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ABSTR ACT: In order to develop a new tool for diagnosis of breast cancer based on autoantibodies against a panel of biomarkers, a clinical trial including 
blood samples from 507 subjects was conducted. All subjects showed a breast abnormality on exam or breast imaging and final biopsy pathology of either 
breast cancer patients or healthy controls. Using an enzyme-linked immunosorbent assay, the samples were tested for autoantibodies against a predeter-
mined number of biomarkers in various models that were used to determine a diagnosis, which was compared to the clinical status. Our new assay achieved 
a sensitivity of 95.2% [CI = 92.8–96.8%] at a fixed specificity of 49.5%. Receiver-operator characteristic curve analysis showed an area under the curve of 
80.1% [CI = 72.6–87.6%]. These results suggest that a blood test which is based on models comprising several autoantibodies to specific biomarkers may be 
a new and novel tool for improving the diagnostic evaluation of breast cancer.
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Introduction
Traditional diagnostic tools for breast cancer detection, includ-
ing clinical breast examination and mammography, are only 
moderately effective for accurately detecting early stage breast 
cancer. Mammography has limited sensitivity, a high rate of 
false-positive results, and cumulative radiation exposure as 
significant risk factors. The mean sensitivity of mammography 
has been estimated to be 77% (range: 29–97%),1,2 with the rate 
of false-positive mammographic findings as high as 35%.2,3 
Ultrasound (US) and magnetic resonance imaging (MRI) 
are additional diagnostic tests for questionable lesions of the 
breast as well as potential screening modalities for high-risk 
women. There is a general consensus among oncologists and 
the public that there is an urgent and unmet need to develop 

more accurate, non-invasive, simple, and low-risk alternative 
modalities for the screening and diagnosis of breast cancer.4

It is generally accepted that there is a humoral immune 
response to intracellular or cell surface tumor-associated 
antigens (TAAs) released at the site of tumor genesis. With 
the development of new technologies, studies have profiled 
serum from cancer patients for the detection of autoantibodies 
(AAbs) to TAAs.5,6 AAbs represent an attractive biomarker 
for diagnostic assays, principally due to the stability of immu-
noglobulins in cancer patient serum facilitating measurements 
with conventional assays. Expression levels of AAbs related to 
cancer are altered in cancer patients, whereas the disease does 
not alter other non-cancer related AAbs. Thus, the change in 
cancer-specific AAbs can indicate the presence or absence of 
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a specific cancer. This may be detectable well in advance of 
 clinically detected disease using current conventional diag-
nostic techniques.7 AAbs to TAAs could represent novel 
biomarkers for cancer screening, diagnosis, prognosis, moni-
toring, and prediction of response to chemotherapy. The chal-
lenge is how to measure and interpret these changes among 
cancer specific AAbs and develop an assay and algorithm for 
an accurate, low-risk tool for the diagnosis of cancer.

In breast carcinoma, as in other malignancies, the use of 
larger panels of TAAs, rather than individual TAAs, enhances 
the likelihood of accurately detecting cancer- associated AAbs 
with more accurate diagnostic value. Thus far, only a small 
number of circulating AAbs specific to breast carcinoma 
TAAs have been identified and investigated.8,9 The most 
familiar are Her210 and Muc1,11 both of which are known 
to be over-expressed in breast cancer tissues and involved in 
the production of specific autoantibodies. Current efforts to 
predict or diagnose breast cancer based on autoimmunity to 
either an individual TAA, or groups of TAAs, have so far 
not resulted in clinically applicable serologic biomarkers with 
accurate and definitive predictive and diagnostic capabilities. 
In this study, we tested a new enzyme-linked immunosor-
bent assay (ELISA)-based method for measuring the ratio of 
blood-based AAbs against a selected panel of breast TAAs 
for its diagnostic potential in distinguishing breast cancer 
patients from a cohort of healthy controls.

Materials and Methods
Study subjects and blood samples. All blood samples 

were obtained from female subjects over the age of 18 years 
with a breast abnormality detected by a clinical breast examina-
tion, mammogram, ultrasound, or breast MRI.  Additionally, 

each subject must have had a final pathologic diagnosis of the 
breast abnormality determined by needle or surgical biopsy. 
Women were not eligible to participate if they had a previous 
or concurrent malignancy including hematologic malignan-
cies, were receiving active chemotherapy, or had chemother-
apy or steroid-based therapy in the past 6  months. Women 
undergoing immunosuppressive treatments or women with an 
autoimmune disorder were also excluded.

