
347Bioinformatics and Biology Insights 2013:7

Open Access: Full open access to 
this and thousands of other papers at 
http://www.la-press.com.

Bioinformatics and 
Biology Insights

Introduction
Saint Louis encephalitis virus (SLEV) is related to Japanese 
encephalitis virus and belongs to the family Flaviviridae 
(Group B arborviruses), genus Flavivirus. It mainly affects 
the United States and, in occasional cases, Mexico and 
Canada.1,2 The principle reservoirs of SLEV include domes­
tic fowl and wild birds. The virus is transmitted to humans 
from wild birds via mosquito vectors (Culex tarsalis, C pipiens, 
and C quinquefasciatus).3 SLEV is a single stranded, envelo­
ped, positive-sense ribonucleic acid (RNA) virus and has a 
relatively conserved nucleotide sequence.4 In all, 4437 cases of 
SLEV infection were reported across the United States since 
1964 with an average of 128 cases per year. The fatality rate 
caused by the disease ranges from 5% to 15%. SLEV infec­
tion fatality rates are generally lower in children than adults, 
but the cases in which children were infected, the encephalitis 

rate was higher. The severity of the disease increases with age, 
and the disease is most prevalent in people over the age of 60. 
Hypertension and vascular diseases may act as risk factors for 
infection. Encephalitis is recognized as the emerging disease 
in the United States.5 The risk of exposure to SLEV infec­
tion in urban areas is increasing, as the deterioration of inner 
cities can make new habitats for mosquitoes. There is no spe­
cific treatment for SLEV infection; care is based on only a 
few symptoms. No vaccine against SLEV or specific antivi­
ral treatment for clinical SLEV infections is available.6 For 
all these reasons, it is important to develop a new vaccine for 
Saint Louis encephalitis virus, and despite no technical dif­
ficulties having been reported, new vaccine development has 
not yet been achieved. These viruses contain 3 structural pro­
teins: nucleocapsid, premembrane (prM), and envelope (E). 
The envelope protein is particularly important for vaccine 
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development as it mediates viral entry by interacting with host 
cell surface receptors and is also the primary target of adaptive 
immune response.7 It would be of great value if the protec­
tive epitopes associated with this envelope protein were well 
known, and, if they could be produced synthetically, it would 
be possible to offer consistent cost and quality advantages over 
the current treatment.8

Synthetic peptides are being tested as potential vaccines 
in a wide range of infectious diseases. The use of synthetic 
peptides or epitopes could offer an important contribution to 
protection against SLEV.9 Current immunoinformatics tools 
are able to predict human B-cell and T-cell linear epitopes with 
high accuracy. These tools are playing a vital role in under­
standing the molecular basis of immunity and, notably in the 
development of epitope based-peptide vaccines, immunother­
apy against cancer and autoimmune diseases.10–13 This approach 
could save substantial time and cost, especially for researchers 
in countries with limited resources. The concept of computer-
aided vaccine design has proven to be essential for combating 
diseases such as multiple sclerosis,14 malaria,15 and tumors.16 
For epitope-based vaccine design, identification of HLA 
ligands and T-cell epitopes are the most crucial steps.17 T-cell 
epitope prediction tools assist in identifying allele-specific 
binding peptides, thus reducing the number of potential pep­
tides to be considered as vaccine candidates. These tools help 
researchers to identify regions with high concentrations of 
T-cell epitopes or immunological ”hot spots” and thus open 
a new window for rationality-based vaccine design. A number 
of methods have been developed to facilitate the identification 
of proteasomal peptide cleavage sites, major histocompatibility 
complex (MHC) binding peptides, and transporters associated 
with antigen presentation (TAP) molecules.18–21 These meth­
ods use a variety of statistical and machine learning approaches 
to assist computational prescreening of immunogenic epitopes 
for vaccine design. Similar immunoinformatics approaches are 
being developed for other organisms and will constitute the 
base for the design of a new generation epitope vaccines. Our 
present study concerns the computational prediction of immu­
nogenic epitopes of the Saint Louis encephalitis virus and 
design of a synthetic peptide vaccine candidate. We hypoth­
esize that this envelope protein comprises a linear epitope with 
an efficacy close to 100%.

