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Abstract: A good understanding of the population dynamics of algal communities is crucial in several ecological and pollution studies 
of freshwater and oceanic systems. This paper reviews the subsequent introduction to the automatic identification of the algal communi-
ties using image processing techniques from microscope images. The diverse techniques of image preprocessing, segmentation, feature 
extraction and recognition are considered one by one and their parameters are summarized. Automatic identification and classification 
of algal community are very difficult due to various factors such as change in size and shape with climatic changes, various growth peri-
ods, and the presence of other microbes. Therefore, the significance, uniqueness, and various approaches are discussed and the analyses 
in image processing methods are evaluated. Algal identification and associated problems in water organisms have been projected as 
challenges in image processing application. Various image processing approaches based on textures, shapes, and an object boundary, 
as well as some segmentation methods like, edge detection and color segmentations, are highlighted. Finally, artificial neural networks 
and some machine learning algorithms were used to classify and identifying the algae. Further, some of the benefits and drawbacks of 
schemes are examined.
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Introduction
Algae are a very huge and diverse collection of 
simple, normally autotrophic organisms, ranging 
from unicellular to multicellular forms. They affect 
water properties such as water color, odor, taste, and 
the chemical composition, which may cause poten-
tial hazards for human and animal health.1 They are 
highly sensitive to the changes in their environment.2 
Shift in algal species and population can be used to 
identify the environmental changes and the status of 
nutrient content.3 Algae are very good biological indi-
cations for water pollution assessment; therefore, they 
have long been used to assess the quality of waters in 
lakes, ponds, reservoirs, rivers, and so on. However, 
identification of algae at their taxonomy level and the 
application in environmental assessment is a difficult 
process. Several studies reported the conventional 
identification of algae by using microscopy images, 
which is a time consuming process. This has led 
many researchers to develop several systems to auto-
mate the analyzing and classifying algal images.2,3 An 
automated computer-based recognition and classifi-
cation system for the rapid identification of algae will 
definitely reduce the burden of routine identifications 
by taxonomists.4–6 This identification and classifica-
tion would allow many people to identify and know 
about the algae without any knowledge of algae.

Image processing is an effective technology to 
analyze the digital images for various applications in 
society. In that category, it is used in several places, 
such as in medical images, spatial images, underwa-
ter images, and other biological images. Several stud-
ies were carried out on the biodiversity of algae in 
India.7–13 Very little research was identified on auto-
matic algal identification using image processing 
techniques.

Most research applied image processing to detect, 
count, identify, and classify algal groups; some of this 
approach was efficient with 92% accuracy.14 Some 
developed tools are used effectively for online moni-
toring, some for measurements of density of micro-
organism in water, and other tools were developed 
to assist in recognition process, such as enhancing 
images, noise elimination, and edge-extracted seg-
mentation.15–17 A combination of image processing 
techniques and Artificial Neural Network (ANN) 
algorithms are used to automate the process of detec-
tion and recognition.18 Other techniques used included 

was image processing with genetic algorithms or ANN 
for recognition purpose.15,19–22 MatLab based image 
processing tools were used for the complete enhance-
ment and analytical operations. An automated object 
recognition segments the algal images and locates 
possible objects accurately by their boundary and 
texture without human  interaction.23  Automatic iden-
tification and classifications of diatoms with a circu-
lar shape were achieved by using contour and texture 
analysis.24

Image Processing Methodology
Identification of the algal community from images 
consists of various steps namely preprocessing, 
segmentation, morphological operations, feature 
extraction, classification, and identification. Figure 
1 gives the architectural layout of the image pro-
cessing method used in the identification and the 
classification of algae. In the following section, we 
will discuss the functionality of each processing 
technique.

Image Preprocessing
Correct object detection depends upon many fac-
tors, such as the type of illumination, the presence 
of  shadows, the level of noise, the state of focus, the 
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Figure 1. Proposed methodology of automatic algal identification.
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overlapping of objects, as well as level of object sim-
ilarity to the background.25,26 The digital grayscale 
images captured from a microscope are preprocessed 
to reduce the effects of nonuniform illumination and 
other noise. A median filter (size 3×3 and 5×5) was 
used to reduce image noise.15,27 In the present study, 
the neighborhood averaging technique was used to 
enhance the image and morphological features were 
processed for noise elimination, and to keep the 
cyanobacteria structure clear (Fig.2).