A positive breast cancer diagnosis was defined as women 
having invasive ductal or lobular carcinoma and ductal  carcinoma 
in situ as verified by pathologic evaluation. Women diagnosed 
with either fibroadenoma, fibrocystic changes (including scle-
rosingadenosis, and benign papilloma), atypical ductal hyper-
plasia, atypical lobular hyperplasia and lobular carcinoma in 
situ were included in the control (healthy) group. As stated, 
to determine the clinical status of the women, a biopsy con-
firmation was required. The control group had negative biopsy 
samples and was not dependent upon imaging interpretations. 
In situations where there was a difference between the results 
of the needle biopsy and surgery, the pathologic findings at sur-
gery overruled the needle biopsy results. Verification of a defini-
tive breast cancer diagnosis was dependent on both imaging and 
pathology concordance. Patients with biopsy samples with no 
pathological report, or with no final diagnosis, were excluded 
from the study. A total of 546 samples were obtained from five 
centers worldwide (Israel, Italy, and the USA) (Table  1). All 
blood samples were collected with local Institutional Review 
Board (IRB) approval after each participant signed an informed 
consent. The trial registration ID is NCT00331942.

Plasma was collected from whole blood using hepa-
rin tubes (cat. No. 455084, Greiner Bio-One, Frickenhau-
sen, Germany) centrifuged at 3,000 × g for 10 min at room 

Table 1. Study population information—number of samples collected at each site according to final diagnosis as verified by biopsy of the lesion. 
Patients were considered cases with either invasive cancer or DCis and aDH, aLH, LCis, and other lesions were considered to be healthy. 
average age (sd) is shown according to diagnosis for all population and according to menopausal status.

DIAGNOSIS PATIENT HEALTHY TOTAL

INVASIVE BC DCIS OTHER LESIONS ADH ALH LCIS

israel1 54 92 146

italy2 82 12 127 4 4 1 230

Usa3 46 7 104 7 5 1 170

Total 182 19 323 11 9 2 546

201 345

PATIENT HEALTHY TOTAL

average age (sd) 59.2 (13.4) 46.4 (11.6) 51.1 (13.8)

average age (sd) 
pre-menopause

44.9 (5.4) 40.1 (8.8) 41.2 (8.4)

average age (sd) 
post-menopause

66.6 (10.1) 58.2 (7.2) 62.8 (9.8)

1Carmel medical Center, Haifa; kaplan medical Center, rehovot.
2mediterranean school of oncology, Chietti (mso), european institute of oncology, milan (ieo).
3mD anderson Cancer Center, Houston, Texas (mD).
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 temperature (RT), and aliquots were stored frozen at -80°C 
until ELISA analysis. At the MD Anderson Cancer Center 
only, plasma was centrifuged at 1,300 RPM for 30 min at 
4°C and aliquots were stored frozen at -80°C until ELISA 
 analysis. Data forms were completed by each site to obtain 
clinical information and final pathological diagnosis.

Antigen selection for AAb assay. Antigens were chosen 
from the current literature according to their known involve-
ment in the humoral response against breast cancer (Table S1 
in Supplementary Data on-line—Details of antigens used in 
this study). An initial set of 15 different antigens, all show-
ing the ability to elicit antibody production in breast cancer 
patients (and some, to a smaller extent, in healthy populations 
as well) were chosen for initial testing (Table 2). All proteins 
and  peptides were purchased from different suppliers (Table S1 
in Supplementary Data on-line). Each antigen was calibrated 
with specific antibodies for best-coating concentration.

