption if the two populations are closely related (and 
consequently the divergence time is small). For large diver-
gence times this assumption is not appropriate, and the effect 
of mutation may create an amount of difference between the 
two population that is higher than expected from an ignore-
mutation model”. As a result, an erroneously larger divergence 
time may be estimated, which will also induce an upward bias 
in the estimated variance and the estimated range.

previous studies have suggested that this model is appro-
priate for populations within the same species.5–8 This designa-
tion is intended to serve as an upper bound for the divergence 
time to be modeled. In the absence of a mathematically con-
crete upper bound for divergence time for this model, we also 
use this convention. Thus, although we do not have a more 
concrete upper bound, we suggest using our methods for doing 
inference on divergence time between populations within the 
same species. (A lower bound is not necessary as the model 
fits well for small divergence times as the amount of mutation 
will be very small in such cases.) Moreover, a recent article13 
introduces a version of the4,6 model that takes into account the 
effect of mutation. An appropriate extension of our methods 
to the13 model needs to be derived for estimating the vari-
ance and the range of larger divergence times. With such an 
extension, our methods could be used to estimate variance and 
range of species divergence times.

A possible disadvantage of our method would be in a sce-
nario where significant amount of migration has taken place 
between the two populations after the divergence. In the pres-
ence of migration, there will be less variation than expected in 
a “no migration” scenario. Consequently, divergence time will 
be underestimated, which will also induce a downward bias 
in the estimated variance and the estimated range. Another 
limitation is that our method uses asymptotic approximation. 
Thus, our method is only applicable when we have a large 
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number of independent loci. To quantify a large number of 
loci, a rule of thumb used by statisticians is that the asymptotic 
methods are to be used if there are at least 30 independent 
data-points. Thus, as long as we have allele counts for at least 
30 independent loci, our method can be used. As most mod-
ern datasets have more than 30 independent loci, this is not a 
real limitation. Note that, as the effect of mutation after diver-
gence is assumed to be negligible and is ignored, the difference 
in mutation rate between the two populations does not play a 
part in our method.

We applied our method to estimate a range for the diver-
gence time between CEU and HCB populations from the 
HapMap data. Our estimates are found to be in the same 
range as a recently estimated divergence time between these 
two populations.19

A possible extension of this method could be computa-
tion of the confidence interval of the branch-length of a phy-
logenetic tree given the tree-topology. This would require 
creating an algorithm that could effciently and systematically 
compute the derivatives of the likelihood of the tree. Another 
possible extension could be using dependent loci to estimate 
the range of divergence time. This will have potential applica-
tions in high-resolution NextGen Sequencing data.
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A Lemma 1
Lemma 1:
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where ψ(.)  is the digamma function and 1(.)ψ  is the  
trigamma function.
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From Eq. (15) it also follows that
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From Eqs. (15,16)
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Thus, Eq. (13) is proven.
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Eq. (14) follows from the above equation after noting that

	 1( , , ) ( , , ).x y x yδ θ δ θ
θ
∂

=
∂

Thus, we have proven Lemma 1.
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