Materials and Methods
Protein sequence retrieval. The outer membrane protein 

(envelope proteins) sequences of Saint Louis encephalitis were 
retrieved from UniProtKB (www.uniprot.org/) in FASTA 
format. The sequence was analyzed with a view to recognizing 
the immunologically relevant regions, which is done by study­
ing antigenicity, solvent accessible regions, and MHC class I 
and II binding sites.

Identification of antigenic proteins. The envelope 
proteins were then submitted in the VaxiJen22 with default 
parameters to isolate the antigenic proteins. All the antigenic 

proteins with their respective score were then filtered in Excel. 
A single antigenic protein with highest antigenicity scores was 
selected for further evaluation.

Secondary structure prediction. ExPASy’s secondary 
structure prediction server (http://web.expasy.org/prot­
param/) and selfoptimized prediction method with alignment 
(SOPMA)23 were used to get an idea about the secondary 
structure of the chosen protein. Several parameters given by 
the ProtParam tool, for example, molecular weight, theoreti­
cal pI, amino acid composition, atomic composition, extinc­
tion coefficient, estimated half-life, instability index, aliphatic 
index, and grand average of hydropathicity (GRAVY) were 
executed for this purpose. Secondary structure prediction of 
a protein aims to predict solvent accessibility, transmembrane 
helices, globular regions, and coiled-coil regions. The objec­
tives of this step were to determine the protein’s stability and 
function.

Identification of T-cell epitope. Linear peptides as T-cell 
epitopes were selected by NetCTL server.24 The whole protein 
sequence was submitted in the server, which was based on neu­
ral network architecture, and all the super types were chosen. 
The parameter was set at 50 to have sensitivity and specificity 
of 0.89 and 0.94, respectively. This allowed the opportunity 
to focus on more epitopes critically. A combined algorithm 
of MHC-1 binding, transporter of antigenic peptide (TAP) 
transport efficiency and proteosomal cleavage efficiency were 
involved to predict overall scores. Based on this overall score, 
5 best epitopes were selected for further experimentation.

MHC-1 binding prediction,25 a different prediction 
method, was available in the Immune Epitope Database (IEDB). 
The Stabilized Matrix Base Method (SMM) was used to cal­
culate IC50 values of peptide binding to MHC-1 molecules. 
For all the alleles, peptide length was set to 9 amino acids prior 
to the prediction. The alleles having binding affinity IC50 less 
than 200 nm were chosen for further consideration.

For the selected epitopes, a web-based tool, proteasomal 
cleavage/TAP transport/MHC class 1 combined predictor,26 
was also implemented to predict proteasomal cleavage score, 
TAP score, processing score, and MHC-1 binding score using 
SMM for each peptide.

Prediction of epitope conservancy. Epitope conservancy 
for individual peptides was predicted using the epitope tool 
from the IEDB analysis resource.27

Docking simulation study. The predicted epitope was 
further tested by in silico docking simulation to find out 
whether or not this peptide will bind to the HLA molecules 
when it will be applied in vivo. To accomplish the simulation, 
3 LKN, a crystal structure of the HLA-B*3501 molecule, was 
retrieved from the Protein Data Bank (PDB).28 Prior to dock­
ing simulation, the influenza NP418 epitope, which was com­
plexed in the binding groove of HLA-B*3501, was removed 
by using AutoDockTools. Docking simulation for the pre­
dicted epitope with prepared HLA-B*3501 was done by using 
Autodock Vina.29 Then again influenza NP418 epitope was 
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docked with HLA-B*3501 mentioned earlier, to compare the 
binding energy of the epitope.