ELISA methodology. ELISA was used to measure the 
humoral immune response in the serum or plasma of partici-
pating women to the various peptides or whole proteins anti-
gens (Table 2). At each location, a specific standardized ELISA 
protocol was followed (described below) on local samples to 
ensure assay consistency across sites. Each sample was given a 
barcode identifier in the laboratory to ensure a blinded analysis. 
White “Maxiorp” 96 wells plates (Nunc, Roskilde,  Denmark) 

were coated with commercial antigens at  concentrations 
 ranging 2–6 µg/mL for proteins, and 0.25–1 mg/mL for pep-
tides in phosphate-buffered saline (PBS) and blocked with 
Well Champion reagent (Kem- En-Tec,  Taastrup, Denmark) 
according to the manufacturer’s instructions. Serum or plasma 
samples (100 µL) were loaded in 6  serial dilutions starting 
at 1:40–1:320 in 1% skim milk in PBS (Fluka, St. Louis, MO, 
USA) for each of the coated antigens in the plates and incu-
bated at 37°C for 1.5 h with gentle agitation. The plates were 
washed 8 times with 300 µL of Dulbecco’s PBS, 0.05% Tween 
20 (PBST), and 1:10,000 horseradish peroxidase conjugated 
goat anti-human IgG (Chemicon, Temecula, CA, USA) was 
added for 1 h at 37°C, followed by 4 washes with 0.025% PBST. 
EZ-ECL (Biological Industries, Beit-Haemek, Israel) was used 
for luminescent development according to the manufacturer’s 
instructions. Luminescence was measured with Luminoscan 
Ascent (Thermo Scientific, Waltham, MA, USA) using Ascent 
software (Thermo  Scientific). Results were loaded into an inter-
net database in a secure server according to the barcodes.

Statistical methods. All statistical analyses were per-
formed using STATA 12 SE (StataCorp, College Station, TX, 
USA). All P-values were two-sided. P-values below 0.05 were 
considered significant. No corrections for multiple compari-
sons were performed. The initial data for each sample consisted 
of 6 measurements of AAb relative luminescence units (RLU) 

Table 2. List of the 15 tumor-associated antigens used in the study.

ANTIGEN 
NUMBER

ANTIGEN 
CODEa

PEPTIDE SEQUENCE OR 
 PROTEIN NAME

REMARKS REFERENCE

1 1 iisaVVGi Her2neu aa655-aa661 10

2 8 TaPLQPeQLQVFeTLeei Her2neu aa389-aa406, 
aLH epitope

10

3 11 sGsGHGVTsaPDTr Derived from muc1 
 tandem repeat

11

4 12 HGVTsaPDTrPaPGsTaPPa 
HGVTsaPDTrPaPGsTaPPa 
HGVTsaPDTrPaPGsTaPPa 
HGVTsaPDTrPaPGsTaPPa

Derived from muc1 
 tandem repeat

11

5 16 kaaeLiPLHkLaak Derived from Cathepsin D, 
aa24-aa28 and additional 
stabilizing aa

12

6 18 nGTsFDiHYGsGsLsGYLs Derived from Cathepsin D, 
aa135-aa152

12

7 19 VGFaeaar Derived from Cathepsin D, 
aa494-aa451

12

8 80 endostatin 13

9 41 rPa32 14

10 76 HoXB7 15

11 78 90k 16

12 114 Cea human 17

13 95 Cathepsin D 12

14 85, 103 erbb2 10

15 115, 116 P53 18

aCoding was used to ensure a blinded analysis at each site.
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for each antigen in 6 consecutive dilutions. In the first step, we 
fitted the log10[RLU] as a linear function of the log10[dilution]. 
If the goodness of fit was not satisfactory, we excluded one out-
lier and refit the data by linear regression with the remaining 
5 points. Reference values of the  dilution were fixed for each 
AAb. If the goodness of fit was high, the fitted value at the ref-
erence point was calculated for each AAb. Otherwise the value 
was classified as “missing” for this antigen only, meaning that 
the data did not pass the quality control. A missing value was 
only given to a specific antigen and not to a sample.

Thus, each sample was left with a set of maximum 
15   values of AAb log10[RLU] for all antigens, each at the 
reference dilution point chosen for the antigens. We used 
the data as described to develop a classification scheme for 
all the samples into “patients” and “controls” as follows. First, 
we applied a main effect logistic regression for all possible 
models that included age, and 4 antigens out of the 15. Each 
model consisted of samples with full data only (all 4 antigens 
present). The models were sorted according to the sensitivity 
at 50% specificity, conditioned upon the fact that the model 
can be applied for a sufficient number of the samples (no less 
than 80 samples per model). Next, we established a combined 
decision rule whereby for each sample, the final decision as to 
“patient” or “control” was accepted according to the highest 
ranked model that could be used (ie, that all antigens in the 
highest sorted model were simultaneously “not-missing” for 
this sample, otherwise, the next highest model, with all “not-
missing” values was applied to this subject).