Nonuniform illumination was corrected using the 
top-hat filter. Neighborhood averaging technique 
using Wiener filter and median filter methods were 
used to reduce image noise and to preserve edges. The 
performance of the three methods were analyzed sta-
tistically and the results were shown in Table 1. Based 
on mean squared error and peak signal noise ratio val-
ues, the median method showed a better result than 
the other two methods.

Image Segmentation
Objects within each image are separated from the 
background via a process called  segmentation. 
 Segmentation is the key part in the image 
 processing.25,26 Algal images showed various shapes 
for the same species. The edges and contour of the 
objects are more meaningful. So far, much research 
on the automatic identification of algae has been done 
using edge detection; this is achieved by the Sobel 
edge  detector.28 Another algorithm called the Canny 
edge detector algorithm is a powerful edge detector 
for image segmentation.15,24,29

In this study, both the Canny and Sobel edge detec-
tion methods were adopted for image segmentation.25 
After the Sobel edge detector method is applied, the 
resulting images had many discontinuities. Lapla-
cian of Gaussian operator was applied on the Sobel 
image to smooth the image.28 The edges of the algae 
with minimum discontinuities were detected in the 

Original image
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Neighbourhood 
averaging 
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Median
filter

Figure 2. Pre processed images by various filters.
note: The original images were collected  from Algal resource Database, Microbial cluture collection, National Institute for environmental Studies. http://
www.shigen.nig.ac.jp/algae/.
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Canny edge detector method. To avoid the discon-
tinuities, the same method was repeated for several 
times on the detected edges. A mean square error of 
the Canny edge detection method is slightly greater 
than the Sobel edge detection method. The peak sig-
nal noise ratio of the Canny method is slightly lesser 
than the Sobel method. Finally, the object result 

Table 1. Comparison of noise removal filters using MSE and PSNR metrics.

Image Median filter Wiener filter Non uniform illumination 
using top-hat filter

MSE psnR MSE psnR MSE psnR
Diatom 0.0122 30.6193 0.0115 31.0761 0.3481 23.3133
Closterium acerosum 0.0152 30.8247 0.0120 35.4253 0.3542 23.1095
Oscillatoria 0.0076 33.4772 0.0078 43.4040 0.3090 23.9395
Pediastrum 0.0135 30.9478 0.0184 32.3668 0.4764 22.3336
Pinnularia 0.0058 35.6971 0.0069 36.3533 0.4965 24.4697

Original 
image Sobel 

Sobel edge 
detection 
based on LoG 
operator

Canny

Figure 3. edge detection methods.

from the Sobel method was better than the Canny 
edge detection method; this is shown in Figure 3 and 
Table 2.

Feature Extraction
Feature extraction used to transform a binary and color 
image from the preprocessed stage into a set of param-
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eters that described the algae features.15 Once an inter-
esting feature has been detected, the illustration of this 
feature will be used to compare with all possible features 
known to the processor.

There are two main methods for object identification 
that use boundary information.26 The first is the Fou-
rier descriptor method, and the second is the moment 
invariant method. In the Fourier descriptor method, 
the boundary is divided into N = 2n parts to produce N 
equidistant boundary points. The coordinates of these 
points were now processed using fast Fourier trans-
form. This will produce frequency classification of 
the boundary. The second method is finding moment 
invariants. In this technique, seven moment invariants 
can be derived, all of which are invariant to objects 
and changes made in magnification.23

Two-dimensional moment invariants of a digitally 
sampled M × M image.

f (x, y), (x, y = 0 … M – 1) is given as,
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Table 2. Comparison of the noise edge detection methods 
using MSe and PSNr metrics.