Identification of B-cell epitope. The B-cell epitope is the 
portion of the antigen which interacts with B-lymphocytes. 
As a result, the B-lymphocyte is differentiated into antibody-
secreting plasma cell and memory cells. In other terms, the 
objective of the B-cell epitope is to ultimately stimulate the B 
cell to synthesize the antibody specific for it (primary humoral 
response) or to convert the naïve B cell into a memory B 
cell and make it ready to produce specific antibody in later 
encounters.30

A B-cell epitope is characterized by being hydrophilic, 
accessible, and in a flexible region of an immunogen.31 Thus, 
Kolaskar and Tongaonkar antigenicty scale,32 Emini surface 
accessibility prediction,33 Parker hydrophilicity prediction,34 
Karplus and Schulz flexibilty prediction35 and Bepipred linear 
epitope prediction analysis were done computationally from 
the IEDB analysis resource.36 In several experimental studies, 
it was found that the antigenic parts of a protein belong to the 
beta turn regions.37 Therefore, the Chou and Fashman beta 
turn prediction tool38 was used. The results from all these sites 
were cross-referenced, and apparently common findings were 
taken as the B-cell epitopes.

Results
Protein retrieval and antigenic protein prediction. 

A total of 75 envelope proteins were retrieved from UniprotKB 
in FASTA format and then subjected to VaxiJen to predict 
the most immunogenic protein. UniprotKB id: B6C6  W4 
was predicted as the most immunogenic protein with a total 
score of 0.6591, which is a glycoprotein among all envelope 
proteins. Finding of this prediction coincides with a previ­
ous finding where envelope glycoprotein was presented as an 
immunogenic protein.39

Secondary structure analysis. The most immunogenic 
protein was analyzed for its secondary structural characteris­
tics, and the properties shown in Table 1 and Figure 1 were 
found.The protein was characterized as a neutral charged pro­
tein, as the number of positively charged residues (Arg+Lys) 
and negatively charged residues (Asp+Glu) were the same 
(ie, 46). The total amino acid distribution showed that alanine, 

glycine, leucine, lysine, serine, threonine, and valine constitute 
57% of the protein. Though all these amino acids except lysine 
have acidic pI (from 6.0 for Alanine to 5.6 for valine), the net 
pI of the protein tended to be slightly basic (pI 7.24), maybe 
due to the relatively higher abundance of lysine (5.2%) with 
a very high basic pI (9.74). The basic character of the protein 
ascribes the protein to be a nonallergen.40

The secondary character shows an important feature of the 
protein as an antigenic one. In several experiments, it was shown 
that the antigenic part of the protein is more likely to belong to 
the beta sheet region.41 Regarding this fact, it was found that this 
protein contained the highest percentage (11%) of the threonine 
residue, which prefers to lie in the beta sheet, indirectly indi­
cating the probability of the protein’s antigenicity. Moreover, 
the grand average of the hydrophobicity rule (GRAVY) of the 
protein linear sequence was predicted to be negative (−0.079) 
showing the protein as hydrophilic in nature and predicting 
most of the residues to be present in the surface. In addition, 
the aliphatic and the instability index of the protein described it 
as an aliphatic and stable protein, respectively.

T-cell epitope prediction. The NetCTL prediction tool 
predicted epitopes from the given protein sequence accord­
ing to all supertypes. But only 5 most potential epitopes were 
chosen on the basis of high combinatorial scores.

Table 1. Secondary structural analysis of one envelope protein 
(UniprotKB id: B6C6 W4) of Saint Louis encephalitis virus.

Criteria Assessment

Number of Amino Acids 501

Molecular Weight 54056.4 Da

Isoelectric pH 7.24

No. of Negatively charged residues 
(Asp+Glu)

46

No. of Positively charged residues  
(Arg+Lys)

46

Formula C2401H3753 N653O726S21

Extinction Coefficient 77640

Instability Index 25.04

Aliphatic Index 9.02
 

Figure 1. Secondary structure plot of envelope protein (UniprotKB id: B6C6 W4) of Saint Louis encephalitis virus. Here, helix is indicated by blue, while 
extended strands and beta turns are indicated by red and green, respectively.
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The SMM-based IEDB MHC-1 binding prediction tool 
retrieved 406 possible MHC-1 allele interactions with the 5 
T-cell epitopes that were selected before. The MHC-1 alleles 
for which the epitopes showed higher affinity (IC50 , 200) 
were selected for further analysis (Table 2). Binding affinity of 
the epitopes with the MHC-1 alleles had an inverse relation­
ship with the IC50 values.