Results
Theoretical considerations of the assay and data 

 analysis approach. Current diagnostic methods generally rely 
upon observing one TAA against which the amount of AAbs 
in patients is higher than in controls. Such a method uses a 
“cut-off” criterion with subjects above the cut-off  designated 

as  “patients” and those below the cut-off designated as 
“healthy”. This premise is typically true for external antigens 
such as bacteria and viruses. When an individual is infected, 
there is an immune response and a specific antibody response. 
In such a scenario, using a specific cut-off to score positive or 
negative or “infected” or “uninfected” is applicable.

However, when examining AAbs, the situation is different 
because AAbs are found in serum in the absence of overt dis-
ease among all populations. The constitutive or “natural” levels 
of AAbs differ among individuals, which has no correlation to 
specific diseases. Using a cut-off criterion for AAbs will result 
in a distortion of the diagnostic results, as many false-positives 
(those with high amounts of AAbs), and false negatives (those 
with low amounts of AAbs), will occur. An example is shown 
in Figure 1A. Alternatively, if absolute values are not considered 
and if the ratio in the amount of cancer-specific AAbs relative to 
the presence of non-cancer specific AAbs is calculated, a more 
accurate distinction can be made between patients and healthy 
subjects (Fig. 1B). As illustrated in Figure 1B, to determine and 
analyze the ratio between normal AAbs and cancer-specific 
AAbs, at least two AAbs should be used. This would include one 
normal occurring AAb unique to the individual (AAbA), and a 
second cancer-specific AAb  (AAbB). Comparing the amount 
of the “non-relevant” normal occurring AAbs (AAb A) to the 
amount of cancer-related AAbs (AAb B), whose amounts are 
higher than the normal amounts of AAbs (AAb A), produces 
the following decision rule: a cancer patient is defined when 
AAb B  AAb A, and a healthy individual is defined when AAb 
B  AAb A. Using this method prevents both false- positive and 
false-negative results compared to the cut-off method, as it elim-
inates the misrepresentation created by absolute values.

Initial sample analysis using logarithmic transforma-
tion of ELISA data. The first objective of the study was to 
obtain reliable measurements of the amounts of each breast 
cancer specific AAb for its corresponding breast  cancer  specific 

Figure 1. (A) Using “cut-off” criteria (aab = 150) results with false-positive and false-negative results because different immune systems have different 
aab levels. (B) measuring relative amounts of antibodies (aab a relative to aab B) eliminates both false-positive and false-negative results that emerge 
when using a “cut-off” criterion. Using a ratio of aab B  aab a as a criteria for patients eliminates all false results.
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antigen in each blood sample. We did not use a  standard 
approach of averaging several measurements at a fixed  dilution 
because, as described above, each woman has specific and 
 different initial levels of AAbs. Alternatively, using a serial 
dilution approach with different starting dilutions for each 
antigen eliminates this problem. With this serial dilution 
approach, a curve of RLU measurements as a function of the 
dilution was obtained. The range of dilutions was chosen in 
a manner that for most women and antigen combinations, at 
least 5 measurements could be approximated to a linear curve 
(in logarithmic scale).

Following logarithmic transformations, those antigens 
that were saturated following a serial dilution were classi-
fied as an antigen with a missing value. The resultant curve 
was approximated to a linear curve using linear regression 
after excluding potential outliers. Applying this regression 
resulted with an estimate of log[RLU] at a pre-defined fixed 
dilution for each antigen. In cases where the quality of the 
linear fitting was not satisfactory (R2 of the linear line was 
lower than 0.95), this predicted value was removed from the 
analysis and this antigen was assigned with a missing value. 
However, this resulted with the exclusion of only 7.1% of 

the samples (39/546 cases). A blood sample was qualified for 
inclusion in the study only when it showed detectable cancer 
specific AAb  levels against all antigens included in at least 
one of the different models, which was 92.9% of the samples 
(507/546 cases).