Image Sobel Canny
MSE psnR MSE psnR

Diatom 0.4546 25.7925 0.4236 27.8187
Closterium  
acerosum

0.3674 24.4938 0.3630 27.0445

gloeotrichia 0.3016 26.2720 0.3097 27.6404
Pediastrum 0.5193 24.7969 0.4967 27.1131
Pinnularia 0.5087 25.9998 0.4941 27.4304

When scaling normalization is applied the central 
moments change as,

	 ηpq = µpq/µ
γ 00, γ = [(p + q)/2] + 1. (4)

In particular, Hu defines seven values, which are 
computed by normalizing central moments through 
order three, which are invariant to object scale, posi-
tion, and orientation.30 In terms of the central moments, 
the seven moments are given as,

M1 = (η20 + η02),  (1)

M2 = (η20 – η02)
2 + 4η2 11, (2)

M3 = (η30 – 3η12)
2 + (3η21 – η03)

2, (3)

M4 = (η30 + η12)
2 + (η21 + η03)

2, (4)

M5 =  (η30–3η12) (η30 + η12) [(η30 + η12)
2 –  

3(η21 + η03)
2] + (3η21 – η03)(η21 + η03) 

[3(η30 + 12)2 – (η21 + η03)
2], (5)

M6 =  (η20 – η02) [(η30 + η12)
2  

– (η21 + η03)
2] + 4η11 (η30 + η12) (η21 + η03), (6)

M7 =  (3η21 – η03) (η30 + η12) [(η30 + η12)
2  

– 3(η21 + η03)
2] – (η30 + 3η12) (η21 + η03)  

[3(η30 + η12)
2 – (η21 + η03)

2]. (7)

The moment invariant features are given in 
Table 3.

Walker et al26 used new features to classify an 
object into one of the number of classes, (ie, Micro-
cystis, Anabaena, and so on) it is essential to quan-
titatively measure characteristics of the object that 
may indicate its class membership. For example, the 
feature “area” is an excellent discriminator of class 
membership when classifying algae such as Micro-
cystis and Anabaena cyanobacteria, as these two gen-
era differ substantially in size. The features of each 
object, including morphometric properties (the area, 
circularity, and perimeter length), object boundary, 
shape features, frequency domain features, and spa-
tial statistics containing Gray level co-occurrence 
matrix measures are used for identification.

The principal component analysis (PCA) method 
is widely used in most image processing applications 
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Table 3. Moment invariants for the algae.

Image Moment invariant
Anabaena 0.0211, 0.0004, 0.0000, 

0.0000, 0.0000, 0.0000,0
Closte 0.0189, 0.0004, 0.0000, 

0.0000, 0.0000, 0.0000,0
Diatom 0.0191, 0.0004, 0.0000, 

0.0000, 0.0000, 0.0000,0
eremo 0.0183, 0.0003, 0.0000, 

0.0000, 0.0000, 0.0000,0
Fibro 0.0184, 0.0003, 0.0000, 

0.0000, 0.0000, 0.0000,0
gloeo 0.0183, 0.0003, 0.0000, 

0.0000, 0.0000, 0.0000,0
Microcystis 0.0225, 0.0005, 0.0000, 

0.0000, 0.0000, 0.0000,0
Oscillatoria 0.0235, 0.0006, 0.0000, 

0.0000, 0.0000, 0.0000,0
Penium 0.0189, 0.0004, 0.0000, 

0.0000, 0.0000, 0.0000,0

Table 4. Observation and analysis on existing system.

Author Year Objectives Methods Results
Segmentation Feature extraction Classification

Stefan  
et al

1995 Automated recognition  
of blue green algae

Sobel edge  
detection

Fourier descriptors  
and moment  
invariants

Discriminant  
analysis

98%

gao  
et al

2011 Automatic identification of  
diatoms with circular shape  
using texture analysis

Canny edge  
detection

Fourier spectrum Neural  
Networks

94.44%

Mansoor  
et al

2011 Automatic recognition  
system for some  
cyanobacteria using image  
processing techniques  
and ANN approach

Thresholding  
technique

Principal  
component  
analysis

Multilayer  
perceptron  
feed forward  
artificial neural  
networks

95%

Walker  
et al

2011 Fluroscence-assissted  
image analysis of freshwater  
microalgae

Binary  
segmentation

Co occurrence  
matrix measures

Bayes decision  
function

–

Fang  
et al

2011 Automatic identification of  
mycobacterium tuberculosis  
in acid-fast stain sputum  
smears with image  
processing neural networks