The proteasome complex includes enzymes that cleave the 
peptide bonds, converting the proteins into peptide. The pep­
tide molecules from proteasome cleavage associate with class-1 
MHC molecules and the peptide-MHC molecule then trans­
port to the cell membrane where they are presented to T helper 
cell. Before that, TAP (transporter of antigenic peptides) trans­
fers it to the endoplasmic reticulum. In this case, the total score 
was predicted, and the higher the score meant the higher the 
efficiency of all these processes. The predicted total score of all 
these processes are summarized in Table 2.

Among the 5 T-cell epitopes, a 9-mer epitope REY­
CYEATL was found to interact with most MHC-1 alleles 
including HLA-B*40:01, HLAC*03:03, HLA-A*32:07, 
HLA-A*68:23, HLA-B*27:20, HLA-A*02:17, HLA-
B*40:13, HLA-C*12:03, HLA-A*02:50, HLA-B*15:02, 
HLA-B*40:02, HLA-B*15:03.

The epitope conservancy analysis of the 5 T-cell epitopes 
was done. In this case, REYCYEATL showed the highest 
conservancy of 63.51%, while the other 4 showed 40.54%.

Docking simulation results. The center box coordinates 
for HLA-B*3501 binding groove were X:3.659, Y:-15.259, and 
Z:-36.372, and the grid box sizes were X:36, Y:22, and Z:18. 
All the measurements were spaced at the scale of 1 angstrom. 
These coordinates were chosen and calculated to aid the epitope 
sequence to bind to the binding groove of the receptor. The 
binding energy of predicted epitope with HLA-B*3501 recep­
tor was found to be -7.6 kcal/mol (Fig. 2, C and D). This bind­
ing energy was compared with the binding energy of influenza 

NP418 epitope to HLA B*3501 and found to be the same 
as the predicted epitope (-7.6 kcal/mol, Figure 2, A and B). 
Similar binding energy of both the simulations indicates the 
satisfactory accuracy of the predicted epitope.

B-cell epitope identification. Characteristic features of 
the B-cell epitope include hydrophilicity, surface accessibility, 

Figure 2. Docking simulation results generated by Autodock Vina.  
(A) Structure of influenza NP418 epitope “LPFERATIM”, (B) Structure of 
predicted epitope “REYCYEATL”, (C) Docking of influenza NP418 epitope 
with HLA B*3501, (D) Visualization of docking results of “REYCYEATL” 
with HLA B*3501.

Table 2. Most potential 5 T-cell epitopes with Interacting MHC-1 
alleles, total processing score and epitope conservancy result.

Epitope Interacting MHC-1  
allele with an affinity  
,200 (Total score of  
proteasome score,  
TAP score, MHC score,  
processing score and  
MHC-1 binding)

Epitope  
conservancy 
analysis 
result

RSGINTEDY HLA-B*27:20(1.46),
HLA-A*32:07(1.27),
HLA-C*12:03(1.10),
HLA-A*68:23(1.06),
HLA-B*40:139(0.76),
HLA-A*32:15(0.66),
HLA-B*15:17(0.52),
HLA-C*03:03(0.22)

40.54%

IGKAVHQVF HLA-C*12:03(1.32),
HLA-B*15:03(1.17),
HLA-B*27:20(1.10),
HLA-A*02:50(0.25),
HLA-A*32:07(0.66),
HLA-A*68:23(0.53),
HLA-B*40:13(0.51),
HLA-C*03:03(0.38),
HLA-C*07:02(0.36),
HLA-B*15:01(0.16)