Figure 2 is an example representing the analysis of the raw 
data. As seen in Figure 2, each raw data set was  transformed 
into log-log scale, and linear regression was applied. The 
new line replaced the original, and the middle of the line 
( corresponding to dilutions between 1:160–1:320) was chosen 
as the final value for each antigen-women pair of data (final 
value, shown in Supplementary Data online Table S2—Data 
after smoothing procedure for all antigens sorted by samples 
participating in the study). For each linear regression, R2 was 
calculated and data generating lines with R2  0.95 were omit-
ted from further analysis (for example, antigen 016 [R2 = 0.85]).

This smoothing analysis was performed for all samples. 
After applying this analysis, significant differences between 
the two populations (healthy and breast cancer patients) 
were not observed for any of the antigens, as shown in the 
box graph in Figure 3. These results indicate that a simple 
average RLU determination of the data after logarithmic 

Figure 2. an example of the smoothing procedure. each graph shows data corresponding to antigens of sample B2404, with the raw data shown as the 
thin line and data after smoothing as the thick line. in most cases, the raw data dilution curves yielded high linear correlation (r2  0.95). When data 
could not be replaced by a straight line with good fitting (such as antigen #16 and antigen #41), the specific antigen was replaced by a missing value for 
this specific sample. All other antigens of the sample received a value corresponding to the value at a specific reference point of dilution in the middle of 
the theoretical line.

http://www.la-press.com
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 transformation and smoothing did not reveal differences 
between patients and healthy controls. We therefore applied 
a more  sophisticated method of data analysis using the ratio 
concept and “ separation models” based on relevant clinical, 
demographic, or epidemiological parameters.

Classification of different samples. Before starting this 
second-tier analysis, we evaluated which relevant clinical or 
demographic parameter can be incorporated into the analysis. 
We checked the following parameters: age, menopausal sta-
tus, and familial breast cancer history (as given by the patients 
verbally). We tested the distribution of these parameters 
between the two groups. Using the Mann-Whitney test for 
age gave a P  0.0001, and Fisher’s exact test for menopause 
(P  0.001) and for family history (P = 0.005) (see Table S7 
B-D in  Supplementary Data online Analysis of clinical vari-
ables as “stand alone” predictors, for detailed analysis). We 
only used age for the entire population and performed a sepa-
rate analysis for post-menopausal women. We did not use the 
family history parameter because this notion could not be rig-
orously defined, making it less reliable (the information is not 
always available to the subjects) and less significant. We also 
performed the logistic regression of the outcome (health sta-
tus) on age and menopause. In this analysis, only age retained 
its significance (P  0.001), while menopause became non-
significant (P = 0.076) after age adjustment (see Table S7-A 
in Supplementary Data online—Analysis of clinical variables 
as “stand alone” predictors, for detailed analysis).

To further use the AAbs results to discriminate between 
patient samples and control samples, we used logistic 
 regression of the disease status (“patient” or “control”) on age 
and  4  antigens testing all possible combinations of 4 antigens 
out of 15. A classification model is defined as the set of anti-
gens, as well as clinical data (age), and their corresponding 
coefficients obtained after logistic regression is performed. 
All  sub-sets of theoretical combinations of the antigens 
(ie, all classification models) were tested for their sensitivities 
at the level of 50%  specificity. Models created with at least 
80   samples, resulting in a specificity of at least 50%, were 
ranked according to their sensitivities. For final classifica-
tion, only models with sensitivity of at least 95% were used, 
after sorting according to the sensitivity and the area under 
the Receiver-operator characteristic (ROC) curve. The set 
of final models used for further analysisis shown in Table S3 
(Supplementary Data online—List of the final models used 
for separation). After the set of models was established, the 
overall sensitivity was calculated as follows: Each sample was 
assigned a final diagnosis according to only one model, which 
was the highest model that could be assigned to the sample, 
ie, the highest model with no missing value for either of the 
antigens in the model for this specific sample, and was given a 
calculated value of “1” to indicate a positive or a “0” as a nega-
tive. After assignment, a comparison between biopsy diagno-
sis and the calculated result was conducted. A  true positive 
(TP) was a sample with “patient” biopsy diagnosis designated 