– – Perceptron  
and FFNN

100%

Anggraini  
et al

2011 Automated status  
identification of microscopic  
images obtained from  
malaria thin blood smears  
using bayes decesion

edge detection,  
thresholding,  
segmentation  
and watershed  
algorithm

– Bayes  
classifier

99.65%

to reduce the number of features by a normalization 
process.1 PCA involves a mathematical procedure that 
transforms a number of (possibly) correlated vari-
ables into a (smaller) number of uncorrelated vari-
ables called principal components. The first principal 

component accounts for as much of the variability in 
the data as possible, and each succeeding component 
accounts for as much of the remaining variability 
as possible. The Fourier spectrum is ideally suit-
able for describing the directionality of periodic or 
almost periodic two-dimensional patterns in a round 
image.24,30

Identification
The classification method uses a set of features 
or parameters to differentiate each object, where 
these features should be related to the task at hand. 
A human expert has to determine into what classes 
an object may be categorized and also has provided 
a set of sample objects with known classes. This set 
of identified objects is called the training set. This is 
used to train the classification programs to learn how 
to classify objects.

Automated recognition of blue-green algae 
implemented a discriminant analysis for clas-
sification. It is a statistical method that provides 
a  discriminator function for each different spe-
cies. Discriminant analysis may be used for two 
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objectives: to assess the adequacy of classification, 
given the group memberships of the objects under 
study; or to assign objects to one of a number of 
(known) groups of objects.

Gao et al24 proposed a neural networks  classification. 
Here, neural networks are designed with 15, 30, 40, 
60, or 80 nodes in a single hidden layer and six nodes 
for each class in the output layer to test the perfor-
mance.

Mansoor et al1 presented multilayer perceptron 
feed forward ANN to perform an identification pro-
cess for selected cyanobacteria. ANN architecture 
consists of six outputs, three outputs, and three neu-
rons in a hidden layer—0.78 for learning rate, and 
0.5 for momentum. The classifier is used to index the 
database content during the training mode for catego-
rizing purposes.

Walker et al26 implemented a general Bayes deci-
sion function for assumed Gaussian feature distribu-
tions with unequal variance–covariance matrices. The 
resulting decision surface is of hyperquadtric form. 
In this, the target is only the anabaena and microcys-
tis genera. So, the microalgea in water samples were 
classified to the genus level.

Fang et al19 used perceptron and the feed forward 
back propagation scheme of the neural network. 
The perceptron has six neurons and its accuracy is 
100% sensitivity and 39.8% specificity. The result 
is 97.8% sensitivity and 72.4% specificity for this 
application.

Anggraini et al27 implemented Bayes classifier 
in each node. The performance of this classification 
model was evaluated using 20 microphotographs 
obtained from different blood smears, which are 
identified as infested erythrocytes with sensitivity of 
92.59%, specificity of 99.65%.

In this study, a back propagation neural network 
was used to classify the images that achieved 100% 
of classification accuracy on the trained images and 
80% classification accuracy on tested images. The 
results are shown in Table  4.

Conclusion
This paper reviewed various techniques of pre-
processing, segmentation, feature extraction, and 
classification in image processing. The achieved 
detection rate of combining all the features was 
more than 98%. Particularly, using the neural 

network, 86.5% of the identification rate was 
achieved. In total, 95% accuracy was achieved in 
the identification and classification of four genera 
of cyanobacteria using back propagation and shape 
boundary features. Then, 97% of the classification 
accuracy was achieved by object size, shape, and 
texture based on feature extraction techniques. For 
automatic algal identification, the identification 
accuracy was increased by several features such as 
shape, size, object boundary, and textures combined 
with morphological operators. The automatic iden-
tification rate is increased by using different seg-
mentation methods and developing new features for 
microscopic algae images.
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