40.54%

REYCYEATL HLA-B*40:01(1.05),
HLA-C*03:03(1.01),
HLA-A*32:07(0.79),
HLA-A*68:23(0.63),
HLA-B*27:20(0.63),
HLA-A*02:17(0.39),
HLA-B*40:13(0.39),
HLA-C*12:03(0.38),
HLA-A*02:50(0.34),
HLA-B*15:02(-0.13),
HLA-B*40:02(-0.15),
HLA-B*15:03(-0.21)

63.51%

WTSPATTDW HLA-A*68:23(0.81),
HLA-B*15:17(0.66),
HLA-C*03:03(0.45),
HLA-B*58:01(.18),
HLA-A*32:0(0.10),
HLA-C*12:03(0.04),
HLA-B*27:20(0.02),
HLA-A*32:15(-0.19),
HLA-B*40:13(-0.19),
HLA-B*57:01(-0.28)

40.54%

QEGALHTAL HLA-B*27:20(0.47),
HLA-C*03:03(0.23),
HLA-A*68:23(0.08),
HLA-B*40:01(0.06),
HLA-A*02:50(-0.22),
HLA-C*12:03(-0.31),
HLA-B*15:02(-0.16),
HLA-B*40:13(-0.13),
HLA-A*32:15(-0.31),
HLA-A*32:07 (-0.36)

40.54%
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Table 3. Potential B-cell peptide epitope generated by Kolaskar and Tongaonkar antigenicity, Emini surface accessibility prediction and Bepipred 
linear epitope prediction. Table 3A. Kolaskar and Tongaonkar antigenicity.

No. Start position End position Peptide Length

1 20 36 WIDLVLEGGSCVTVMAP 17

2 53 75 LATVREYCYEATLDTLSTVARCP 23

3 88 99 PTFVCKRDVVDR 12

4 113 124 IDTCAKFTCKSK 12

5 136 146 KYEVAIFVHGS 11

6 166 175 RFTISPQAPS 10

7 185 191 TVTIDCE 7

8 200 207 DYYVFTVK 8

9 249 256 KQTVVALG 8

10 260 298 GALHTALAGAIPATVSSSTLTLQSGHLKCRAKLDKVKIK 39

11 304 310 MCDSAFT 7

12 321 329 GTVIVELQY 9

13 335 345 PCRVPISVTAN 11

14 349 361 LTPVGRLVTVNPF 13

15 372 378 MVEVEPP 7

16 380 388 GDSYIVVGR 9

17 405 410 GKALAT 6

18 416 423 QRLAVLGD 8

19 431 437 IGGVFNS 7

20 439 448 GKAVHQVFGG 10

21 461 473 TQGLLGALLLWMG 13
 

and beta-turn prediction. Thus, several prediction methods 
were used to determine the epitope considering all these 
criteria.

Kolaskar and Tongaonkar antigenicity prediction method 
functions on the basis of physiochemical properties of amino 
acids and abundances in experimentally known epitopes.

The antigenic propensity for the protein was 1.00; all 
the values greater than 1.00 are potential antigenic determi­
nants. Thirteen epitopes were found to satisfy the threshold 
value set prior to the analysis, and they have the potential 
to evoke the B-cell response. The peptide from PCRVPIS­
VTAN from 335 to 345 was found to have the highest 
antigenic propensity score. The results are summarized in 
Table 3A and Figure 3.

Hydrophilic regions are likely to be exposed to the outer 
surface and most likely to evoke B-cell antigenecity. For this pur­
pose, the protein was subjected to Emini surface accesibilty pre­
diction (Table 3B) and Parker hydrophilicity prediction (Fig. 4). 
From these 2 prediction methods, the regions around 70 to 80 
(more specifically 77–87 in the Emini surface accessibility pre­
diction method), 140 to 156 (more specifically 146–156, surface 
accessibility prediction method), 240 to 250 (more specifically 
242–250 in the Emini surface accessibility prediction method), 
and 320 to 330 (more specifically 327–332 in the Emini surface 
accessibility prediction method) were found as hydrophilic. And 
thus, these regions can be said to be antigenic.