Figure 3. Box plots of average of log10 [rLU] of all antigens after the smoothing procedure.The two clinical groups are represented in the graph are breast 
cancer (filled bars) and healthy (empty bars). No statistically significant separation could be achieved between the groups using any one of these antigens.
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as a “1” in the test results. True negative (TN) was a sample 
with “control” biopsy diagnosis designated as a “0” in the test 
results. A false positive (FP) was defined as a sample with 
“control” biopsy diagnosis and “1” in the test results, while 
a false negative (FN) was defined as a sample with “patient” 
biopsy diagnosis and “0” in the test results. Some of the sam-
ples (n = 37) had too many missing values, and could not be 
applied to any of the models used (ie, each had less than 4 val-
ues in any of the models with high sensitivity). Those samples 
could not be assigned final test results and were not a part of 
the final analysis. The overall sensitivity of the test was then 
determined as the highest sensitivity with at least 50% speci-
ficity. Results of this analysis are shown in Supplementary 
Data online (Table S4—Prediction given to each sample after 
applying the models).

The total number of blood samples used from all sites was 
546, which included 201 “patients”, according to their final posi-
tive breast cancer diagnosis. In total, 345 healthy “controls” were 
used. The classification models each  containing 4 antigens and 
age, were sorted according to the area under the curve (AUC). 
The final decision was according to 16 models with sensitivity 
above 95% at fixed specificity of 50% (models shown in Table S3 
in the Supplementary Data online). Of the 546   samples, 
507 showed definitive diagnostic results (final classification as 
well as the model used for each sample is shown in Table S4 
in the Supplementary Data online). Of the 507  women with 
definitive diagnostic results, 339 were classified as positive (“1”) 
and 168 as negative (“0”). When compared to biopsy diagnosis, 
177 samples were true-positive, 159 true-negative, 162 false-
positive and 9 false- negative. Thus, the sensitivity of this set of 
507 samples was 95.2% and the specificity was 49.5% (Table 3), 
the calculated AUC of the ROC curve was 80.1% (Fig. 4A).

Effect of menopausal status. To explore the effect of 
menopausal status on the algorithm, we divided the population 
according to menopausal status that was given by the women 
when the sample was obtained. Of the 238 women reported 
to be post-menopausal, 131 were “patients”, and 107  were 
“ controls” (total of 238). Using this subpopulation only, new 
models were created using 4 antigens and age (see Table S5 in 
the Supplementary Data online—List of the final models used 
for separation for post-menopausal women). Of the 238 samples 
in the data set, only 193 samples remained with non-missing 
values, and resulted in 96.2%  sensitivity and 52.8%  specificity 

(Table 3). The total AUC for this  sub-population was 84% 
(Fig. 4B). Final  classification as well as the model used for each 
sample is shown in Table S6 ( Supplementary Data online— 
Prediction given to each sample after applying the models for 
post- menopausal sub population).

Using the method for clinical status prediction. Our 
objective was to further validate the method in order to pre-
dict the status of blinded samples. To achieve this objective, 
we utilized the largest subset that contained the same anti-
gens and had no missing values. A total of 252 samples, with 
143  patients and 109 healthy controls, all shared the same 
4 antigens (Antigens no. 016; 080; 095; 115). We divided the set 
into two separate groups, a training set containing 94 patients 
and 110  healthy controls, and a prediction set containing 
15 patients and 33 healthy controls. We used only one model 
to establish a cutoff point for separation between the groups in 
the training set and applied separating criteria on the predic-
tion subset. The training set, tuned to 94.7% sensitivity and 
61.8% specificity, resulted in a cutoff point of 0.4, above which 
the subject was considered as a patient. This cutoff criteria was 
applied to the prediction set, giving a sensitivity of 100% and 
specificity of 45.4%, as shown in Table 4 and in Table S8 (Sup-
plementary Data online—Blinded samples prediction using a 
single model). The ROC for this subset is shown in Figure 5, 
for the training set (Fig. 5A) and the predictions set (Fig. 5B).

Discussion
In this study, we tested 546 samples using ratios between dif-
ferent AAbs to a panel of biomarkers for each sample rather 
than using traditional cut-off thresholds for AAbs. Using 
this approach we differentiated between healthy controls and 
individual breast cancer patients with high sensitivity (95%) 
and moderate specificity (up to 50%) with a total AUC of 
0.8. The results were slightly better for a sub-population of post-
menopausal women (AUC = 0.84). The subset analysis of post-
menopausal women suggests that this approach could be 
particularly useful for identifying patients with breast cancer in 
this population. Increasing the number of age-similar controls, 
however, is needed to further test this possibility. The results 
achieved with a smaller and more homogenous subset, used for 
blinded samples clinical status predictions, is further validation 
of the proof of concept of this method, which will allow blind 
predictions using a single logistic regression-based model.

Table 3. summary of tests results compared to clinical status.

WHOLE POPULATION TEST NEGATIVE TEST POSITIVE

Clinical negative 159 162 Specificity = 49.5%

Clinical positive 9 177 sensitivity = 95.2% (Ci = 92.8–96.8)

Post-menopausal

Clinical negative 47 42 Specificity = 52.8%

Clinical positive 4 100 sensitivity = 96.2% (Ci = 92.6–98.5)
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Figure 4. (A) ROC curve (sensitivity versus 1—specificity) of the 507 samples in the data set. The AUC is 80.1% (CI = 72.6%–87.6%). At specificity of 
49.5%, sensitivity is 95.2% (Ci = 92.8–96.8%). (B) ROC curve (sensitivity versus 1—specificity) of the 193 samples in the data set of post-menopausal 
women. The aUC is 84% (Ci = 66.1–93.4%). At specificity of 52.8%, sensitivity is 96.2% (CI = 92.6–98.5%).

Table 4. summary of tests results for blind predictions.

TRAINING SET TEST NEGATIVE TEST POSITIVE

Clinical negative 68 42 Specificity = 61.8%

Clinical positive 5 89 sensitivity = 94.7% (Ci = 88.0–98.3)

Prediction set

Clinical negative 15 18 Specificity = 45.4%

Clinical positive 0 15 sensitivity = 100.0% (Ci = 78.2–100.0)

These results also suggest that better separations can be 
achieved for pre-defined sub-groups of either the malignant or 
pre-malignant population (such as atypical ductal or  lobular 
hyperplasia, etc). Other sub-populations, such as high-risk 
and different ethnic origins, may also be suitable for specially 
designed diagnostics, with dedicated  antigens used in the 

ratio approach. This hypothesis could not be tested in this 
study, as a much larger sample size of these sub- populations 
would be needed in order to achieve statistically significant 
outcomes. In order to further validate the use of this method 
for clinical status predictions on larger sample sizes, and 
eliminate heterogeneity problems of the system, a  better and 
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Figure 5. (A) ROC curve (sensitivity versus 1—specificity) of the 152 samples in the training set. The AUC is 84.5% (CI = 78.6–89.0%). At specificity of 
61.8%, sensitivity is 94.7% (Ci = 88.0–98.3%). (B) ROC curve (sensitivity versus 1—specificity) of the 48 samples in the data set of post-menopausal 
women. The aUC is 80.4% (Ci = 67.4–91.0%). At specificity of 52.8%, sensitivity is 96.2% (CI = 78.2–100.0%).

more precise and sensitive method, such as protein microar-
ray should be used, which will enable better prediction on 
statistically significant populations. This is currently being 
developed.

More significantly, in order to further improve the results 
in terms of higher specificity, a new category of antigens which 
are specifically designed for this outcome should be identi-
fied and utilized. To perform our study, we relied on a group 
of antigens relevant in breast cancer chosen from previously 
published studies that used traditional “cut-off” criteria that 
were not specifically designed for use in the ratio approach 
we developed here. It is assumed that identifying special bio-
markers, whose amounts of AAbs are increased during cancer, 
could be used in the ratio approach and will result with  better 

diagnostic capabilities such as higher specificities without 
compromising the high sensitivity.

In conclusion, we demonstrated the proof-of-concept 
that measuring the ratio between the levels of AAbs against 
a panel of previously identified breast cancer TAAs provides 
an accurate and low-risk confirmatory aid for the diagnosis 
of breast cancer with high sensitivity and moderate specific-
ity. Our data supports the premise that an assay incorporating 
calculations of the ratio between the levels of serum AAbs 
has powerful diagnostic potential. We therefore propose and 
plan to further improve this concept and outcome by using 
more accurate and powerful biological techniques such as 
analyzing dedicated antigens for specific sub-groups and more 
sensitive diagnostic modalities such as microarray fluorescent 
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platforms. Further unbiased identification of AAb targets as 
new TAAs using larger-scale human protein arrays may also 
be needed using our approach to further enhance the predic-
tive value of this approach.
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