It was found experimentally that the segment of protein 
that interacted with the antibody was flexible. For this reason, 
the flexibility of the segment was also counted in the search of 
antigenicty. In the Karplus and Schulz flexibility prediction 
method, the region of 330 to 340 was found to be the most 
flexible (Fig. 5).

Admitting the effect of the beta sheet region in antige­
nicity, Chou and Fashman beta-turn prediction was done. 
In this result, approximately100 to 105 and approximately 
330 to 340 regions were shown to have the highest beta-turn 
regions (Fig. 6).

The single-scale amino acid propensity profile cannot 
always reliably predict the antigenic epitopes, and even the 
best antigenic prediction method could yield a slightly bet­
ter score than the receiver operating characteristics (ROC) 
plot.42 Because of this, a machine learning process, Bepipred, 
was done to predict the epitopes with increased success 
(Table 3C).

By cross-referencing all the data, we hypothesized that 
the peptide sequence from 330–336 amino acids are capable of 
inducing the desired immune response as B-cell epitopes.

Discussion
With the advancement of sequencing technologies and the huge 
disclosure of protein data, development of an epitope-based 
peptide vaccine has become a key motif in case of viral vaccine 

http://www.la-press.com


Hasan et al

352 Bioinformatics and Biology Insights 2013:7

0
0 50 100 150 200 250

Sequence position

A
n

ti
g

en
ic

 p
ro

p
en

si
ty

300 350 400 450 500

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

Threshold = 1.000

Figure 3. Kolashkar and Tongaonkar antigenicity prediction. Here the x-axis and y-axis represents sequence position and antigenic propensity. The 
threshold value is 1.000. The regions above the threshold are antigenic, shown in yellow.

to determine these epitopes. All the vaccines at present are 
mostly based on B-cell immunity, whereas, in this case, a vac­
cine based on T-cell epitope was inspired by the fact that the 
host can mediate a strong immune response by CD8+ T cell 
to infected cell.44 In this approach, an attempt was made to 
illuminate a potential but rather overlooked aspect of vac­
cine development.45 T-cell based vaccine development is very 
promising in the sense that due to antigenic drift, the foreign 
particles can easily escape the antibody memory response. On 
the contrary, a T-cell immune response tends to be a lasting 

Table 3C. Bepipred linear epitope prediction.

No. Start  
position

End  
position

Peptide length

1 9 18 RDFVEGASGA 10

2 34 41 MAPEKPTL 8

3 73 89 RCPTTGEAHNTKRSDPT 17

4 98 103 DRGWGN 6

5 112 114 SID 3

6 123 126 SKAT 4

7 146 154 STDSTTHGN 9

8 159 162 IGKN 4

9 168 183 TISPQAPSFTANMGEY 16

10 193 198 RSGINT 6

11 224 235 PWTSPATTDWRN 12

12 244 250 EPHATKQ 7

13 257 261 SQEGA 5

14 271 276 PATVSS 6

15 311 321 FSKNPADTGHG 11

16 329 337 YTGSNGPCR 9

17 362 369 ISTGGANN 8

18 376 381 EPPFGD 6

19 390 392 TTQ 3

20 398 405 HKEGSSIG 8

21 412 413 WK 2

22 426 428 WDF 3
 

preparation. Although Saint Louis encephalitis,since its first 
recognition in 1933, has been responsible for 10 000 cases and 
1000 deaths, the production of the vaccine has not received 
attention.2 One study in 1995 was done with the virus in 
this prospect and now with the help of bioinformatics tools, 
this admittedly preliminary study was done from a different 
perspective.43

The objective of the study was to investigate the most 
immunogenic proteins of the Saint Louis encephalitis virus 
and to find out the T-cell and B-cell epitopes with regard to 
a burning question: the viral protein mutation. Another posi­
tive outcome of the study would be the cost. Currently, where 
a significant amount of resources are spent for the vaccine 
development for viruses, this dry lab approach can be proved 
as a worthy preliminary step not only towards an effective 
proposition, but also a less costly one. Thus, we believe that 
this perspective is well worth attempting.

T-cell and B-cell epitopes are the prime molecules of 
cell mediated and humoral immunity. Thus, for designing 
a vaccine for protective immunity, the first step should be 

Table 3B. Emini surface accessibility prediction.

No. Start  
Position

End  
position

peptide length

1 35 41 APEKPTL 7

2 77 87 TGEAHNTKRSD 11

3 146 156 STDSTTHGNYF 11

4 159 165 IGKNQAA 7

5 195 202 GINTEDYY 8

6 224 238 PWTSPATTDWRNRET 15

7 242 250 FEEPHATKQ 9

8 311 317 FSKNPAD 7

9 327 332 LQYTGS 6

10 389 394 GTTQIN 6

11 396 401 HWHKEG 6

12 410 415 TTWKGA 6
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Figure 4. Parker hydrophilicity scale. Here the x-axis and y-axis represent sequence position and hydrophilicity scale, respectively. The threshold is 
1.502. The regions above the threshold are hydrophilic, shown in yellow.
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Figure 5. Karplus and Schulz flexibility prediction. Here x-axis and y-axis represent position and score, respectively. The threshold is 1.00. The flexible 
regions are shown in yellow.

one. Along with the T-cell epitope, attention was given also to 
the B-cell epitope, which can induce primary and secondary 
humoral immunity.46

This study evolved around the cornerstone of 4 criteria of 
a good peptide epitope: good conservancy, T-cell and B-cell 
processivity, interaction with MHC-1 allele with good affin­
ity, and population coverage.

The predicted epitope fulfilled all the criteria, while more 
explanation of some results is given here including the fact that 
as a RNA virus, Saint Louis encephalaitis has a higher ten­
dency towards mutation resulting from the lack of proofreading 
activity of RNA polymerase.47 So, while considering the seg­
ment to induce immunity in the human body against this virus, 
it is of utmost importance to choose a portion with relative 
conservancy. The most preferable way to do that in a dry lab 
will be to consider a portion present in all the strains of the 
virus. By securing a presence in a specific protein in all strains, 
it actually secures a place in evolution. But unfortunately, due to 
resource scarcity, among the 17 strains till identified,1 the data­
base includes only the protein sequence of strain MS1–7. Thus 
in this approach this problem was tried to solve from a different 
angle. The 5 most potential T-cell epitopes chosen by the server 
NetCTL were again subjected to the epitope conservancy tool. 

One epitope, REYCYEATL, showed a conservancy of 63.51%, 
while the other 4 epitopes showed conservancy of only 40.54%. 
It was assumed that the REYCYEATL epitope could be used 
as a universal epitope rather than other 4, as it showed higher 
conservancy than all other potential epitopes.

In the fourth criteria, to make sure the interacting MHC 
alleles has good population coverage overall, 12 allele super­
types were set prior to the epitope prediction, where super­
types A*0101, A*0201, A*0301, A*2402, B*0702, and B*4403 
showed a population coverage of 99%, including North 
American, where the disease is most prevalent.48

Most importantly, REYCYEATL also showed interac­
tion with HLA-A2, which is more common in North America 
than the other parts of the world.49 Other four Epitopes did 
not show interaction with the HLA-A2.

Some investigations were done using multiple com­
putational tools, such as in the case of B-cell epitope 
identification, which was done using the parameters of 
hydrophilicity, flexibility, and beta-turn. This emphasizes 
the fact that although computational algorithms are avail­
able, it is still important to check all the criteria in vitro to 
assess the immunogenicity and identify the epitopes of a 
protein.
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The results are based on a careful sequence analysis and 
deposited data on various immune databases. The results 
suggest that the epitopes found here are good candidates for 
establishing a peptide vaccine that can trigger an efficacious 
immune response in vivo.

Conclusion and Future Perspective
To prove the effectiveness of mounting an immune response, 
both in vivo and in vitro studies are required along with this 
in silico study. To determine the binding affinity of the whole 
peptide, the binding chip assay for the HLA and peptide 
would also be useful.
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